Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2-3/2014

01.09.2014

The role of epithelial plasticity in prostate cancer dissemination and treatment resistance

verfasst von: Rhonda L. Bitting, Daneen Schaeffer, Jason A. Somarelli, Mariano A. Garcia-Blanco, Andrew J. Armstrong

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2-3/2014

Einloggen, um Zugang zu erhalten

Abstract

Nearly 30,000 men die annually in the USA of prostate cancer, nearly uniformly from metastatic dissemination. Despite recent advances in hormonal, immunologic, bone-targeted, and cytotoxic chemotherapies, treatment resistance and further dissemination are inevitable in men with metastatic disease. Emerging data suggests that the phenomenon of epithelial plasticity, encompassing both reversible mesenchymal transitions and acquisition of stemness traits, may underlie this lethal biology of dissemination and treatment resistance. Understanding the molecular underpinnings of this cellular plasticity from preclinical models of prostate cancer and from biomarker studies of human metastatic prostate cancer has provided clues to novel therapeutic approaches that may delay or prevent metastatic disease and lethality over time. This review will discuss the preclinical and clinical evidence for epithelial plasticity in this rapidly changing field and relate this to clinical phenotype and resistance in prostate cancer while suggesting novel therapeutic approaches.
Literatur
1.
Zurück zum Zitat Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 62, 10–29. Siegel, R., Naishadham, D., & Jemal, A. (2012). Cancer statistics, 2012. CA: A Cancer Journal for Clinicians, 62, 10–29.
2.
Zurück zum Zitat Rini, B. I., & Small, E. J. (2002). Hormone-refractory prostate cancer. Current Treatment Options in Oncology, 3, 437–446.PubMed Rini, B. I., & Small, E. J. (2002). Hormone-refractory prostate cancer. Current Treatment Options in Oncology, 3, 437–446.PubMed
3.
Zurück zum Zitat Chen, C. D., Welsbie, D. S., Tran, C., Baek, S. H., Chen, R., Vessella, R., Rosenfeld, M. G., & Sawyers, C. L. (2004). Molecular determinants of resistance to antiandrogen therapy. Nature Medicine, 10, 33–39.PubMed Chen, C. D., Welsbie, D. S., Tran, C., Baek, S. H., Chen, R., Vessella, R., Rosenfeld, M. G., & Sawyers, C. L. (2004). Molecular determinants of resistance to antiandrogen therapy. Nature Medicine, 10, 33–39.PubMed
4.
Zurück zum Zitat Dehm, S. M., Schmidt, L. J., Heemers, H. V., Vessella, R. L., & Tindall, D. J. (2008). Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Research, 68, 5469–5477.PubMedCentralPubMed Dehm, S. M., Schmidt, L. J., Heemers, H. V., Vessella, R. L., & Tindall, D. J. (2008). Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Research, 68, 5469–5477.PubMedCentralPubMed
5.
Zurück zum Zitat Mostaghel, E. A., Page, S. T., Lin, D. W., Fazli, L., Coleman, I. M., True, L. D., Knudsen, B., Hess, D. L., Nelson, C. C., Matsumoto, A. M., Bremner, W. J., Gleave, M. E., & Nelson, P. S. (2007). Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Research, 67, 5033–5041.PubMed Mostaghel, E. A., Page, S. T., Lin, D. W., Fazli, L., Coleman, I. M., True, L. D., Knudsen, B., Hess, D. L., Nelson, C. C., Matsumoto, A. M., Bremner, W. J., Gleave, M. E., & Nelson, P. S. (2007). Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Research, 67, 5033–5041.PubMed
6.
Zurück zum Zitat Shah, R. B., Mehra, R., Chinnaiyan, A. M., Shen, R., Ghosh, D., Zhou, M., Macvicar, G. R., Varambally, S., Harwood, J., Bismar, T. A., Kim, R., Rubin, M. A., & Pienta, K. J. (2004). Androgen-independent prostate cancer is a heterogeneous group of diseases: Lessons from a rapid autopsy program. Cancer Research, 64, 9209–9216.PubMed Shah, R. B., Mehra, R., Chinnaiyan, A. M., Shen, R., Ghosh, D., Zhou, M., Macvicar, G. R., Varambally, S., Harwood, J., Bismar, T. A., Kim, R., Rubin, M. A., & Pienta, K. J. (2004). Androgen-independent prostate cancer is a heterogeneous group of diseases: Lessons from a rapid autopsy program. Cancer Research, 64, 9209–9216.PubMed
7.
Zurück zum Zitat Rubin, M. A., Putzi, M., Mucci, N., Smith, D. C., Wojno, K., Korenchuk, S., & Pienta, K. J. (2000). Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer. Clinical Cancer Research, 6, 1038–1045.PubMed Rubin, M. A., Putzi, M., Mucci, N., Smith, D. C., Wojno, K., Korenchuk, S., & Pienta, K. J. (2000). Rapid (“warm”) autopsy study for procurement of metastatic prostate cancer. Clinical Cancer Research, 6, 1038–1045.PubMed
8.
Zurück zum Zitat Liu, W., Laitinen, S., Khan, S., Vihinen, M., Kowalski, J., Yu, G., Chen, L., Ewing, C. M., Eisenberger, M. A., Carducci, M. A., Nelson, W. G., Yegnasubramanian, S., Luo, J., Wang, Y., Xu, J., Isaacs, W. B., Visakorpi, T., & Bova, G. S. (2009). Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nature Medicine, 15, 559–565.PubMedCentralPubMed Liu, W., Laitinen, S., Khan, S., Vihinen, M., Kowalski, J., Yu, G., Chen, L., Ewing, C. M., Eisenberger, M. A., Carducci, M. A., Nelson, W. G., Yegnasubramanian, S., Luo, J., Wang, Y., Xu, J., Isaacs, W. B., Visakorpi, T., & Bova, G. S. (2009). Copy number analysis indicates monoclonal origin of lethal metastatic prostate cancer. Nature Medicine, 15, 559–565.PubMedCentralPubMed
9.
Zurück zum Zitat Aryee, M. J., Liu, W., Engelmann, J. C., Nuhn, P., Gurel, M., Haffner, M. C., Esopi, D., Irizarry, R. A., Getzenberg, R. H., Nelson, W. G., Luo, J., Xu, J., Isaacs, W. B., Bova, G. S., & Yegnasubramanian, S. (2013). “DNA methylation alterations exhibit intraindividual stability and interindividual heterogeneity in prostate cancer metastases,”. Science Translational Medicine, 5, 169ra10.PubMedCentralPubMed Aryee, M. J., Liu, W., Engelmann, J. C., Nuhn, P., Gurel, M., Haffner, M. C., Esopi, D., Irizarry, R. A., Getzenberg, R. H., Nelson, W. G., Luo, J., Xu, J., Isaacs, W. B., Bova, G. S., & Yegnasubramanian, S. (2013). “DNA methylation alterations exhibit intraindividual stability and interindividual heterogeneity in prostate cancer metastases,”. Science Translational Medicine, 5, 169ra10.PubMedCentralPubMed
10.
