Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2-3/2014

01.09.2014

Insulin-like growth factor receptor-1 (IGF-IR) as a target for prostate cancer therapy

verfasst von: Jennifer Wu, Evan Yu

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2-3/2014

Einloggen, um Zugang zu erhalten

Abstract

Prostate cancer is the most commonly diagnosed cancer in men and is the second leading cause of cancer-related deaths in men each year. Androgen deprivation therapy is and has been the gold standard of care for advanced or metastatic prostate cancer for decades. While this treatment strategy initially shows benefit, eventually tumors recur as castration-resistant prostate cancer for which there are limited treatment options with only modest survival benefit. Upregulation of the insulin-like growth factor receptor type I (IGF-IR) signaling axis has been shown to drive the survival of prostate cancer cells in many studies. As many IGF-IR blockades have been developed, few have been tested preclinically and even fewer have entered clinical trials for prostate cancer therapy. In this review, we will update the most recent preclinical and clinical studies of IGF-IR therapy for prostate cancer. We will also discuss the challenges for IGF-IR targeted therapies to achieve clinical benefit for prostate cancer.
Literatur
1.
Zurück zum Zitat Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 63, 11–30. Siegel, R., Naishadham, D., & Jemal, A. (2013). Cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 63, 11–30.
2.
Zurück zum Zitat Gennigens, C., Menetrier-Caux, C., & Droz, J. P. (2006). Insulin-like growth factor (IGF) family and prostate cancer. Critical Reviews in Oncology/Hematology, 58, 124–145.PubMedCrossRef Gennigens, C., Menetrier-Caux, C., & Droz, J. P. (2006). Insulin-like growth factor (IGF) family and prostate cancer. Critical Reviews in Oncology/Hematology, 58, 124–145.PubMedCrossRef
3.
Zurück zum Zitat Kojima, S., Inahara, M., Suzuki, H., Ichikawa, T., & Furuya, Y. (2009). Implications of insulin-like growth factor-I for prostate cancer therapies. International Journal of Urology, 16, 161–167.PubMedCrossRef Kojima, S., Inahara, M., Suzuki, H., Ichikawa, T., & Furuya, Y. (2009). Implications of insulin-like growth factor-I for prostate cancer therapies. International Journal of Urology, 16, 161–167.PubMedCrossRef
4.
Zurück zum Zitat Baserga, R., Porcu, P., Rubini, M., & Sell, C. (1993). Cell cycle control by the IGF-1 receptor and its ligands. Advances in Experimental Medicine and Biology, 343, 105–112.PubMedCrossRef Baserga, R., Porcu, P., Rubini, M., & Sell, C. (1993). Cell cycle control by the IGF-1 receptor and its ligands. Advances in Experimental Medicine and Biology, 343, 105–112.PubMedCrossRef
5.
Zurück zum Zitat Adams, T. E., Epa, V. C., Garrett, T. P., & Ward, C. W. (2000). Structure and function of the type 1 insulin-like growth factor receptor. Cellular and Molecular Life Sciences : CMLS, 57, 1050–1093.PubMedCrossRef Adams, T. E., Epa, V. C., Garrett, T. P., & Ward, C. W. (2000). Structure and function of the type 1 insulin-like growth factor receptor. Cellular and Molecular Life Sciences : CMLS, 57, 1050–1093.PubMedCrossRef
6.
Zurück zum Zitat Baserga, R., Peruzzi, F., & Reiss, K. (2003). The IGF-1 receptor in cancer biology. International Journal of Cancer, 107, 873–877.CrossRef Baserga, R., Peruzzi, F., & Reiss, K. (2003). The IGF-1 receptor in cancer biology. International Journal of Cancer, 107, 873–877.CrossRef
7.
Zurück zum Zitat Cruickshank, J., Grossman, D. I., Peng, R. K., Famula, T. R., & Oberbauer, A. M. (2005). Spatial distribution of growth hormone receptor, insulin-like growth factor-I receptor and apoptotic chondrocytes during growth plate development. The Journal of Endocrinology, 184, 543–553.PubMedCrossRef Cruickshank, J., Grossman, D. I., Peng, R. K., Famula, T. R., & Oberbauer, A. M. (2005). Spatial distribution of growth hormone receptor, insulin-like growth factor-I receptor and apoptotic chondrocytes during growth plate development. The Journal of Endocrinology, 184, 543–553.PubMedCrossRef
8.
Zurück zum Zitat Samani, A. A., Yakar, S., LeRoith, D., & Brodt, P. (2007). The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocrine Reviews, 28, 20–47.PubMedCrossRef Samani, A. A., Yakar, S., LeRoith, D., & Brodt, P. (2007). The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocrine Reviews, 28, 20–47.PubMedCrossRef
9.
Zurück zum Zitat DeAngelis, T., Wu, K., Pestell, R., & Baserga, R. (2011). The type 1 insulin-like growth factor receptor and resistance to DACH1. Cell Cycle, 10, 1956–1959.PubMedCrossRef DeAngelis, T., Wu, K., Pestell, R., & Baserga, R. (2011). The type 1 insulin-like growth factor receptor and resistance to DACH1. Cell Cycle, 10, 1956–1959.PubMedCrossRef
10.
Zurück zum Zitat Goel, H. L., Sayeed, A., Breen, M., Zarif, M. J., Garlick, D. S., Leav, I., Davis, R. J., Fitzgerald, T. J., Morrione, A., Hsieh, C. C., Liu, Q., Dicker, A. P., Altieri, D. C., & Languino, L. R. (2013). Beta1 integrins mediate resistance to ionizing radiation in vivo by inhibiting c-Jun amino terminal kinase1. Journal of Cellular Physiology, 228(7), 1601–1609.PubMedCentralPubMedCrossRef Goel, H. L., Sayeed, A., Breen, M., Zarif, M. J., Garlick, D. S., Leav, I., Davis, R. J., Fitzgerald, T. J., Morrione, A., Hsieh, C. C., Liu, Q., Dicker, A. P., Altieri, D. C., & Languino, L. R. (2013). Beta1 integrins mediate resistance to ionizing radiation in vivo by inhibiting c-Jun amino terminal kinase1. Journal of Cellular Physiology, 228(7), 1601–1609.PubMedCentralPubMedCrossRef
11.
Zurück zum Zitat Casa, A. J., Dearth, R. K., Litzenburger, B. C., Lee, A. V., & Cui, X. (2008). The type I insulin-like growth factor receptor pathway: a key player in cancer therapeutic resistance. Frontiers in Bioscience, 13, 3273–3287.PubMedCrossRef Casa, A. J., Dearth, R. K., Litzenburger, B. C., Lee, A. V., & Cui, X. (2008). The type I insulin-like growth factor receptor pathway: a key player in cancer therapeutic resistance. Frontiers in Bioscience, 13, 3273–3287.PubMedCrossRef
12.
Zurück zum Zitat Helle, S. I. (2004). The insulin-like growth factor system in advanced breast cancer. Best Practice & Research. Clinical Endocrinology & Metabolism, 18, 67–79.CrossRef Helle, S. I. (2004). The insulin-like growth factor system in advanced breast cancer. Best Practice & Research. Clinical Endocrinology & Metabolism, 18, 67–79.CrossRef
13.
Zurück zum Zitat Pollak, M., Beamer, W., & Zhang, J. C. (1998). Insulin-like growth factors and prostate cancer. Cancer Metastasis Reviews, 17, 383–390.PubMedCrossRef Pollak, M., Beamer, W., & Zhang, J. C. (1998). Insulin-like growth factors and prostate cancer. Cancer Metastasis Reviews, 17, 383–390.PubMedCrossRef
14.
Zurück zum Zitat Gross, J. M., & Yee, D. (2003). The type-1 insulin-like growth factor receptor tyrosine kinase and breast cancer: biology and therapeutic relevance. Cancer Metastasis Reviews, 22, 327–336.PubMedCrossRef Gross, J. M., & Yee, D. (2003). The type-1 insulin-like growth factor receptor tyrosine kinase and breast cancer: biology and therapeutic relevance. Cancer Metastasis Reviews, 22, 327–336.PubMedCrossRef
15.
Zurück zum Zitat Polychronakos, C., Janthly, U., Lehoux, J. G., & Koutsilieris, M. (1991). Mitogenic effects of insulin and insulin-like growth factors on PA-III rat prostate adenocarcinoma cells: characterization of the receptors involved. Prostate, 19, 313–321.PubMedCrossRef Polychronakos, C., Janthly, U., Lehoux, J. G., & Koutsilieris, M. (1991). Mitogenic effects of insulin and insulin-like growth factors on PA-III rat prostate adenocarcinoma cells: characterization of the receptors involved. Prostate, 19, 313–321.PubMedCrossRef
16.