Zurück zum Zitat Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., & Weinberg, R. A. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMedCentralPubMed Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., & Weinberg, R. A. (2008). The epithelial–mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.PubMedCentralPubMed
11.
Zurück zum Zitat Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.PubMed Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.PubMed
12.
Zurück zum Zitat Blick, T., Widodo, E., Hugo, H., Waltham, M., Lenburg, M. E., Neve, R. M., & Thompson, E. W. (2008). Epithelial mesenchymal transition traits in human breast cancer cell lines. Clinical & Experimental Metastasis, 25, 629–642. Blick, T., Widodo, E., Hugo, H., Waltham, M., Lenburg, M. E., Neve, R. M., & Thompson, E. W. (2008). Epithelial mesenchymal transition traits in human breast cancer cell lines. Clinical & Experimental Metastasis, 25, 629–642.
13.
Zurück zum Zitat Hugo, H., Ackland, M. L., Blick, T., Lawrence, M. G., Clements, J. A., Williams, E. D., & Thompson, E. W. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 213, 374–383.PubMed Hugo, H., Ackland, M. L., Blick, T., Lawrence, M. G., Clements, J. A., Williams, E. D., & Thompson, E. W. (2007). Epithelial–mesenchymal and mesenchymal–epithelial transitions in carcinoma progression. Journal of Cellular Physiology, 213, 374–383.PubMed
14.
Zurück zum Zitat Giannoni, E., Bianchini, F., Masieri, L., Serni, S., Torre, E., Calorini, L., & Chiarugi, P. (2010). Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial–mesenchymal transition and cancer stemness. Cancer Research, 70, 6945–6956.PubMed Giannoni, E., Bianchini, F., Masieri, L., Serni, S., Torre, E., Calorini, L., & Chiarugi, P. (2010). Reciprocal activation of prostate cancer cells and cancer-associated fibroblasts stimulates epithelial–mesenchymal transition and cancer stemness. Cancer Research, 70, 6945–6956.PubMed
15.
Zurück zum Zitat Armstrong, A. J., Marengo, M. S., Oltean, S., Kemeny, G., Bitting, R. L., Turnbull, J. D., Herold, C. I., Marcom, P. K., George, D. J., & Garcia-Blanco, M. A. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9, 997–1007.PubMedCentralPubMed Armstrong, A. J., Marengo, M. S., Oltean, S., Kemeny, G., Bitting, R. L., Turnbull, J. D., Herold, C. I., Marcom, P. K., George, D. J., & Garcia-Blanco, M. A. (2011). Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Molecular Cancer Research, 9, 997–1007.PubMedCentralPubMed
16.
Zurück zum Zitat Zhu, M. L., & Kyprianou, N. (2010). Role of androgens and the androgen receptor in epithelial–mesenchymal transition and invasion of prostate cancer cells. FASEB Journal, 24, 769–777.PubMedCentralPubMed Zhu, M. L., & Kyprianou, N. (2010). Role of androgens and the androgen receptor in epithelial–mesenchymal transition and invasion of prostate cancer cells. FASEB Journal, 24, 769–777.PubMedCentralPubMed
17.
Zurück zum Zitat Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., Hilsenbeck, S. G., Pavlick, A., Zhang, X., Chamness, G. C., Wong, H., Rosen, J., & Chang, J. C. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of the National Cancer Institute, 100, 672–679.PubMed Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., Hilsenbeck, S. G., Pavlick, A., Zhang, X., Chamness, G. C., Wong, H., Rosen, J., & Chang, J. C. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of the National Cancer Institute, 100, 672–679.PubMed
18.
Zurück zum Zitat Abraham, B. K., Fritz, P., McClellan, M., Hauptvogel, P., Athelogou, M., & Brauch, H. (2005). Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clinical Cancer Research, 11, 1154–1159.PubMed Abraham, B. K., Fritz, P., McClellan, M., Hauptvogel, P., Athelogou, M., & Brauch, H. (2005). Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clinical Cancer Research, 11, 1154–1159.PubMed
19.
Zurück zum Zitat Ginestier, C., Hur, M. H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., Jacquemier, J., Viens, P., Kleer, C. G., Liu, S., Schott, A., Hayes, D., Birnbaum, D., Wicha, M. S., & Dontu, G. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1, 555–567.PubMedCentralPubMed Ginestier, C., Hur, M. H., Charafe-Jauffret, E., Monville, F., Dutcher, J., Brown, M., Jacquemier, J., Viens, P., Kleer, C. G., Liu, S., Schott, A., Hayes, D., Birnbaum, D., Wicha, M. S., & Dontu, G. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell, 1, 555–567.PubMedCentralPubMed
20.
Zurück zum Zitat Taplin, M. E., George, D. J., Halabi, S., Sanford, B., Febbo, P. G., Hennessy, K. T., Mihos, C. G., Vogelzang, N. J., Small, E. J., & Kantoff, P. W. (2005). Prognostic significance of plasma chromogranin a levels in patients with hormone-refractory prostate cancer treated in Cancer and Leukemia Group B 9480 study. Urology, 66, 386–391.PubMed Taplin, M. E., George, D. J., Halabi, S., Sanford, B., Febbo, P. G., Hennessy, K. T., Mihos, C. G., Vogelzang, N. J., Small, E. J., & Kantoff, P. W. (2005). Prognostic significance of plasma chromogranin a levels in patients with hormone-refractory prostate cancer treated in Cancer and Leukemia Group B 9480 study. Urology, 66, 386–391.PubMed
21.
Zurück zum Zitat Aparicio, A. M., Harzstark, A., Corn, P. G., Wen, S., Araujo, J., Tu, S. M., Pagliaro, L., Kim, J., Millikan, R. E., Ryan, C. J., Tannir, N. M., Zurita, A., Mathew, P., Arap, W., Troncoso, P., Thall, P., & Logothetis, C. J. (2013). Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res, 19, 3621–3630.PubMedCentralPubMed Aparicio, A. M., Harzstark, A., Corn, P. G., Wen, S., Araujo, J., Tu, S. M., Pagliaro, L., Kim, J., Millikan, R. E., Ryan, C. J., Tannir, N. M., Zurita, A., Mathew, P., Arap, W., Troncoso, P., Thall, P., & Logothetis, C. J. (2013). Platinum-based chemotherapy for variant castrate-resistant prostate cancer. Clin Cancer Res, 19, 3621–3630.PubMedCentralPubMed
22.