Zurück zum Zitat Werner, H., & Maor, S. (2006). The insulin-like growth factor-I receptor gene: a downstream target for oncogene and tumor suppressor action. Trends in Endocrinology and Metabolism: TEM, 17, 236–242.PubMedCrossRef Werner, H., & Maor, S. (2006). The insulin-like growth factor-I receptor gene: a downstream target for oncogene and tumor suppressor action. Trends in Endocrinology and Metabolism: TEM, 17, 236–242.PubMedCrossRef
17.
Zurück zum Zitat Khandwala, H. M., McCutcheon, I. E., Flyvbjerg, A., & Friend, K. E. (2000). The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocrine Reviews, 21, 215–244.PubMedCrossRef Khandwala, H. M., McCutcheon, I. E., Flyvbjerg, A., & Friend, K. E. (2000). The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocrine Reviews, 21, 215–244.PubMedCrossRef
18.
Zurück zum Zitat DiGiovanni, J., Kiguchi, K., Frijhoff, A., Wilker, E., Bol, D. K., Beltran, L., Moats, S., Ramirez, A., Jorcano, J., & Conti, C. (2000). Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 97, 3455–3460.PubMedCentralPubMedCrossRef DiGiovanni, J., Kiguchi, K., Frijhoff, A., Wilker, E., Bol, D. K., Beltran, L., Moats, S., Ramirez, A., Jorcano, J., & Conti, C. (2000). Deregulated expression of insulin-like growth factor 1 in prostate epithelium leads to neoplasia in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 97, 3455–3460.PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Chen, C. F., Li, S., Chen, Y., Chen, P. L., Sharp, Z. D., & Lee, W. H. (1996). The nuclear localization sequences of the BRCA1 protein interact with the importin-alpha subunit of the nuclear transport signal receptor. The Journal of Biological Chemistry, 271, 32863–32868.PubMedCrossRef Chen, C. F., Li, S., Chen, Y., Chen, P. L., Sharp, Z. D., & Lee, W. H. (1996). The nuclear localization sequences of the BRCA1 protein interact with the importin-alpha subunit of the nuclear transport signal receptor. The Journal of Biological Chemistry, 271, 32863–32868.PubMedCrossRef
20.
Zurück zum Zitat Hellawell, G. O., Turner, G. D., Davies, D. R., Poulsom, R., Brewster, S. F., & Macaulay, V. M. (2002). Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Research, 62, 2942–2950.PubMed Hellawell, G. O., Turner, G. D., Davies, D. R., Poulsom, R., Brewster, S. F., & Macaulay, V. M. (2002). Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Research, 62, 2942–2950.PubMed
21.
Zurück zum Zitat Krueckl, S. L., Sikes, R. A., Edlund, N. M., Bell, R. H., Hurtado-Coll, A., Fazli, L., Gleave, M. E., & Cox, M. E. (2004). Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model. Cancer Research, 64, 8620–8629.PubMedCrossRef Krueckl, S. L., Sikes, R. A., Edlund, N. M., Bell, R. H., Hurtado-Coll, A., Fazli, L., Gleave, M. E., & Cox, M. E. (2004). Increased insulin-like growth factor I receptor expression and signaling are components of androgen-independent progression in a lineage-derived prostate cancer progression model. Cancer Research, 64, 8620–8629.PubMedCrossRef
22.
Zurück zum Zitat Nickerson, T., Chang, F., Lorimer, D., Smeekens, S. P., Sawyers, C. L., & Pollak, M. (2001). In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Research, 61, 6276–6280.PubMed Nickerson, T., Chang, F., Lorimer, D., Smeekens, S. P., Sawyers, C. L., & Pollak, M. (2001). In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR). Cancer Research, 61, 6276–6280.PubMed
23.
Zurück zum Zitat Plymate, S. R., Bae, V. L., Maddison, L., Quinn, L. S., & Ware, J. L. (1997). Reexpression of the type 1 insulin-like growth factor receptor inhibits the malignant phenotype of simian virus 40 T antigen immortalized human prostate epithelial cells. Endocrinology, 138, 1728–1735.PubMed Plymate, S. R., Bae, V. L., Maddison, L., Quinn, L. S., & Ware, J. L. (1997). Reexpression of the type 1 insulin-like growth factor receptor inhibits the malignant phenotype of simian virus 40 T antigen immortalized human prostate epithelial cells. Endocrinology, 138, 1728–1735.PubMed
24.
Zurück zum Zitat Kaplan, P. J., Mohan, S., Cohen, P., Foster, B. A., & Greenberg, N. M. (1999). The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Cancer Research, 59, 2203–2209.PubMed Kaplan, P. J., Mohan, S., Cohen, P., Foster, B. A., & Greenberg, N. M. (1999). The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Cancer Research, 59, 2203–2209.PubMed
25.
Zurück zum Zitat Stattin, P., Rinaldi, S., Biessy, C., Stenman, U. H., Hallmans, G., & Kaaks, R. (2004). High levels of circulating insulin-like growth factor-I increase prostate cancer risk: a prospective study in a population-based nonscreened cohort. Journal of Clinical Oncology, 22, 3104–3112.PubMedCrossRef Stattin, P., Rinaldi, S., Biessy, C., Stenman, U. H., Hallmans, G., & Kaaks, R. (2004). High levels of circulating insulin-like growth factor-I increase prostate cancer risk: a prospective study in a population-based nonscreened cohort. Journal of Clinical Oncology, 22, 3104–3112.PubMedCrossRef
26.
Zurück zum Zitat Mantzoros, C. S., Tzonou, A., Signorello, L. B., Stampfer, M., Trichopoulos, D., & Adami, H. O. (1997). Insulin-like growth factor 1 in relation to prostate cancer and benign prostatic hyperplasia. British Journal of Cancer, 76, 1115–1118.PubMedCentralPubMedCrossRef Mantzoros, C. S., Tzonou, A., Signorello, L. B., Stampfer, M., Trichopoulos, D., & Adami, H. O. (1997). Insulin-like growth factor 1 in relation to prostate cancer and benign prostatic hyperplasia. British Journal of Cancer, 76, 1115–1118.PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat Chan, J. M., Stampfer, M. J., Giovannucci, E., Gann, P. H., Ma, J., Wilkinson, P., Hennekens, C. H., & Pollak, M. (1998). Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science, 279, 563–566.PubMedCrossRef Chan, J. M., Stampfer, M. J., Giovannucci, E., Gann, P. H., Ma, J., Wilkinson, P., Hennekens, C. H., & Pollak, M. (1998). Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science, 279, 563–566.PubMedCrossRef
28.
Zurück zum Zitat Wolk, A., Mantzoros, C. S., Andersson, S. O., Bergstrom, R., Signorello, L. B., Lagiou, P., Adami, H. O., & Trichopoulos, D. (1998). Insulin-like growth factor 1 and prostate cancer risk: a population-based, case-control study. Journal of the National Cancer Institute, 90, 911–915.PubMedCrossRef Wolk, A., Mantzoros, C. S., Andersson, S. O., Bergstrom, R., Signorello, L. B., Lagiou, P., Adami, H. O., & Trichopoulos, D. (1998). Insulin-like growth factor 1 and prostate cancer risk: a population-based, case-control study. Journal of the National Cancer Institute, 90, 911–915.PubMedCrossRef
29.
Zurück zum Zitat Harman, S. M., Metter, E. J., Blackman, M. R., Landis, P. K., & Carter, H. B. (2000). Serum levels of insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-3, and prostate-specific antigen as predictors of clinical prostate cancer. The Journal of Clinical Endocrinology and Metabolism, 85, 4258–4265.PubMedCrossRef Harman, S. M., Metter, E. J., Blackman, M. R., Landis, P. K., & Carter, H. B. (2000). Serum levels of insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-3, and prostate-specific antigen as predictors of clinical prostate cancer. The Journal of Clinical Endocrinology and Metabolism, 85, 4258–4265.PubMedCrossRef
30.
Zurück zum Zitat Renehan, A. G., Zwahlen, M., Minder, C., O'Dwyer, S. T., Shalet, S. M., & Egger, M. (2004). Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet, 363, 1346–1353.PubMedCrossRef Renehan, A. G., Zwahlen, M., Minder, C., O'Dwyer, S. T., Shalet, S. M., & Egger, M. (2004). Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet, 363, 1346–1353.PubMedCrossRef
31.