Zurück zum Zitat Sequist, L. V., Waltman, B. A., Dias-Santagata, D., Digumarthy, S., Turke, A. B., Fidias, P., Bergethon, K., Shaw, A. T., Gettinger, S., Cosper, A. K., Akhavanfard, S., Heist, R. S., Temel, J., Christensen, J. G., Wain, J. C., Lynch, T. J., Vernovsky, K., Mark, E. J., Lanuti, M., Iafrate, A. J., Mino-Kenudson, M., & Engelman, J. A. (2011). Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Science Translational Medicine, 3, 75ra26.PubMedCentralPubMed Sequist, L. V., Waltman, B. A., Dias-Santagata, D., Digumarthy, S., Turke, A. B., Fidias, P., Bergethon, K., Shaw, A. T., Gettinger, S., Cosper, A. K., Akhavanfard, S., Heist, R. S., Temel, J., Christensen, J. G., Wain, J. C., Lynch, T. J., Vernovsky, K., Mark, E. J., Lanuti, M., Iafrate, A. J., Mino-Kenudson, M., & Engelman, J. A. (2011). Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Science Translational Medicine, 3, 75ra26.PubMedCentralPubMed
23.
Zurück zum Zitat Parwani, A. V., Kronz, J. D., Genega, E. M., Gaudin, P., Chang, S., & Epstein, J. I. (2004). Prostate carcinoma with squamous differentiation: An analysis of 33 cases. The American Journal of Surgical Pathology, 28, 651–657.PubMed Parwani, A. V., Kronz, J. D., Genega, E. M., Gaudin, P., Chang, S., & Epstein, J. I. (2004). Prostate carcinoma with squamous differentiation: An analysis of 33 cases. The American Journal of Surgical Pathology, 28, 651–657.PubMed
24.
Zurück zum Zitat di Sant’Agnese, P. A. (2001). Neuroendocrine differentiation in prostatic carcinoma: An update on recent developments. Annals of Oncology, 12(Suppl 2), S135–S140.PubMed di Sant’Agnese, P. A. (2001). Neuroendocrine differentiation in prostatic carcinoma: An update on recent developments. Annals of Oncology, 12(Suppl 2), S135–S140.PubMed
25.
Zurück zum Zitat Berruti, A., Mosca, A., Tucci, M., Terrone, C., Torta, M., Tarabuzzi, R., Russo, L., Cracco, C., Bollito, E., Scarpa, R. M., Angeli, A., & Dogliotti, L. (2005). Independent prognostic role of circulating chromogranin A in prostate cancer patients with hormone-refractory disease. Endocrine-Related Cancer, 12, 109–117.PubMed Berruti, A., Mosca, A., Tucci, M., Terrone, C., Torta, M., Tarabuzzi, R., Russo, L., Cracco, C., Bollito, E., Scarpa, R. M., Angeli, A., & Dogliotti, L. (2005). Independent prognostic role of circulating chromogranin A in prostate cancer patients with hormone-refractory disease. Endocrine-Related Cancer, 12, 109–117.PubMed
26.
Zurück zum Zitat Wang, W., & Epstein, J. I. (2008). Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. The American Journal of Surgical Pathology, 32, 65–71.PubMed Wang, W., & Epstein, J. I. (2008). Small cell carcinoma of the prostate. A morphologic and immunohistochemical study of 95 cases. The American Journal of Surgical Pathology, 32, 65–71.PubMed
27.
Zurück zum Zitat Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial–mesenchymal transition. Journal of Clinical Investigation, 119, 1420–1428.PubMedCentralPubMed Kalluri, R., & Weinberg, R. A. (2009). The basics of epithelial–mesenchymal transition. Journal of Clinical Investigation, 119, 1420–1428.PubMedCentralPubMed
28.
Zurück zum Zitat Beltran, H., Rickman, D. S., Park, K., Chae, S. S., Sboner, A., MacDonald, T. Y., Wang, Y., Sheikh, K. L., Terry, S., Tagawa, S. T., Dhir, R., Nelson, J. B., de la Taille, A., Allory, Y., Gerstein, M. B., Perner, S., Pienta, K. J., Chinnaiyan, A. M., Collins, C. C., Gleave, M. E., Demichelis, F., Nanus, D. M., & Rubin, M. A. (2011). Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discovery, 1, 487–495.PubMedCentralPubMed Beltran, H., Rickman, D. S., Park, K., Chae, S. S., Sboner, A., MacDonald, T. Y., Wang, Y., Sheikh, K. L., Terry, S., Tagawa, S. T., Dhir, R., Nelson, J. B., de la Taille, A., Allory, Y., Gerstein, M. B., Perner, S., Pienta, K. J., Chinnaiyan, A. M., Collins, C. C., Gleave, M. E., Demichelis, F., Nanus, D. M., & Rubin, M. A. (2011). Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discovery, 1, 487–495.PubMedCentralPubMed
29.
Zurück zum Zitat Giannoni, E., Taddei, M. L., Parri, M., Bianchini, F., Santosuosso, M., Grifantini, R., Fibbi, G., Mazzanti, B., Calorini, L., & Chiarugi, P. (2013). EphA2-mediated mesenchymal-amoeboid transition induced by endothelial progenitor cells enhances metastatic spread due to cancer-associated fibroblasts. Journal Molecules Medical (Berl), 91, 103–115. Giannoni, E., Taddei, M. L., Parri, M., Bianchini, F., Santosuosso, M., Grifantini, R., Fibbi, G., Mazzanti, B., Calorini, L., & Chiarugi, P. (2013). EphA2-mediated mesenchymal-amoeboid transition induced by endothelial progenitor cells enhances metastatic spread due to cancer-associated fibroblasts. Journal Molecules Medical (Berl), 91, 103–115.
30.
Zurück zum Zitat Koeneman, K. S., Yeung, F., & Chung, L. W. (1999). Osteomimetic properties of prostate cancer cells: A hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate, 39, 246–261.PubMed Koeneman, K. S., Yeung, F., & Chung, L. W. (1999). Osteomimetic properties of prostate cancer cells: A hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate, 39, 246–261.PubMed
31.
Zurück zum Zitat Josson, S., Nomura, T., Lin, J. T., Huang, W. C., Wu, D., Zhau, H. E., Zayzafoon, M., Weizmann, M. N., Gururajan, M., & Chung, L. W. (2011). beta2-microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Research, 71, 2600–2610.PubMedCentralPubMed Josson, S., Nomura, T., Lin, J. T., Huang, W. C., Wu, D., Zhau, H. E., Zayzafoon, M., Weizmann, M. N., Gururajan, M., & Chung, L. W. (2011). beta2-microglobulin induces epithelial to mesenchymal transition and confers cancer lethality and bone metastasis in human cancer cells. Cancer Research, 71, 2600–2610.PubMedCentralPubMed
32.
Zurück zum Zitat Zhau, H. E., He, H., Wang, C. Y., Zayzafoon, M., Morrissey, C., Vessella, R. L., Marshall, F. F., Chung, L. W., & Wang, R. (2011). Human prostate cancer harbors the stem cell properties of bone marrow mesenchymal stem cells. Clinical Cancer Research, 17, 2159–2169.PubMedCentralPubMed Zhau, H. E., He, H., Wang, C. Y., Zayzafoon, M., Morrissey, C., Vessella, R. L., Marshall, F. F., Chung, L. W., & Wang, R. (2011). Human prostate cancer harbors the stem cell properties of bone marrow mesenchymal stem cells. Clinical Cancer Research, 17, 2159–2169.PubMedCentralPubMed
33.
Zurück zum Zitat Yang, J., Fizazi, K., Peleg, S., Sikes, C. R., Raymond, A. K., Jamal, N., Hu, M., Olive, M., Martinez, L. A., Wood, C. G., Logothetis, C. J., Karsenty, G., & Navone, N. M. (2001). Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway. Cancer Research, 61, 5652–5659.PubMed Yang, J., Fizazi, K., Peleg, S., Sikes, C. R., Raymond, A. K., Jamal, N., Hu, M., Olive, M., Martinez, L. A., Wood, C. G., Logothetis, C. J., Karsenty, G., & Navone, N. M. (2001). Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway. Cancer Research, 61, 5652–5659.PubMed
34.
Zurück zum Zitat Zhau, H. Y., Chang, S. M., Chen, B. Q., Wang, Y., Zhang, H., Kao, C., Sang, Q. A., Pathak, S. J., & Chung, L. W. (1996). Androgen-repressed phenotype in human prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 93, 15152–15157.PubMedCentralPubMed Zhau, H. Y., Chang, S. M., Chen, B. Q., Wang, Y., Zhang, H., Kao, C., Sang, Q. A., Pathak, S. J., & Chung, L. W. (1996). Androgen-repressed phenotype in human prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 93, 15152–15157.PubMedCentralPubMed
35.
Zurück zum Zitat Ke, X. S., Qu, Y., Goldfinger, N., Rostad, K., Hovland, R., Akslen, L. A., Rotter, V., Oyan, A. M., & Kalland, K. H. (2008). Epithelial to mesenchymal transition of a primary prostate cell line with switches of cell adhesion modules but without malignant transformation. PLoS One, 3, e3368.PubMedCentralPubMed Ke, X. S., Qu, Y., Goldfinger, N., Rostad, K., Hovland, R., Akslen, L. A., Rotter, V., Oyan, A. M., & Kalland, K. H. (2008). Epithelial to mesenchymal transition of a primary prostate cell line with switches of cell adhesion modules but without malignant transformation. PLoS One, 3, e3368.PubMedCentralPubMed
36.
Zurück zum Zitat Marian, C. O., Yang, L., Zou, Y. S., Gore, C., Pong, R. C., Shay, J. W., Kabbani, W., Hsieh, J. T., & Raj, G. V. (2011). Evidence of epithelial to mesenchymal transition associated with increased tumorigenic potential in an immortalized normal prostate epithelial cell line. Prostate, 71, 626–636.PubMed Marian, C. O., Yang, L., Zou, Y. S., Gore, C., Pong, R. C., Shay, J. W., Kabbani, W., Hsieh, J. T., & Raj, G. V. (2011). Evidence of epithelial to mesenchymal transition associated with increased tumorigenic potential in an immortalized normal prostate epithelial cell line. Prostate, 71, 626–636.PubMed
37.
Zurück zum Zitat Celia-Terrassa, T., Meca-Cortes, O., Mateo, F., de Paz, A. M., Rubio, N., Arnal-Estape, A., Ell, B. J., Bermudo, R., Diaz, A., Guerra-Rebollo, M., Lozano, J. J., Estaras, C., Ulloa, C., Alvarez-Simon, D., Mila, J., Vilella, R., Paciucci, R., Martinez-Balbas, M., de Herreros, A. G., Gomis, R. R., Kang, Y., Blanco, J., Fernandez, P. L., & Thomson, T. M. (2012). Epithelial–mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. The Journal of Clinical Investigation, 122, 1849–1868.PubMedCentralPubMed Celia-Terrassa, T., Meca-Cortes, O., Mateo, F., de Paz, A. M., Rubio, N., Arnal-Estape, A., Ell, B. J., Bermudo, R., Diaz, A., Guerra-Rebollo, M., Lozano, J. J., Estaras, C., Ulloa, C., Alvarez-Simon, D., Mila, J., Vilella, R., Paciucci, R., Martinez-Balbas, M., de Herreros, A. G., Gomis, R. R., Kang, Y., Blanco, J., Fernandez, P. L., & Thomson, T. M. (2012). Epithelial–mesenchymal transition can suppress major attributes of human epithelial tumor-initiating cells. The Journal of Clinical Investigation, 122, 1849–1868.PubMedCentralPubMed
38.
Zurück zum Zitat Moody, S. E., Perez, D., Pan, T. C., Sarkisian, C. J., Portocarrero, C. P., Sterner, C. J., Notorfrancesco, K. L., Cardiff, R. D., & Chodosh, L. A. (2005). The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell, 8, 197–209.PubMed Moody, S. E., Perez, D., Pan, T. C., Sarkisian, C. J., Portocarrero, C. P., Sterner, C. J., Notorfrancesco, K. L., Cardiff, R. D., & Chodosh, L. A. (2005). The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell, 8, 197–209.PubMed
39.
Zurück zum Zitat Fan, F., Samuel, S., Evans, K. W., Lu, J., Xia, L., Zhou, Y., Sceusi, E., Tozzi, F., Ye, X. C., Mani, S. A., & Ellis, L. M. (2012). Overexpression of Snail induces epithelial–mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Medical, 1, 5–16. Fan, F., Samuel, S., Evans, K. W., Lu, J., Xia, L., Zhou, Y., Sceusi, E., Tozzi, F., Ye, X. C., Mani, S. A., & Ellis, L. M. (2012). Overexpression of Snail induces epithelial–mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Medical, 1, 5–16.
40.
Zurück zum Zitat Emadi Baygi, M., Soheili, Z. S., Schmitz, I., Sameie, S., & Schulz, W. A. (2010). Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biology and Toxicology, 26, 553–567.PubMed Emadi Baygi, M., Soheili, Z. S., Schmitz, I., Sameie, S., & Schulz, W. A. (2010). Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines. Cell Biology and Toxicology, 26, 553–567.PubMed
41.
Zurück zum Zitat McKeithen, D., Graham, T., Chung, L. W., & Odero-Marah, V. (2010). Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. Prostate, 70, 982–992.PubMedCentralPubMed McKeithen, D., Graham, T., Chung, L. W., & Odero-Marah, V. (2010). Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. Prostate, 70, 982–992.PubMedCentralPubMed
42.