Zurück zum Zitat Chokkalingam, A. P., Pollak, M., Fillmore, C. M., Gao, Y. T., Stanczyk, F. Z., Deng, J., Sesterhenn, I. A., Mostofi, F. K., Fears, T. R., Madigan, M. P., Ziegler, R. G., Fraumeni, J. F., Jr., & Hsing, A. W. (2001). Insulin-like growth factors and prostate cancer: a population-based case-control study in China. Cancer Epidemiology, Biomarkers & Prevention, 10, 421–427. Chokkalingam, A. P., Pollak, M., Fillmore, C. M., Gao, Y. T., Stanczyk, F. Z., Deng, J., Sesterhenn, I. A., Mostofi, F. K., Fears, T. R., Madigan, M. P., Ziegler, R. G., Fraumeni, J. F., Jr., & Hsing, A. W. (2001). Insulin-like growth factors and prostate cancer: a population-based case-control study in China. Cancer Epidemiology, Biomarkers & Prevention, 10, 421–427.
32.
Zurück zum Zitat Platz, E. A., Pollak, M. N., Leitzmann, M. F., Stampfer, M. J., Willett, W. C., & Giovannucci, E. (2005). Plasma insulin-like growth factor-1 and binding protein-3 and subsequent risk of prostate cancer in the PSA era. Cancer Causes & Control : CCC, 16, 255–262.PubMedCrossRef Platz, E. A., Pollak, M. N., Leitzmann, M. F., Stampfer, M. J., Willett, W. C., & Giovannucci, E. (2005). Plasma insulin-like growth factor-1 and binding protein-3 and subsequent risk of prostate cancer in the PSA era. Cancer Causes & Control : CCC, 16, 255–262.PubMedCrossRef
33.
Zurück zum Zitat Woodson, K., Tangrea, J. A., Pollak, M., Copeland, T. D., Taylor, P. R., Virtamo, J., & Albanes, D. (2003). Serum insulin-like growth factor I: tumor marker or etiologic factor? A prospective study of prostate cancer among Finnish men. Cancer Research, 63, 3991–3994.PubMed Woodson, K., Tangrea, J. A., Pollak, M., Copeland, T. D., Taylor, P. R., Virtamo, J., & Albanes, D. (2003). Serum insulin-like growth factor I: tumor marker or etiologic factor? A prospective study of prostate cancer among Finnish men. Cancer Research, 63, 3991–3994.PubMed
34.
Zurück zum Zitat Chen, C., Lewis, S. K., Voigt, L., Fitzpatrick, A., Plymate, S. R., & Weiss, N. S. (2005). Prostate carcinoma incidence in relation to prediagnostic circulating levels of insulin-like growth factor I, insulin-like growth factor binding protein 3, and insulin. Cancer, 103, 76–84.PubMedCrossRef Chen, C., Lewis, S. K., Voigt, L., Fitzpatrick, A., Plymate, S. R., & Weiss, N. S. (2005). Prostate carcinoma incidence in relation to prediagnostic circulating levels of insulin-like growth factor I, insulin-like growth factor binding protein 3, and insulin. Cancer, 103, 76–84.PubMedCrossRef
35.
Zurück zum Zitat Allen, N. E., Key, T. J., Appleby, P. N., Travis, R. C., Roddam, A. W., Rinaldi, S., Egevad, L., Rohrmann, S., Linseisen, J., Pischon, T., Boeing, H., Johnsen, N. F., Tjonneland, A., Gronbaek, H., Overvad, K., Kiemeney, L., Bueno-de-Mesquita, H. B., Bingham, S., Khaw, K. T., Tumino, R., Berrino, F., Mattiello, A., Sacerdote, C., Palli, D., Quiros, J. R., Ardanaz, E., Navarro, C., Larranaga, N., Gonzalez, C., Sanchez, M. J., Trichopoulou, A., Travezea, C., Trichopoulos, D., Jenab, M., Ferrari, P., Riboli, E., & Kaaks, R. (2007). Serum insulin-like growth factor (IGF)-I and IGF-binding protein-3 concentrations and prostate cancer risk: results from the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiology, Biomarkers & Prevention, 16, 1121–1127.CrossRef Allen, N. E., Key, T. J., Appleby, P. N., Travis, R. C., Roddam, A. W., Rinaldi, S., Egevad, L., Rohrmann, S., Linseisen, J., Pischon, T., Boeing, H., Johnsen, N. F., Tjonneland, A., Gronbaek, H., Overvad, K., Kiemeney, L., Bueno-de-Mesquita, H. B., Bingham, S., Khaw, K. T., Tumino, R., Berrino, F., Mattiello, A., Sacerdote, C., Palli, D., Quiros, J. R., Ardanaz, E., Navarro, C., Larranaga, N., Gonzalez, C., Sanchez, M. J., Trichopoulou, A., Travezea, C., Trichopoulos, D., Jenab, M., Ferrari, P., Riboli, E., & Kaaks, R. (2007). Serum insulin-like growth factor (IGF)-I and IGF-binding protein-3 concentrations and prostate cancer risk: results from the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiology, Biomarkers & Prevention, 16, 1121–1127.CrossRef
36.
Zurück zum Zitat Sutherland, B. W., Knoblaugh, S. E., Kaplan-Lefko, P. J., Wang, F., Holzenberger, M., & Greenberg, N. M. (2008). Conditional deletion of insulin-like growth factor-I receptor in prostate epithelium. Cancer Research, 68, 3495–3504.PubMedCrossRef Sutherland, B. W., Knoblaugh, S. E., Kaplan-Lefko, P. J., Wang, F., Holzenberger, M., & Greenberg, N. M. (2008). Conditional deletion of insulin-like growth factor-I receptor in prostate epithelium. Cancer Research, 68, 3495–3504.PubMedCrossRef
37.
Zurück zum Zitat LeRoith, D., & Roberts, C. T., Jr. (2003). The insulin-like growth factor system and cancer. Cancer Letters, 195, 127–137.PubMedCrossRef LeRoith, D., & Roberts, C. T., Jr. (2003). The insulin-like growth factor system and cancer. Cancer Letters, 195, 127–137.PubMedCrossRef
38.
Zurück zum Zitat Belfiore, A., Frasca, F., Pandini, G., Sciacca, L., & Vigneri, R. (2009). Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocrine Reviews, 30, 586–623.PubMedCrossRef Belfiore, A., Frasca, F., Pandini, G., Sciacca, L., & Vigneri, R. (2009). Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocrine Reviews, 30, 586–623.PubMedCrossRef
39.
Zurück zum Zitat Dallas, N. A., Xia, L., Fan, F., Gray, M. J., Gaur, P., Van Buren, G., 2nd, Samuel, S., Kim, M. P., Lim, S. J., & Ellis, L. M. (2009). Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Research, 69, 1951–1957.PubMedCentralPubMedCrossRef Dallas, N. A., Xia, L., Fan, F., Gray, M. J., Gaur, P., Van Buren, G., 2nd, Samuel, S., Kim, M. P., Lim, S. J., & Ellis, L. M. (2009). Chemoresistant colorectal cancer cells, the cancer stem cell phenotype, and increased sensitivity to insulin-like growth factor-I receptor inhibition. Cancer Research, 69, 1951–1957.PubMedCentralPubMedCrossRef
40.
Zurück zum Zitat He, Y., Zhang, J., Zheng, J., Du, W., Xiao, H., Liu, W., Li, X., Chen, X., Yang, L., & Huang, S. (2010). The insulin-like growth factor-1 receptor kinase inhibitor, NVP-ADW742, suppresses survival and resistance to chemotherapy in acute myeloid leukemia cells. Oncology Research, 19, 35–43.PubMedCrossRef He, Y., Zhang, J., Zheng, J., Du, W., Xiao, H., Liu, W., Li, X., Chen, X., Yang, L., & Huang, S. (2010). The insulin-like growth factor-1 receptor kinase inhibitor, NVP-ADW742, suppresses survival and resistance to chemotherapy in acute myeloid leukemia cells. Oncology Research, 19, 35–43.PubMedCrossRef
41.
Zurück zum Zitat Morrione, A., Romano, G., Navarro, M., Reiss, K., Valentinis, B., Dews, M., Eves, E., Rosner, M. R., & Baserga, R. (2000). Insulin-like growth factor I receptor signaling in differentiation of neuronal H19-7 cells. Cancer Research, 60, 2263–2272.PubMed Morrione, A., Romano, G., Navarro, M., Reiss, K., Valentinis, B., Dews, M., Eves, E., Rosner, M. R., & Baserga, R. (2000). Insulin-like growth factor I receptor signaling in differentiation of neuronal H19-7 cells. Cancer Research, 60, 2263–2272.PubMed
42.
Zurück zum Zitat Valentinis, B., Romano, G., Peruzzi, F., Morrione, A., Prisco, M., Soddu, S., Cristofanelli, B., Sacchi, A., & Baserga, R. (1999). Growth and differentiation signals by the insulin-like growth factor 1 receptor in hemopoietic cells are mediated through different pathways. The Journal of Biological Chemistry, 274, 12423–12430.PubMedCrossRef Valentinis, B., Romano, G., Peruzzi, F., Morrione, A., Prisco, M., Soddu, S., Cristofanelli, B., Sacchi, A., & Baserga, R. (1999). Growth and differentiation signals by the insulin-like growth factor 1 receptor in hemopoietic cells are mediated through different pathways. The Journal of Biological Chemistry, 274, 12423–12430.PubMedCrossRef
43.