Zurück zum Zitat Emadi Baygi, M., Soheili, Z. S., Essmann, F., Deezagi, A., Engers, R., Goering, W., & Schulz, W. A. (2010). Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines. Tumour Biology, 31, 297–307.PubMed Emadi Baygi, M., Soheili, Z. S., Essmann, F., Deezagi, A., Engers, R., Goering, W., & Schulz, W. A. (2010). Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines. Tumour Biology, 31, 297–307.PubMed
43.
Zurück zum Zitat Wu, K., Gore, C., Yang, L., Fazli, L., Gleave, M., Pong, R. C., Xiao, G., Zhang, L., Yun, E. J., Tseng, S. F., Kapur, P., He, D., & Hsieh, J. T. (2012). Slug, a unique androgen-regulated transcription factor, coordinates androgen receptor to facilitate castration resistance in prostate cancer. Molecular Endocrinology, 26, 1496–1507.PubMed Wu, K., Gore, C., Yang, L., Fazli, L., Gleave, M., Pong, R. C., Xiao, G., Zhang, L., Yun, E. J., Tseng, S. F., Kapur, P., He, D., & Hsieh, J. T. (2012). Slug, a unique androgen-regulated transcription factor, coordinates androgen receptor to facilitate castration resistance in prostate cancer. Molecular Endocrinology, 26, 1496–1507.PubMed
44.
Zurück zum Zitat Graham, T. R., Zhau, H. E., Odero-Marah, V. A., Osunkoya, A. O., Kimbro, K. S., Tighiouart, M., Liu, T., Simons, J. W., & O’Regan, R. M. (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Research, 68, 2479–2488.PubMed Graham, T. R., Zhau, H. E., Odero-Marah, V. A., Osunkoya, A. O., Kimbro, K. S., Tighiouart, M., Liu, T., Simons, J. W., & O’Regan, R. M. (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Research, 68, 2479–2488.PubMed
45.
Zurück zum Zitat Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., Savagner, P., Gitelman, I., Richardson, A., & Weinberg, R. A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.PubMed Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., Savagner, P., Gitelman, I., Richardson, A., & Weinberg, R. A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.PubMed
46.
Zurück zum Zitat Liu, A. N., Zhu, Z. H., Chang, S. J., & Hang, X. S. (2012). Twist expression associated with the epithelial–mesenchymal transition in gastric cancer. Molecular and Cellular Biochemistry, 367, 195–203.PubMed Liu, A. N., Zhu, Z. H., Chang, S. J., & Hang, X. S. (2012). Twist expression associated with the epithelial–mesenchymal transition in gastric cancer. Molecular and Cellular Biochemistry, 367, 195–203.PubMed
47.
Zurück zum Zitat Yang, M. H., Hsu, D. S., Wang, H. W., Wang, H. J., Lan, H. Y., Yang, W. H., Huang, C. H., Kao, S. Y., Tzeng, C. H., Tai, S. K., Chang, S. Y., Lee, O. K., & Wu, K. J. (2010). Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition. Nature Cell Biology, 12, 982–992.PubMed Yang, M. H., Hsu, D. S., Wang, H. W., Wang, H. J., Lan, H. Y., Yang, W. H., Huang, C. H., Kao, S. Y., Tzeng, C. H., Tai, S. K., Chang, S. Y., Lee, O. K., & Wu, K. J. (2010). Bmi1 is essential in Twist1-induced epithelial–mesenchymal transition. Nature Cell Biology, 12, 982–992.PubMed
48.
Zurück zum Zitat Eckert, M. A., Lwin, T. M., Chang, A. T., Kim, J., Danis, E., Ohno-Machado, L., & Yang, J. (2011). Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell, 19, 372–386.PubMedCentralPubMed Eckert, M. A., Lwin, T. M., Chang, A. T., Kim, J., Danis, E., Ohno-Machado, L., & Yang, J. (2011). Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell, 19, 372–386.PubMedCentralPubMed
49.
Zurück zum Zitat Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nature Reviews Cancer, 7, 415–428.PubMed Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: An alliance against the epithelial phenotype? Nature Reviews Cancer, 7, 415–428.PubMed
50.
Zurück zum Zitat Watson, M. A., Ylagan, L. R., Trinkaus, K. M., Gillanders, W. E., Naughton, M. J., Weilbaecher, K. N., Fleming, T. P., & Aft, R. L. (2007). Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clinical Cancer Research, 13, 5001–5009.PubMedCentralPubMed Watson, M. A., Ylagan, L. R., Trinkaus, K. M., Gillanders, W. E., Naughton, M. J., Weilbaecher, K. N., Fleming, T. P., & Aft, R. L. (2007). Isolation and molecular profiling of bone marrow micrometastases identifies TWIST1 as a marker of early tumor relapse in breast cancer patients. Clinical Cancer Research, 13, 5001–5009.PubMedCentralPubMed
51.
Zurück zum Zitat Alexander, N. R., Tran, N. L., Rekapally, H., Summers, C. E., Glackin, C., & Heimark, R. L. (2006). N-Cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Research, 66, 3365–3369.PubMed Alexander, N. R., Tran, N. L., Rekapally, H., Summers, C. E., Glackin, C., & Heimark, R. L. (2006). N-Cadherin gene expression in prostate carcinoma is modulated by integrin-dependent nuclear translocation of Twist1. Cancer Research, 66, 3365–3369.PubMed
52.
Zurück zum Zitat Fridman, J. S., & Lowe, S. W. (2003). Control of apoptosis by p53. Oncogene, 22, 9030–9040.PubMed Fridman, J. S., & Lowe, S. W. (2003). Control of apoptosis by p53. Oncogene, 22, 9030–9040.PubMed
53.
Zurück zum Zitat Vousden, K. H. (2000). p53: Death star. Cell, 103, 691–694.PubMed Vousden, K. H. (2000). p53: Death star. Cell, 103, 691–694.PubMed
54.
Zurück zum Zitat Sigal, A., & Rotter, V. (2000). Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Research, 60, 6788–6793.PubMed Sigal, A., & Rotter, V. (2000). Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Research, 60, 6788–6793.PubMed
55.
Zurück zum Zitat Chang, C. J., Chao, C. H., Xia, W., Yang, J. Y., Xiong, Y., Li, C. W., Yu, W. H., Rehman, S. K., Hsu, J. L., Lee, H. H., Liu, M., Chen, C. T., Yu, D., & Hung, M. C. (2011). p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology, 13, 317–323.PubMedCentralPubMed Chang, C. J., Chao, C. H., Xia, W., Yang, J. Y., Xiong, Y., Li, C. W., Yu, W. H., Rehman, S. K., Hsu, J. L., Lee, H. H., Liu, M., Chen, C. T., Yu, D., & Hung, M. C. (2011). p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology, 13, 317–323.PubMedCentralPubMed
56.