Zurück zum Zitat Gronborg, M., Wulff, B. S., Rasmussen, J. S., Kjeldsen, T., & Gammeltoft, S. (1993). Structure–function relationship of the insulin-like growth factor-I receptor tyrosine kinase. The Journal of Biological Chemistry, 268, 23435–23440.PubMed Gronborg, M., Wulff, B. S., Rasmussen, J. S., Kjeldsen, T., & Gammeltoft, S. (1993). Structure–function relationship of the insulin-like growth factor-I receptor tyrosine kinase. The Journal of Biological Chemistry, 268, 23435–23440.PubMed
44.
Zurück zum Zitat Li, S., Ferber, A., Miura, M., & Baserga, R. (1994). Mitogenicity and transforming activity of the insulin-like growth factor-I receptor with mutations in the tyrosine kinase domain. The Journal of Biological Chemistry, 269, 32558–32564.PubMed Li, S., Ferber, A., Miura, M., & Baserga, R. (1994). Mitogenicity and transforming activity of the insulin-like growth factor-I receptor with mutations in the tyrosine kinase domain. The Journal of Biological Chemistry, 269, 32558–32564.PubMed
45.
Zurück zum Zitat Rubinstein, M., Idelman, G., Plymate, S. R., Narla, G., Friedman, S. L., & Werner, H. (2004). Transcriptional activation of the insulin-like growth factor I receptor gene by the Kruppel-like factor 6 (KLF6) tumor suppressor protein: potential interactions between KLF6 and p53. Endocrinology, 145, 3769–3777.PubMedCrossRef Rubinstein, M., Idelman, G., Plymate, S. R., Narla, G., Friedman, S. L., & Werner, H. (2004). Transcriptional activation of the insulin-like growth factor I receptor gene by the Kruppel-like factor 6 (KLF6) tumor suppressor protein: potential interactions between KLF6 and p53. Endocrinology, 145, 3769–3777.PubMedCrossRef
46.
Zurück zum Zitat Schayek, H., Haugk, K., Sun, S., True, L. D., Plymate, S. R., & Werner, H. (2009). Tumor suppressor BRCA1 is expressed in prostate cancer and controls insulin-like growth factor I receptor (IGF-IR) gene transcription in an androgen receptor-dependent manner. Clinical Cancer Research, 15, 1558–1565.PubMedCentralPubMedCrossRef Schayek, H., Haugk, K., Sun, S., True, L. D., Plymate, S. R., & Werner, H. (2009). Tumor suppressor BRCA1 is expressed in prostate cancer and controls insulin-like growth factor I receptor (IGF-IR) gene transcription in an androgen receptor-dependent manner. Clinical Cancer Research, 15, 1558–1565.PubMedCentralPubMedCrossRef
47.
Zurück zum Zitat Li, D., Kumaraswamy, E., Harlan-Williams, L. M., & Jensen, R. A. (2013). The role of BRCA1 and BRCA2 in prostate cancer. Frontiers in Bioscience, 18, 1445–1459.CrossRef Li, D., Kumaraswamy, E., Harlan-Williams, L. M., & Jensen, R. A. (2013). The role of BRCA1 and BRCA2 in prostate cancer. Frontiers in Bioscience, 18, 1445–1459.CrossRef
48.
Zurück zum Zitat Schayek, H., Bentov, I., Jacob-Hirsch, J., Yeung, C., Khanna, C., Helman, L. J., Plymate, S. R., & Werner, H. (2012). Global methylation analysis identifies PITX2 as an upstream regulator of the androgen receptor and IGF-I receptor genes in prostate cancer. Hormone and Metabolic Research, 44, 511–519.PubMedCrossRef Schayek, H., Bentov, I., Jacob-Hirsch, J., Yeung, C., Khanna, C., Helman, L. J., Plymate, S. R., & Werner, H. (2012). Global methylation analysis identifies PITX2 as an upstream regulator of the androgen receptor and IGF-I receptor genes in prostate cancer. Hormone and Metabolic Research, 44, 511–519.PubMedCrossRef
49.
Zurück zum Zitat Thomas, R., & Kim, M. H. (2009). A HIF-1alpha-dependent autocrine feedback loop promotes survival of serum-deprived prostate cancer cells. The Prostate, 69, 263–275.PubMedCrossRef Thomas, R., & Kim, M. H. (2009). A HIF-1alpha-dependent autocrine feedback loop promotes survival of serum-deprived prostate cancer cells. The Prostate, 69, 263–275.PubMedCrossRef
50.
Zurück zum Zitat Werner, H., Stannard, B., Bach, M. A., LeRoith, D., & Roberts, C. T., Jr. (1990). Cloning and characterization of the proximal promoter region of the rat insulin-like growth factor I (IGF-I) receptor gene. Biochemical and Biophysical Research Communications, 169, 1021–1027.PubMedCrossRef Werner, H., Stannard, B., Bach, M. A., LeRoith, D., & Roberts, C. T., Jr. (1990). Cloning and characterization of the proximal promoter region of the rat insulin-like growth factor I (IGF-I) receptor gene. Biochemical and Biophysical Research Communications, 169, 1021–1027.PubMedCrossRef
51.
Zurück zum Zitat Cooke, D. W., Bankert, L. A., Roberts, C. T., Jr., LeRoith, D., & Casella, S. J. (1991). Analysis of the human type I insulin-like growth factor receptor promoter region. Biochemical and Biophysical Research Communications, 177, 1113–1120.PubMedCrossRef Cooke, D. W., Bankert, L. A., Roberts, C. T., Jr., LeRoith, D., & Casella, S. J. (1991). Analysis of the human type I insulin-like growth factor receptor promoter region. Biochemical and Biophysical Research Communications, 177, 1113–1120.PubMedCrossRef
52.
Zurück zum Zitat Black, A. R., Black, J. D., & Azizkhan-Clifford, J. (2001). Sp1 and Kruppel-like factor family of transcription factors in cell growth regulation and cancer. Journal of Cellular Physiology, 188, 143–160.PubMedCrossRef Black, A. R., Black, J. D., & Azizkhan-Clifford, J. (2001). Sp1 and Kruppel-like factor family of transcription factors in cell growth regulation and cancer. Journal of Cellular Physiology, 188, 143–160.PubMedCrossRef
53.
Zurück zum Zitat Trybus, T. M., Burgess, A. C., Wojno, K. J., Glover, T. W., & Macoska, J. A. (1996). Distinct areas of allelic loss on chromosomal regions 10p and 10q in human prostate cancer. Cancer Research, 56, 2263–2267.PubMed Trybus, T. M., Burgess, A. C., Wojno, K. J., Glover, T. W., & Macoska, J. A. (1996). Distinct areas of allelic loss on chromosomal regions 10p and 10q in human prostate cancer. Cancer Research, 56, 2263–2267.PubMed
54.
Zurück zum Zitat Narla, G., Heath, K. E., Reeves, H. L., Li, D., Giono, L. E., Kimmelman, A. C., Glucksman, M. J., Narla, J., Eng, F. J., Chan, A. M., Ferrari, A. C., Martignetti, J. A., & Friedman, S. L. (2001). KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science, 294, 2563–2566.PubMedCrossRef Narla, G., Heath, K. E., Reeves, H. L., Li, D., Giono, L. E., Kimmelman, A. C., Glucksman, M. J., Narla, J., Eng, F. J., Chan, A. M., Ferrari, A. C., Martignetti, J. A., & Friedman, S. L. (2001). KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science, 294, 2563–2566.PubMedCrossRef
55.
Zurück zum Zitat Liu, X., Gomez-Pinillos, A., Loder, C., Carrillo-de Santa Pau, E., Qiao, R., Unger, P. D., Kurek, R., Oddoux, C., Melamed, J., Gallagher, R. E., Mandeli, J., & Ferrari, A. C. (2012). KLF6 loss of function in human prostate cancer progression is implicated in resistance to androgen deprivation. American Journal of Pathology, 181, 1007–1016.PubMedCentralPubMedCrossRef Liu, X., Gomez-Pinillos, A., Loder, C., Carrillo-de Santa Pau, E., Qiao, R., Unger, P. D., Kurek, R., Oddoux, C., Melamed, J., Gallagher, R. E., Mandeli, J., & Ferrari, A. C. (2012). KLF6 loss of function in human prostate cancer progression is implicated in resistance to androgen deprivation. American Journal of Pathology, 181, 1007–1016.PubMedCentralPubMedCrossRef
56.
Zurück zum Zitat Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman, K., Tavtigian, S., Liu, Q., Cochran, C., Bennett, L. M., Ding, W., et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 266, 66–71.PubMedCrossRef Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman, K., Tavtigian, S., Liu, Q., Cochran, C., Bennett, L. M., Ding, W., et al. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science, 266, 66–71.PubMedCrossRef
57.
Zurück zum Zitat Futreal, P. A., Liu, Q., Shattuck-Eidens, D., Cochran, C., Harshman, K., Tavtigian, S., Bennett, L. M., Haugen-Strano, A., Swensen, J., Miki, Y., et al. (1994). BRCA1 mutations in primary breast and ovarian carcinomas. Science, 266, 120–122.PubMedCrossRef Futreal, P. A., Liu, Q., Shattuck-Eidens, D., Cochran, C., Harshman, K., Tavtigian, S., Bennett, L. M., Haugen-Strano, A., Swensen, J., Miki, Y., et al. (1994). BRCA1 mutations in primary breast and ovarian carcinomas. Science, 266, 120–122.PubMedCrossRef
58.
Zurück zum Zitat Turner, N. C., Reis-Filho, J. S., Russell, A. M., Springall, R. J., Ryder, K., Steele, D., Savage, K., Gillett, C. E., Schmitt, F. C., Ashworth, A., & Tutt, A. N. (2007). BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene, 26, 2126–2132.PubMedCrossRef Turner, N. C., Reis-Filho, J. S., Russell, A. M., Springall, R. J., Ryder, K., Steele, D., Savage, K., Gillett, C. E., Schmitt, F. C., Ashworth, A., & Tutt, A. N. (2007). BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene, 26, 2126–2132.PubMedCrossRef
59.
Zurück zum Zitat Chen, Y., Farmer, A. A., Chen, C. F., Jones, D. C., Chen, P. L., & Lee, W. H. (1996). BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Research, 56, 3168–3172.PubMed Chen, Y., Farmer, A. A., Chen, C. F., Jones, D. C., Chen, P. L., & Lee, W. H. (1996). BRCA1 is a 220-kDa nuclear phosphoprotein that is expressed and phosphorylated in a cell cycle-dependent manner. Cancer Research, 56, 3168–3172.PubMed
60.
Zurück zum Zitat Pandini, G., Mineo, R., Frasca, F., Roberts, C. T., Jr., Marcelli, M., Vigneri, R., & Belfiore, A. (2005). Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells. Cancer Research, 65, 1849–1857.PubMedCrossRef Pandini, G., Mineo, R., Frasca, F., Roberts, C. T., Jr., Marcelli, M., Vigneri, R., & Belfiore, A. (2005). Androgens up-regulate the insulin-like growth factor-I receptor in prostate cancer cells. Cancer Research, 65, 1849–1857.PubMedCrossRef
61.
Zurück zum Zitat Schayek, H., Seti, H., Greenberg, N. M., Sun, S., Werner, H., & Plymate, S. R. (2010). Differential regulation of insulin-like growth factor-I receptor gene expression by wild type and mutant androgen receptor in prostate cancer cells. Molecular and Cellular Endocrinology, 323, 239–245.PubMedCentralPubMedCrossRef Schayek, H., Seti, H., Greenberg, N. M., Sun, S., Werner, H., & Plymate, S. R. (2010). Differential regulation of insulin-like growth factor-I receptor gene expression by wild type and mutant androgen receptor in prostate cancer cells. Molecular and Cellular Endocrinology, 323, 239–245.PubMedCentralPubMedCrossRef
62.
Zurück zum Zitat Shafi, A. A., Yen, A. E., & Weigel, N. L. (2013). Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacology & Therapeutics, 140(3), 223–238.CrossRef Shafi, A. A., Yen, A. E., & Weigel, N. L. (2013). Androgen receptors in hormone-dependent and castration-resistant prostate cancer. Pharmacology & Therapeutics, 140(3), 223–238.CrossRef
63.
Zurück zum Zitat Yuan, X., Cai, C., Chen, S., Yu, Z., & Balk, S. P. (2013). Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene, 123(3), 1109–1122. Yuan, X., Cai, C., Chen, S., Yu, Z., & Balk, S. P. (2013). Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene, 123(3), 1109–1122.
64.
Zurück zum Zitat Titus, M. A., Schell, M. J., Lih, F. B., Tomer, K. B., & Mohler, J. L. (2005). Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clinical Cancer Research, 11, 4653–4657.PubMedCrossRef Titus, M. A., Schell, M. J., Lih, F. B., Tomer, K. B., & Mohler, J. L. (2005). Testosterone and dihydrotestosterone tissue levels in recurrent prostate cancer. Clinical Cancer Research, 11, 4653–4657.PubMedCrossRef
65.
Zurück zum Zitat Montgomery, R. B., Mostaghel, E. A., Vessella, R., Hess, D. L., Kalhorn, T. F., Higano, C. S., True, L. D., & Nelson, P. S. (2008). Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Research, 68, 4447–4454.PubMedCentralPubMedCrossRef Montgomery, R. B., Mostaghel, E. A., Vessella, R., Hess, D. L., Kalhorn, T. F., Higano, C. S., True, L. D., & Nelson, P. S. (2008). Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Research, 68, 4447–4454.PubMedCentralPubMedCrossRef
66.
Zurück zum Zitat Wu, J. D., Haugk, K., Woodke, L., Nelson, P., Coleman, I., & Plymate, S. R. (2006). Interaction of IGF signaling and the androgen receptor in prostate cancer progression. Journal of Cellular Biochemistry, 99, 392–401.PubMedCrossRef Wu, J. D., Haugk, K., Woodke, L., Nelson, P., Coleman, I., & Plymate, S. R. (2006). Interaction of IGF signaling and the androgen receptor in prostate cancer progression. Journal of Cellular Biochemistry, 99, 392–401.PubMedCrossRef
67.
Zurück zum Zitat Lin, H. K., Yeh, S., Kang, H. Y., & Chang, C. (2001). Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proceedings of the National Academy of Sciences of the United States of America, 98, 7200–7205.PubMedCentralPubMedCrossRef Lin, H. K., Yeh, S., Kang, H. Y., & Chang, C. (2001). Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proceedings of the National Academy of Sciences of the United States of America, 98, 7200–7205.PubMedCentralPubMedCrossRef
68.
Zurück zum Zitat Wen, Y., Hu, M. C., Makino, K., Spohn, B., Bartholomeusz, G., Yan, D. H., & Hung, M. C. (2000). HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Research, 60, 6841–6845.PubMed Wen, Y., Hu, M. C., Makino, K., Spohn, B., Bartholomeusz, G., Yan, D. H., & Hung, M. C. (2000). HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Research, 60, 6841–6845.PubMed
69.
Zurück zum Zitat Manin, M., Baron, S., Goossens, K., Beaudoin, C., Jean, C., Veyssiere, G., Verhoeven, G., & Morel, L. (2002). Androgen receptor expression is regulated by the phosphoinositide 3-kinase/Akt pathway in normal and tumoral epithelial cells. The Biochemical Journal, 366, 729–736.PubMedCentralPubMed Manin, M., Baron, S., Goossens, K., Beaudoin, C., Jean, C., Veyssiere, G., Verhoeven, G., & Morel, L. (2002). Androgen receptor expression is regulated by the phosphoinositide 3-kinase/Akt pathway in normal and tumoral epithelial cells. The Biochemical Journal, 366, 729–736.PubMedCentralPubMed
70.
Zurück zum Zitat Graff, J. R., Konicek, B. W., McNulty, A. M., Wang, Z., Houck, K., Allen, S., Paul, J. D., Hbaiu, A., Goode, R. G., Sandusky, G. E., Vessella, R. L., & Neubauer, B. L. (2000). Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. The Journal of Biological Chemistry, 275, 24500–24505.PubMedCrossRef Graff, J. R., Konicek, B. W., McNulty, A. M., Wang, Z., Houck, K., Allen, S., Paul, J. D., Hbaiu, A., Goode, R. G., Sandusky, G. E., Vessella, R. L., & Neubauer, B. L. (2000). Increased AKT activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip1 expression. The Journal of Biological Chemistry, 275, 24500–24505.PubMedCrossRef
71.
Zurück zum Zitat Murillo, H., Huang, H., Schmidt, L. J., Smith, D. I., & Tindall, D. J. (2001). Role of PI3K signaling in survival and progression of LNCaP prostate cancer cells to the androgen refractory state. Endocrinology, 142, 4795–4805.PubMedCrossRef Murillo, H., Huang, H., Schmidt, L. J., Smith, D. I., & Tindall, D. J. (2001). Role of PI3K signaling in survival and progression of LNCaP prostate cancer cells to the androgen refractory state. Endocrinology, 142, 4795–4805.PubMedCrossRef
72.