Zurück zum Zitat Perk, J., Iavarone, A., & Benezra, R. (2005). Id family of helix–loop–helix proteins in cancer. Nature Reviews Cancer, 5, 603–614.PubMed Perk, J., Iavarone, A., & Benezra, R. (2005). Id family of helix–loop–helix proteins in cancer. Nature Reviews Cancer, 5, 603–614.PubMed
57.
Zurück zum Zitat Ouyang, X. S., Wang, X., Lee, D. T., Tsao, S. W., & Wong, Y. C. (2002). Over expression of ID-1 in prostate cancer. The Journal of Urology, 167, 2598–2602.PubMed Ouyang, X. S., Wang, X., Lee, D. T., Tsao, S. W., & Wong, Y. C. (2002). Over expression of ID-1 in prostate cancer. The Journal of Urology, 167, 2598–2602.PubMed
58.
Zurück zum Zitat Zhang, X., Ling, M. T., Wang, Q., Lau, C. K., Leung, S. C., Lee, T. K., Cheung, A. L., Wong, Y. C., & Wang, X. (2007). Identification of a novel inhibitor of differentiation-1 (ID-1) binding partner, caveolin-1, and its role in epithelial–mesenchymal transition and resistance to apoptosis in prostate cancer cells. The Journal of Biological Chemistry, 282, 33284–33294.PubMed Zhang, X., Ling, M. T., Wang, Q., Lau, C. K., Leung, S. C., Lee, T. K., Cheung, A. L., Wong, Y. C., & Wang, X. (2007). Identification of a novel inhibitor of differentiation-1 (ID-1) binding partner, caveolin-1, and its role in epithelial–mesenchymal transition and resistance to apoptosis in prostate cancer cells. The Journal of Biological Chemistry, 282, 33284–33294.PubMed
59.
Zurück zum Zitat Williams, T. M., & Lisanti, M. P. (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. American Journal of Physiology. Cell Physiology, 288, C494–C506.PubMed Williams, T. M., & Lisanti, M. P. (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. American Journal of Physiology. Cell Physiology, 288, C494–C506.PubMed
60.
Zurück zum Zitat Yang, G., Truong, L. D., Wheeler, T. M., & Thompson, T. C. (1999). Caveolin-1 expression in clinically confined human prostate cancer: A novel prognostic marker. Cancer Research, 59, 5719–5723.PubMed Yang, G., Truong, L. D., Wheeler, T. M., & Thompson, T. C. (1999). Caveolin-1 expression in clinically confined human prostate cancer: A novel prognostic marker. Cancer Research, 59, 5719–5723.PubMed
61.
Zurück zum Zitat Li, L., Ren, C. H., Tahir, S. A., Ren, C., & Thompson, T. C. (2003). Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Molecular and Cellular Biology, 23, 9389–9404.PubMedCentralPubMed Li, L., Ren, C. H., Tahir, S. A., Ren, C., & Thompson, T. C. (2003). Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Molecular and Cellular Biology, 23, 9389–9404.PubMedCentralPubMed
62.
Zurück zum Zitat Wu, C., & Huang, J. (2007). Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway is essential for neuroendocrine differentiation of prostate cancer. The Journal of Biological Chemistry, 282, 3571–3583.PubMed Wu, C., & Huang, J. (2007). Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin pathway is essential for neuroendocrine differentiation of prostate cancer. The Journal of Biological Chemistry, 282, 3571–3583.PubMed
63.
Zurück zum Zitat Ciarlo, M., Benelli, R., Barbieri, O., Minghelli, S., Barboro, P., Balbi, C., & Ferrari, N. (2012). Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/beta-catenin signaling in prostate cancer cells. International Journal of Cancer, 131, 582–590. Ciarlo, M., Benelli, R., Barbieri, O., Minghelli, S., Barboro, P., Balbi, C., & Ferrari, N. (2012). Regulation of neuroendocrine differentiation by AKT/hnRNPK/AR/beta-catenin signaling in prostate cancer cells. International Journal of Cancer, 131, 582–590.
64.
Zurück zum Zitat Murthy, S., Wu, M., Bai, V. U., Hou, Z., Menon, M., Barrack, E. R., Kim, S. H., & Reddy, G. P. (2013). Role of androgen receptor in progression of LNCaP prostate cancer cells from G1 to S phase. PLoS One, 8, e56692.PubMedCentralPubMed Murthy, S., Wu, M., Bai, V. U., Hou, Z., Menon, M., Barrack, E. R., Kim, S. H., & Reddy, G. P. (2013). Role of androgen receptor in progression of LNCaP prostate cancer cells from G1 to S phase. PLoS One, 8, e56692.PubMedCentralPubMed
65.
Zurück zum Zitat Sun, Y., Wang, B. E., Leong, K. G., Yue, P., Li, L., Jhunjhunwala, S., Chen, D., Seo, K., Modrusan, Z., Gao, W. Q., Settleman, J., & Johnson, L. (2012). Androgen deprivation causes epithelial–mesenchymal transition in the prostate: Implications for androgen-deprivation therapy. Cancer Research, 72, 527–536.PubMed Sun, Y., Wang, B. E., Leong, K. G., Yue, P., Li, L., Jhunjhunwala, S., Chen, D., Seo, K., Modrusan, Z., Gao, W. Q., Settleman, J., & Johnson, L. (2012). Androgen deprivation causes epithelial–mesenchymal transition in the prostate: Implications for androgen-deprivation therapy. Cancer Research, 72, 527–536.PubMed
66.
Zurück zum Zitat Eide, T., Ramberg, H., Glackin, C., Tindall, D., & Tasken, K. A. (2013). TWIST1, A novel androgen-regulated gene, is a target for NKX3-1 in prostate cancer cells. Cancer Cell International, 13, 4.PubMedCentralPubMed Eide, T., Ramberg, H., Glackin, C., Tindall, D., & Tasken, K. A. (2013). TWIST1, A novel androgen-regulated gene, is a target for NKX3-1 in prostate cancer cells. Cancer Cell International, 13, 4.PubMedCentralPubMed
67.
Zurück zum Zitat Lu, T., Lin, W. J., Izumi, K., Wang, X., Xu, D., Fang, L. Y., Li, L., Jiang, Q., Jin, J., & Chang, C. (2012). Targeting androgen receptor to suppress macrophage-induced EMT and benign prostatic hyperplasia (BPH) development. Molecular Endocrinology, 26, 1707–1715.PubMedCentralPubMed Lu, T., Lin, W. J., Izumi, K., Wang, X., Xu, D., Fang, L. Y., Li, L., Jiang, Q., Jin, J., & Chang, C. (2012). Targeting androgen receptor to suppress macrophage-induced EMT and benign prostatic hyperplasia (BPH) development. Molecular Endocrinology, 26, 1707–1715.PubMedCentralPubMed
68.
Zurück zum Zitat Pourmand, G., Ziaee, A. A., Abedi, A. R., Mehrsai, A., Alavi, H. A., Ahmadi, A., & Saadati, H. R. (2007). Role of PTEN gene in progression of prostate cancer. Urology Journal, 4, 95–100. Spring.PubMed Pourmand, G., Ziaee, A. A., Abedi, A. R., Mehrsai, A., Alavi, H. A., Ahmadi, A., & Saadati, H. R. (2007). Role of PTEN gene in progression of prostate cancer. Urology Journal, 4, 95–100. Spring.PubMed
69.
Zurück zum Zitat Mulholland, D. J., Kobayashi, N., Ruscetti, M., Zhi, A., Tran, L. M., Huang, J., Gleave, M., & Wu, H. (2012). Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Research, 72, 1878–1889.PubMedCentralPubMed Mulholland, D. J., Kobayashi, N., Ruscetti, M., Zhi, A., Tran, L. M., Huang, J., Gleave, M., & Wu, H. (2012). Pten loss and RAS/MAPK activation cooperate to promote EMT and metastasis initiated from prostate cancer stem/progenitor cells. Cancer Research, 72, 1878–1889.PubMedCentralPubMed
70.
Zurück zum Zitat Dubrovska, A., Kim, S., Salamone, R. J., Walker, J. R., Maira, S. M., Garcia-Echeverria, C., Schultz, P. G., & Reddy, V. A. (2009). The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proceedings of the National Academy of Sciences of the United States of America, 106, 268–273.PubMedCentralPubMed Dubrovska, A., Kim, S., Salamone, R. J., Walker, J. R., Maira, S. M., Garcia-Echeverria, C., Schultz, P. G., & Reddy, V. A. (2009). The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proceedings of the National Academy of Sciences of the United States of America, 106, 268–273.PubMedCentralPubMed
71.
Zurück zum Zitat Taylor, B. S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B. S., Arora, V. K., Kaushik, P., Cerami, E., Reva, B., Antipin, Y., Mitsiades, N., Landers, T., Dolgalev, I., Major, J. E., Wilson, M., Socci, N. D., Lash, A. E., Heguy, A., Eastham, J. A., Scher, H. I., Reuter, V. E., Scardino, P. T., Sander, C., Sawyers, C. L., & Gerald, W. L. (2010). Integrative genomic profiling of human prostate cancer. Cancer Cell, 18, 11–22.PubMedCentralPubMed Taylor, B. S., Schultz, N., Hieronymus, H., Gopalan, A., Xiao, Y., Carver, B. S., Arora, V. K., Kaushik, P., Cerami, E., Reva, B., Antipin, Y., Mitsiades, N., Landers, T., Dolgalev, I., Major, J. E., Wilson, M., Socci, N. D., Lash, A. E., Heguy, A., Eastham, J. A., Scher, H. I., Reuter, V. E., Scardino, P. T., Sander, C., Sawyers, C. L., & Gerald, W. L. (2010). Integrative genomic profiling of human prostate cancer. Cancer Cell, 18, 11–22.PubMedCentralPubMed
72.
Zurück zum Zitat Nusse, R., & Varmus, H. (2012). Three decades of Wnts: A personal perspective on how a scientific field developed. EMBO Journal, 31, 2670–2684.PubMedCentralPubMed Nusse, R., & Varmus, H. (2012). Three decades of Wnts: A personal perspective on how a scientific field developed. EMBO Journal, 31, 2670–2684.PubMedCentralPubMed
73.
Zurück zum Zitat Yee, D. S., Tang, Y., Li, X., Liu, Z., Guo, Y., Ghaffar, S., McQueen, P., Atreya, D., Xie, J., Simoneau, A. R., Hoang, B. H., & Zi, X. (2010). The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Molecular Cancer, 9, 162.PubMedCentralPubMed Yee, D. S., Tang, Y., Li, X., Liu, Z., Guo, Y., Ghaffar, S., McQueen, P., Atreya, D., Xie, J., Simoneau, A. R., Hoang, B. H., & Zi, X. (2010). The Wnt inhibitory factor 1 restoration in prostate cancer cells was associated with reduced tumor growth, decreased capacity of cell migration and invasion and a reversal of epithelial to mesenchymal transition. Molecular Cancer, 9, 162.PubMedCentralPubMed
74.
Zurück zum Zitat Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127, 469–480.PubMed Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127, 469–480.PubMed
75.
Zurück zum Zitat Truica, C. I., Byers, S., & Gelmann, E. P. (2000). Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Research, 60, 4709–4713.PubMed Truica, C. I., Byers, S., & Gelmann, E. P. (2000). Beta-catenin affects androgen receptor transcriptional activity and ligand specificity. Cancer Research, 60, 4709–4713.PubMed
76.
Zurück zum Zitat Whitaker, H. C., Girling, J., Warren, A. Y., Leung, H., Mills, I. G., & Neal, D. E. (2008). Alterations in beta-catenin expression and localization in prostate cancer. Prostate, 68, 1196–1205.PubMed Whitaker, H. C., Girling, J., Warren, A. Y., Leung, H., Mills, I. G., & Neal, D. E. (2008). Alterations in beta-catenin expression and localization in prostate cancer. Prostate, 68, 1196–1205.PubMed
77.
Zurück zum Zitat Wan, X., Liu, J., Lu, J. F., Tzelepi, V., Yang, J., Starbuck, M. W., Diao, L., Wang, J., Efstathiou, E., Vazquez, E. S., Troncoso, P., Maity, S. N., & Navone, N. M. (2012). Activation of beta-catenin signaling in androgen receptor-negative prostate cancer cells. Clinical Cancer Research, 18, 726–736.PubMedCentralPubMed Wan, X., Liu, J., Lu, J. F., Tzelepi, V., Yang, J., Starbuck, M. W., Diao, L., Wang, J., Efstathiou, E., Vazquez, E. S., Troncoso, P., Maity, S. N., & Navone, N. M. (2012). Activation of beta-catenin signaling in androgen receptor-negative prostate cancer cells. Clinical Cancer Research, 18, 726–736.PubMedCentralPubMed
78.
Zurück zum Zitat Cao, J., Chiarelli, C., Richman, O., Zarrabi, K., Kozarekar, P., & Zucker, S. (2008). Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. The Journal of Biological Chemistry, 283, 6232–6240.PubMed Cao, J., Chiarelli, C., Richman, O., Zarrabi, K., Kozarekar, P., & Zucker, S. (2008). Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. The Journal of Biological Chemistry, 283, 6232–6240.PubMed
79.