Zurück zum Zitat Jiang, Y. G., Luo, Y., He, D. L., Li, X., Zhang, L. L., Peng, T., Li, M. C., & Lin, Y. H. (2007). Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. International Journal of Urology, 14, 1034–1039.PubMedCrossRef Jiang, Y. G., Luo, Y., He, D. L., Li, X., Zhang, L. L., Peng, T., Li, M. C., & Lin, Y. H. (2007). Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. International Journal of Urology, 14, 1034–1039.PubMedCrossRef
73.
Zurück zum Zitat Wang, Y., Kreisberg, J. I., & Ghosh, P. M. (2007). Cross-talk between the androgen receptor and the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer. Current Cancer Drug Targets, 7, 591–604.PubMedCrossRef Wang, Y., Kreisberg, J. I., & Ghosh, P. M. (2007). Cross-talk between the androgen receptor and the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer. Current Cancer Drug Targets, 7, 591–604.PubMedCrossRef
74.
Zurück zum Zitat Li, J., Wang, E., Rinaldo, F., & Datta, K. (2005). Upregulation of VEGF-C by androgen depletion: the involvement of IGF-IR-FOXO pathway. Oncogene, 24, 5510–5520.PubMedCrossRef Li, J., Wang, E., Rinaldo, F., & Datta, K. (2005). Upregulation of VEGF-C by androgen depletion: the involvement of IGF-IR-FOXO pathway. Oncogene, 24, 5510–5520.PubMedCrossRef
75.
Zurück zum Zitat Reiss, K., Wang, J. Y., Romano, G., Furnari, F. B., Cavenee, W. K., Morrione, A., Tu, X., & Baserga, R. (2000). IGF-I receptor signaling in a prostatic cancer cell line with a PTEN mutation. Oncogene, 19, 2687–2694.PubMedCrossRef Reiss, K., Wang, J. Y., Romano, G., Furnari, F. B., Cavenee, W. K., Morrione, A., Tu, X., & Baserga, R. (2000). IGF-I receptor signaling in a prostatic cancer cell line with a PTEN mutation. Oncogene, 19, 2687–2694.PubMedCrossRef
76.
Zurück zum Zitat Tang, Y., Zhang, D., Fallavollita, L., & Brodt, P. (2003). Vascular endothelial growth factor C expression and lymph node metastasis are regulated by the type I insulin-like growth factor receptor. Cancer Research, 63, 1166–1171.PubMed Tang, Y., Zhang, D., Fallavollita, L., & Brodt, P. (2003). Vascular endothelial growth factor C expression and lymph node metastasis are regulated by the type I insulin-like growth factor receptor. Cancer Research, 63, 1166–1171.PubMed
77.
Zurück zum Zitat Tsurusaki, T., Kanda, S., Sakai, H., Kanetake, H., Saito, Y., Alitalo, K., & Koji, T. (1999). Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. British Journal of Cancer, 80, 309–313.PubMedCentralPubMedCrossRef Tsurusaki, T., Kanda, S., Sakai, H., Kanetake, H., Saito, Y., Alitalo, K., & Koji, T. (1999). Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. British Journal of Cancer, 80, 309–313.PubMedCentralPubMedCrossRef
78.
Zurück zum Zitat Hiraga, T., Myoui, A., Hashimoto, N., Sasaki, A., Hata, K., Morita, Y., Yoshikawa, H., Rosen, C. J., Mundy, G. R., & Yoneda, T. (2012). Bone-derived IGF mediates crosstalk between bone and breast cancer cells in bony metastases. Cancer Research, 72, 4238–4249.PubMedCentralPubMedCrossRef Hiraga, T., Myoui, A., Hashimoto, N., Sasaki, A., Hata, K., Morita, Y., Yoshikawa, H., Rosen, C. J., Mundy, G. R., & Yoneda, T. (2012). Bone-derived IGF mediates crosstalk between bone and breast cancer cells in bony metastases. Cancer Research, 72, 4238–4249.PubMedCentralPubMedCrossRef
79.
Zurück zum Zitat Li, S., Wang, N., & Brodt, P. (2012). Metastatic cells can escape the proapoptotic effects of TNF-alpha through increased autocrine IL-6/STAT3 signaling. Cancer Research, 72, 865–875.PubMedCrossRef Li, S., Wang, N., & Brodt, P. (2012). Metastatic cells can escape the proapoptotic effects of TNF-alpha through increased autocrine IL-6/STAT3 signaling. Cancer Research, 72, 865–875.PubMedCrossRef
80.
Zurück zum Zitat Rojas, A., Liu, G., Coleman, I., Nelson, P. S., Zhang, M., Dash, R., Fisher, P. B., Plymate, S. R., & Wu, J. D. (2011). IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene, 30, 2345–2355.PubMedCentralPubMedCrossRef Rojas, A., Liu, G., Coleman, I., Nelson, P. S., Zhang, M., Dash, R., Fisher, P. B., Plymate, S. R., & Wu, J. D. (2011). IL-6 promotes prostate tumorigenesis and progression through autocrine cross-activation of IGF-IR. Oncogene, 30, 2345–2355.PubMedCentralPubMedCrossRef
81.
Zurück zum Zitat Yap, T. A., Olmos, D., Molife, L. R., & de Bono, J. S. (2011). Targeting the insulin-like growth factor signaling pathway: figitumumab and other novel anticancer strategies. Expert Opinion on Investigational Drugs, 20, 1293–1304.PubMedCrossRef Yap, T. A., Olmos, D., Molife, L. R., & de Bono, J. S. (2011). Targeting the insulin-like growth factor signaling pathway: figitumumab and other novel anticancer strategies. Expert Opinion on Investigational Drugs, 20, 1293–1304.PubMedCrossRef
82.
Zurück zum Zitat Baserga, R. (2013). The decline and fall of the IGF-I receptor. Journal of Cellular Physiology, 228, 675–679.PubMedCrossRef Baserga, R. (2013). The decline and fall of the IGF-I receptor. Journal of Cellular Physiology, 228, 675–679.PubMedCrossRef
83.
Zurück zum Zitat Ozkan, E. E. (2011). Plasma and tissue insulin-like growth factor-I receptor (IGF-IR) as a prognostic marker for prostate cancer and anti-IGF-IR agents as novel therapeutic strategy for refractory cases: a review. Molecular and Cellular Endocrinology, 344, 1–24.PubMedCrossRef Ozkan, E. E. (2011). Plasma and tissue insulin-like growth factor-I receptor (IGF-IR) as a prognostic marker for prostate cancer and anti-IGF-IR agents as novel therapeutic strategy for refractory cases: a review. Molecular and Cellular Endocrinology, 344, 1–24.PubMedCrossRef
84.
Zurück zum Zitat Rowinsky, E. K., Youssoufian, H., Tonra, J. R., Solomon, P., Burtrum, D., & Ludwig, D. L. (2007). IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clinical Cancer Research, 13, 5549s–5555s.PubMedCrossRef Rowinsky, E. K., Youssoufian, H., Tonra, J. R., Solomon, P., Burtrum, D., & Ludwig, D. L. (2007). IMC-A12, a human IgG1 monoclonal antibody to the insulin-like growth factor I receptor. Clinical Cancer Research, 13, 5549s–5555s.PubMedCrossRef
85.
Zurück zum Zitat Burtrum, D., Zhu, Z., Lu, D., Anderson, D. M., Prewett, M., Pereira, D. S., Bassi, R., Abdullah, R., Hooper, A. T., Koo, H., Jimenez, X., Johnson, D., Apblett, R., Kussie, P., Bohlen, P., Witte, L., Hicklin, D. J., & Ludwig, D. L. (2003). A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Research, 63, 8912–8921.PubMed Burtrum, D., Zhu, Z., Lu, D., Anderson, D. M., Prewett, M., Pereira, D. S., Bassi, R., Abdullah, R., Hooper, A. T., Koo, H., Jimenez, X., Johnson, D., Apblett, R., Kussie, P., Bohlen, P., Witte, L., Hicklin, D. J., & Ludwig, D. L. (2003). A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Research, 63, 8912–8921.PubMed
86.
Zurück zum Zitat Plymate, S. R., Haugk, K., Coleman, I., Woodke, L., Vessella, R., Nelson, P., Montgomery, R. B., Ludwig, D. L., & Wu, J. D. (2007). An antibody targeting the type I insulin-like growth factor receptor enhances the castration-induced response in androgen-dependent prostate cancer. Clinical Cancer Research, 13, 6429–6439.PubMedCrossRef Plymate, S. R., Haugk, K., Coleman, I., Woodke, L., Vessella, R., Nelson, P., Montgomery, R. B., Ludwig, D. L., & Wu, J. D. (2007). An antibody targeting the type I insulin-like growth factor receptor enhances the castration-induced response in androgen-dependent prostate cancer. Clinical Cancer Research, 13, 6429–6439.PubMedCrossRef
87.
Zurück zum Zitat Wu, J. D., Haugk, K., Coleman, I., Woodke, L., Vessella, R., Nelson, P., Montgomery, R. B., Ludwig, D. L., & Plymate, S. R. (2006). Combined in vivo effect of A12, a type 1 insulin-like growth factor receptor antibody, and docetaxel against prostate cancer tumors. Clinical Cancer Research, 12, 6153–6160.PubMedCrossRef Wu, J. D., Haugk, K., Coleman, I., Woodke, L., Vessella, R., Nelson, P., Montgomery, R. B., Ludwig, D. L., & Plymate, S. R. (2006). Combined in vivo effect of A12, a type 1 insulin-like growth factor receptor antibody, and docetaxel against prostate cancer tumors. Clinical Cancer Research, 12, 6153–6160.PubMedCrossRef
88.
Zurück zum Zitat Wu, J. D., Odman, A., Higgins, L. M., Haugk, K., Vessella, R., Ludwig, D. L., & Plymate, S. R. (2005). In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors. Clinical Cancer Research, 11, 3065–3074.PubMedCrossRef Wu, J. D., Odman, A., Higgins, L. M., Haugk, K., Vessella, R., Ludwig, D. L., & Plymate, S. R. (2005). In vivo effects of the human type I insulin-like growth factor receptor antibody A12 on androgen-dependent and androgen-independent xenograft human prostate tumors. Clinical Cancer Research, 11, 3065–3074.PubMedCrossRef
89.
Zurück zum Zitat Goel, H. L., Chang, C., Pursell, B., Leav, I., Lyle, S., Xi, H. S., Hsieh, C. C., Adisetiyo, H., Roy-Burman, P., Coleman, I. M., Nelson, P. S., Vessella, R. L., Davis, R. J., Plymate, S. R., & Mercurio, A. M. (2012). VEGF/neuropilin-2 regulation of Bmi-1 and consequent repression of IGF-IR define a novel mechanism of aggressive prostate cancer. Cancer Discovery, 2, 906–921.PubMedCrossRef Goel, H. L., Chang, C., Pursell, B., Leav, I., Lyle, S., Xi, H. S., Hsieh, C. C., Adisetiyo, H., Roy-Burman, P., Coleman, I. M., Nelson, P. S., Vessella, R. L., Davis, R. J., Plymate, S. R., & Mercurio, A. M. (2012). VEGF/neuropilin-2 regulation of Bmi-1 and consequent repression of IGF-IR define a novel mechanism of aggressive prostate cancer. Cancer Discovery, 2, 906–921.PubMedCrossRef
90.
Zurück zum Zitat Beltran, P. J., Mitchell, P., Chung, Y. A., Cajulis, E., Lu, J., Belmontes, B., Ho, J., Tsai, M. M., Zhu, M., Vonderfecht, S., Baserga, R., Kendall, R., Radinsky, R., & Calzone, F. J. (2009). AMG 479, a fully human anti-insulin-like growth factor receptor type I monoclonal antibody, inhibits the growth and survival of pancreatic carcinoma cells. Molecular Cancer Therapeutics, 8, 1095–1105.PubMedCrossRef Beltran, P. J., Mitchell, P., Chung, Y. A., Cajulis, E., Lu, J., Belmontes, B., Ho, J., Tsai, M. M., Zhu, M., Vonderfecht, S., Baserga, R., Kendall, R., Radinsky, R., & Calzone, F. J. (2009). AMG 479, a fully human anti-insulin-like growth factor receptor type I monoclonal antibody, inhibits the growth and survival of pancreatic carcinoma cells. Molecular Cancer Therapeutics, 8, 1095–1105.PubMedCrossRef
91.
Zurück zum Zitat Fahrenholtz, C. D., Beltran, P. J., & Burnstein, K. L. (2013). Targeting IGF-IR with ganitumab inhibits tumorigenesis and increases durability of response to androgen-deprivation therapy in VCaP prostate cancer xenografts. Molecular Cancer Therapeutics, 12, 394–404.PubMedCentralPubMedCrossRef Fahrenholtz, C. D., Beltran, P. J., & Burnstein, K. L. (2013). Targeting IGF-IR with ganitumab inhibits tumorigenesis and increases durability of response to androgen-deprivation therapy in VCaP prostate cancer xenografts. Molecular Cancer Therapeutics, 12, 394–404.PubMedCentralPubMedCrossRef
92.
Zurück zum Zitat Galet, C., Gray, A., Said, J. W., Castor, B., Wan, J., Beltran, P. J., Calzone, F. J., Elashoff, D., Cohen, P., & Aronson, W. J. (2013). Effects of calorie restriction and IGF-1 receptor blockade on the progression of 22Rv1 prostate cancer xenografts. International Journal of Molecular Sciences, 14, 13782–13795.PubMedCentralPubMedCrossRef Galet, C., Gray, A., Said, J. W., Castor, B., Wan, J., Beltran, P. J., Calzone, F. J., Elashoff, D., Cohen, P., & Aronson, W. J. (2013). Effects of calorie restriction and IGF-1 receptor blockade on the progression of 22Rv1 prostate cancer xenografts. International Journal of Molecular Sciences, 14, 13782–13795.PubMedCentralPubMedCrossRef
93.
Zurück zum Zitat Furukawa, J., Wraight, C. J., Freier, S. M., Peralta, E., Atley, L. M., Monia, B. P., Gleave, M. E., & Cox, M. E. (2010). Antisense oligonucleotide targeting of insulin-like growth factor-1 receptor (IGF-1R) in prostate cancer. Prostate, 70, 206–218.PubMed Furukawa, J., Wraight, C. J., Freier, S. M., Peralta, E., Atley, L. M., Monia, B. P., Gleave, M. E., & Cox, M. E. (2010). Antisense oligonucleotide targeting of insulin-like growth factor-1 receptor (IGF-1R) in prostate cancer. Prostate, 70, 206–218.PubMed
94.
Zurück zum Zitat Smith, M. R., Kabbinavar, F., Saad, F., Hussain, A., Gittelman, M. C., Bilhartz, D. L., Wynne, C., Murray, R., Zinner, N. R., Schulman, C., Linnartz, R., Zheng, M., Goessl, C., Hei, Y. J., Small, E. J., Cook, R., & Higano, C. S. (2005). Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. Journal of Clinical Oncology, 23, 2918–2925.PubMedCrossRef Smith, M. R., Kabbinavar, F., Saad, F., Hussain, A., Gittelman, M. C., Bilhartz, D. L., Wynne, C., Murray, R., Zinner, N. R., Schulman, C., Linnartz, R., Zheng, M., Goessl, C., Hei, Y. J., Small, E. J., Cook, R., & Higano, C. S. (2005). Natural history of rising serum prostate-specific antigen in men with castrate nonmetastatic prostate cancer. Journal of Clinical Oncology, 23, 2918–2925.PubMedCrossRef
95.
Zurück zum Zitat Nelson, J. B., Love, W., Chin, J. L., Saad, F., Schulman, C. C., Sleep, D. J., Qian, J., Steinberg, J., & Carducci, M. (2008). Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone-refractory prostate cancer. Cancer, 113, 2478–2487.PubMedCentralPubMedCrossRef Nelson, J. B., Love, W., Chin, J. L., Saad, F., Schulman, C. C., Sleep, D. J., Qian, J., Steinberg, J., & Carducci, M. (2008). Phase 3, randomized, controlled trial of atrasentan in patients with nonmetastatic, hormone-refractory prostate cancer. Cancer, 113, 2478–2487.PubMedCentralPubMedCrossRef
96.
Zurück zum Zitat Miller, K., Moul, J. W., Gleave, M., Fizazi, K., Nelson, J. B., Morris, T., Nathan, F. E., McIntosh, S., Pemberton, K., & Higano, C. S. (2013). Phase III, randomized, placebo-controlled study of once-daily oral zibotentan (ZD4054) in patients with non-metastatic castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 16, 187–192.PubMedCrossRef Miller, K., Moul, J. W., Gleave, M., Fizazi, K., Nelson, J. B., Morris, T., Nathan, F. E., McIntosh, S., Pemberton, K., & Higano, C. S. (2013). Phase III, randomized, placebo-controlled study of once-daily oral zibotentan (ZD4054) in patients with non-metastatic castration-resistant prostate cancer. Prostate Cancer and Prostatic Diseases, 16, 187–192.PubMedCrossRef
97.
Zurück zum Zitat Yu, E. Y., Miller, K., Nelson, J., Gleave, M., Fizazi, K., Moul, J. W., Nathan, F. E., & Higano, C. S. (2012). Detection of previously unidentified metastatic disease as a leading cause of screening failure in a phase III trial of zibotentan versus placebo in patients with nonmetastatic, castration resistant prostate cancer. Journal of Urology, 188, 103–109.PubMedCentralPubMedCrossRef Yu, E. Y., Miller, K., Nelson, J., Gleave, M., Fizazi, K., Moul, J. W., Nathan, F. E., & Higano, C. S. (2012). Detection of previously unidentified metastatic disease as a leading cause of screening failure in a phase III trial of zibotentan versus placebo in patients with nonmetastatic, castration resistant prostate cancer. Journal of Urology, 188, 103–109.PubMedCentralPubMedCrossRef
98.
Zurück zum Zitat Smith, M. R., Saad, F., Coleman, R., Shore, N., Fizazi, K., Tombal, B., Miller, K., Sieber, P., Karsh, L., Damiao, R., Tammela, T. L., Egerdie, B., Van Poppel, H., Chin, J., Morote, J., Gomez-Veiga, F., Borkowski, T., Ye, Z., Kupic, A., Dansey, R., & Goessl, C. (2012). Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet, 379, 39–46.PubMedCentralPubMedCrossRef Smith, M. R., Saad, F., Coleman, R., Shore, N., Fizazi, K., Tombal, B., Miller, K., Sieber, P., Karsh, L., Damiao, R., Tammela, T. L., Egerdie, B., Van Poppel, H., Chin, J., Morote, J., Gomez-Veiga, F., Borkowski, T., Ye, Z., Kupic, A., Dansey, R., & Goessl, C. (2012). Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial. Lancet, 379, 39–46.PubMedCentralPubMedCrossRef
99.
Zurück zum Zitat Higano CS, Alumkal JJ, Ryan CJ, Yu EY, Beer TM, Chandrawansa K, Katz T, Youssoufian H, Schwartz JD. 2009. A phase II study evaluating the efficacy and safety of single agent IMC A12, a monoclonal antibody, against the insulin-like growth factor-1 receptor, as monotherapy in patients with metastatic, asymptomatic castration-resistant prostate cancer. J Clin Oncol 27: 15s (suppl; abstr 5142) Higano CS, Alumkal JJ, Ryan CJ, Yu EY, Beer TM, Chandrawansa K, Katz T, Youssoufian H, Schwartz JD. 2009. A phase II study evaluating the efficacy and safety of single agent IMC A12, a monoclonal antibody, against the insulin-like growth factor-1 receptor, as monotherapy in patients with metastatic, asymptomatic castration-resistant prostate cancer. J Clin Oncol 27: 15s (suppl; abstr 5142)
100.
Zurück zum Zitat Higano CS, Alumkal JJ, Ryan CJ, Yu EY, Beer TM, Fox FE, Dontabhaktuni A, Youssoufian H, Schwartz JD. 2010. A phase II study of cixutumumab (IMC-A12), a monoclonal antibody against the insulin-like growth factor 1 receptor (IGF-IR), monotherapy in metastatic castration-resistant prostate cancer: feasibility of every 3-week dosing and updated results. 2010 Genitourinary Cancers Symposium: Abstract 189 Higano CS, Alumkal JJ, Ryan CJ, Yu EY, Beer TM, Fox FE, Dontabhaktuni A, Youssoufian H, Schwartz JD. 2010. A phase II study of cixutumumab (IMC-A12), a monoclonal antibody against the insulin-like growth factor 1 receptor (IGF-IR), monotherapy in metastatic castration-resistant prostate cancer: feasibility of every 3-week dosing and updated results. 2010 Genitourinary Cancers Symposium: Abstract 189
101.
Zurück zum Zitat Rathkopf DE, Danila DC, Chudow JJ, Morris MJ, Slovin SF, Fine S, Fox JJ, Larson SM, Rosen N, Scher HI. 2010. Anti-insulin-like growth factor-1 receptor (IGF-IR) monoclonal antibody cixutumumab plus mammalian target of rapamycin (mTOR) inhibitor temsirolimus in metastatic castration-resistant prostate cancer. J Clin Oncol 28:15s (suppl; abstr TPS242) Rathkopf DE, Danila DC, Chudow JJ, Morris MJ, Slovin SF, Fine S, Fox JJ, Larson SM, Rosen N, Scher HI. 2010. Anti-insulin-like growth factor-1 receptor (IGF-IR) monoclonal antibody cixutumumab plus mammalian target of rapamycin (mTOR) inhibitor temsirolimus in metastatic castration-resistant prostate cancer. J Clin Oncol 28:15s (suppl; abstr TPS242)
102.
Zurück zum Zitat Dean, J. P., Sprenger, C. C., Wan, J., Haugk, K., Ellis, W. J., Lin, D. W., Corman, J. M., Dalkin, B. L., Mostaghel, E., Nelson, P. S., Cohen, P., Montgomery, B., & Plymate, S. R. (2013). Response of the insulin-like growth factor (IGF) system to IGF-IR inhibition and androgen deprivation in a neoadjuvant prostate cancer trial: effects of obesity and androgen deprivation. Journal of Clinical Endocrinology and Metabolism, 98, E820–E828.PubMedCrossRef Dean, J. P., Sprenger, C. C., Wan, J., Haugk, K., Ellis, W. J., Lin, D. W., Corman, J. M., Dalkin, B. L., Mostaghel, E., Nelson, P. S., Cohen, P., Montgomery, B., & Plymate, S. R. (2013). Response of the insulin-like growth factor (IGF) system to IGF-IR inhibition and androgen deprivation in a neoadjuvant prostate cancer trial: effects of obesity and androgen deprivation. Journal of Clinical Endocrinology and Metabolism, 98, E820–E828.PubMedCrossRef
103.
Zurück zum Zitat Hussain, M., Tangen, C. M., Higano, C., Schelhammer, P. F., Faulkner, J., Crawford, E. D., Wilding, G., Akdas, A., Small, E. J., Donnelly, B., MacVicar, G., Raghavan, D., & Southwest Oncology Group T. (2006). Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT-0162). Journal of Clinical Oncology, 24, 3984–90.PubMedCrossRef Hussain, M., Tangen, C. M., Higano, C., Schelhammer, P. F., Faulkner, J., Crawford, E. D., Wilding, G., Akdas, A., Small, E. J., Donnelly, B., MacVicar, G., Raghavan, D., & Southwest Oncology Group T. (2006). Absolute prostate-specific antigen value after androgen deprivation is a strong independent predictor of survival in new metastatic prostate cancer: data from Southwest Oncology Group Trial 9346 (INT-0162). Journal of Clinical Oncology, 24, 3984–90.PubMedCrossRef
104.
Zurück zum Zitat Molife, L. R., Fong, P. C., Paccagnella, L., Reid, A. H., Shaw, H. M., Vidal, L., Arkenau, H. T., Karavasilis, V., Yap, T. A., Olmos, D., Spicer, J., Postel-Vinay, S., Yin, D., Lipton, A., Demers, L., Leitzel, K., Gualberto, A., & de Bono, J. S. (2010). The insulin-like growth factor-I receptor inhibitor figitumumab (CP-751,871) in combination with docetaxel in patients with advanced solid tumours: results of a phase Ib dose-escalation, open-label study. British Journal of Cancer, 103, 332–339.PubMedCentralPubMedCrossRef Molife, L. R., Fong, P. C., Paccagnella, L., Reid, A. H., Shaw, H. M., Vidal, L., Arkenau, H. T., Karavasilis, V., Yap, T. A., Olmos, D., Spicer, J., Postel-Vinay, S., Yin, D., Lipton, A., Demers, L., Leitzel, K., Gualberto, A., & de Bono, J. S. (2010). The insulin-like growth factor-I receptor inhibitor figitumumab (CP-751,871) in combination with docetaxel in patients with advanced solid tumours: results of a phase Ib dose-escalation, open-label study. British Journal of Cancer, 103, 332–339.PubMedCentralPubMedCrossRef
105.
Zurück zum Zitat Chi, K. N., Gleave, M. E., Fazli, L., Goldenberg, S. L., So, A., Kollmannsberger, C., Murray, N., Tinker, A., & Pollak, M. (2012). A phase II pharmacodynamic study of preoperative figitumumab in patients with localized prostate cancer. Clinical Cancer Research, 18, 3407–3413.PubMedCrossRef Chi, K. N., Gleave, M. E., Fazli, L., Goldenberg, S. L., So, A., Kollmannsberger, C., Murray, N., Tinker, A., & Pollak, M. (2012). A phase II pharmacodynamic study of preoperative figitumumab in patients with localized prostate cancer. Clinical Cancer Research, 18, 3407–3413.PubMedCrossRef
Metadaten
Titel
Insulin-like growth factor receptor-1 (IGF-IR) as a target for prostate cancer therapy
verfasst von
Jennifer Wu
Evan Yu
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2-3/2014
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9482-0

Weitere Artikel der Ausgabe 2-3/2014

Cancer and Metastasis Reviews 2-3/2014 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.