Zurück zum Zitat Xie, D., Gore, C., Liu, J., Pong, R. C., Mason, R., Hao, G., Long, M., Kabbani, W., Yu, L., Zhang, H., Chen, H., Sun, X., Boothman, D. A., Min, W., & Hsieh, J. T. (2010). “Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis,“. Proceedings of the National Academy of Sciences of the United States of America, 107, 2485–2490.PubMedCentralPubMed Xie, D., Gore, C., Liu, J., Pong, R. C., Mason, R., Hao, G., Long, M., Kabbani, W., Yu, L., Zhang, H., Chen, H., Sun, X., Boothman, D. A., Min, W., & Hsieh, J. T. (2010). “Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis,“. Proceedings of the National Academy of Sciences of the United States of America, 107, 2485–2490.PubMedCentralPubMed
80.
Zurück zum Zitat Min, J., Zaslavsky, A., Fedele, G., McLaughlin, S. K., Reczek, E. E., De Raedt, T., Guney, I., Strochlic, D. E., Macconaill, L. E., Beroukhim, R., Bronson, R. T., Ryeom, S., Hahn, W. C., Loda, M., & Cichowski, K. (2010). ”An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nature Medicine, 16, 286–294.PubMedCentralPubMed Min, J., Zaslavsky, A., Fedele, G., McLaughlin, S. K., Reczek, E. E., De Raedt, T., Guney, I., Strochlic, D. E., Macconaill, L. E., Beroukhim, R., Bronson, R. T., Ryeom, S., Hahn, W. C., Loda, M., & Cichowski, K. (2010). ”An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nature Medicine, 16, 286–294.PubMedCentralPubMed
81.
Zurück zum Zitat K. Wu, J. Liu, S. F. Tseng, C. Gore, Z. Ning, N. Sharifi, L. Fazli, M. Gleave, P. Kapur, G. Xiao, X. Sun, O. K. Oz, W. Min, G. Alexandrakis, C. R. Yang, C. L. Hsieh, H. C. Wu, D. He, D. Xie, and J. T. Hsieh,”The role of DAB2IP in androgen receptor activation during prostate cancer progression,“Oncogene, Apr 22 2013. K. Wu, J. Liu, S. F. Tseng, C. Gore, Z. Ning, N. Sharifi, L. Fazli, M. Gleave, P. Kapur, G. Xiao, X. Sun, O. K. Oz, W. Min, G. Alexandrakis, C. R. Yang, C. L. Hsieh, H. C. Wu, D. He, D. Xie, and J. T. Hsieh,”The role of DAB2IP in androgen receptor activation during prostate cancer progression,“Oncogene, Apr 22 2013.
82.
Zurück zum Zitat Jain, G., Cronauer, M. V., Schrader, M., Moller, P., & Marienfeld, R. B. (2012). NF-kappaB signaling in prostate cancer: a promising therapeutic target? World Journal of Urology, 30, 303–310.PubMed Jain, G., Cronauer, M. V., Schrader, M., Moller, P., & Marienfeld, R. B. (2012). NF-kappaB signaling in prostate cancer: a promising therapeutic target? World Journal of Urology, 30, 303–310.PubMed
83.
Zurück zum Zitat McCall, P., Bennett, L., Ahmad, I., Mackenzie, L. M., Forbes, I. W., Leung, H. Y., Sansom, O. J., Orange, C., Seywright, M., Underwood, M. A., & Edwards, J. (2012). NFkappaB signalling is upregulated in a subset of castrate-resistant prostate cancer patients and correlates with disease progression. British Journal of Cancer, 107, 1554–1563.PubMedCentralPubMed McCall, P., Bennett, L., Ahmad, I., Mackenzie, L. M., Forbes, I. W., Leung, H. Y., Sansom, O. J., Orange, C., Seywright, M., Underwood, M. A., & Edwards, J. (2012). NFkappaB signalling is upregulated in a subset of castrate-resistant prostate cancer patients and correlates with disease progression. British Journal of Cancer, 107, 1554–1563.PubMedCentralPubMed
84.
Zurück zum Zitat Min, C., Eddy, S. F., Sherr, D. H., & Sonenshein, G. E. (2008). NF-kappaB and epithelial to mesenchymal transition of cancer. Journal of Cellular Biochemistry, 104, 733–744.PubMed Min, C., Eddy, S. F., Sherr, D. H., & Sonenshein, G. E. (2008). NF-kappaB and epithelial to mesenchymal transition of cancer. Journal of Cellular Biochemistry, 104, 733–744.PubMed
85.
Zurück zum Zitat Luo, J. L., Tan, W., Ricono, J. M., Korchynskyi, O., Zhang, M., Gonias, S. L., Cheresh, D. A., & Karin, M. (2007). Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature, 446, 690–694.PubMed Luo, J. L., Tan, W., Ricono, J. M., Korchynskyi, O., Zhang, M., Gonias, S. L., Cheresh, D. A., & Karin, M. (2007). Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature, 446, 690–694.PubMed
86.
Zurück zum Zitat Odero-Marah, V. A., Wang, R., Chu, G., Zayzafoon, M., Xu, J., Shi, C., Marshall, F. F., Zhau, H. E., & Chung, L. W. (2008). Receptor activator of NF-kappaB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells. Cell Research, 18, 858–870.PubMed Odero-Marah, V. A., Wang, R., Chu, G., Zayzafoon, M., Xu, J., Shi, C., Marshall, F. F., Zhau, H. E., & Chung, L. W. (2008). Receptor activator of NF-kappaB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells. Cell Research, 18, 858–870.PubMed
87.
Zurück zum Zitat Kuo, P. L., Shen, K. H., Hung, S. H., & Hsu, Y. L. (2012). CXCL1/GROalpha increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-kappaB/HDAC1 epigenetic regulation. Carcinogenesis, 33, 2477–2487.PubMed Kuo, P. L., Shen, K. H., Hung, S. H., & Hsu, Y. L. (2012). CXCL1/GROalpha increases cell migration and invasion of prostate cancer by decreasing fibulin-1 expression through NF-kappaB/HDAC1 epigenetic regulation. Carcinogenesis, 33, 2477–2487.PubMed
88.
Zurück zum Zitat Bolitho, C., Hahn, M. A., Baxter, R. C., & Marsh, D. J. (2010). The chemokine CXCL1 induces proliferation in epithelial ovarian cancer cells by transactivation of the epidermal growth factor receptor. Endocrine-Related Cancer, 17, 929–940.PubMed Bolitho, C., Hahn, M. A., Baxter, R. C., & Marsh, D. J. (2010). The chemokine CXCL1 induces proliferation in epithelial ovarian cancer cells by transactivation of the epidermal growth factor receptor. Endocrine-Related Cancer, 17, 929–940.PubMed
89.
Zurück zum Zitat Shiota, M., Zardan, A., Takeuchi, A., Kumano, M., Beraldi, E., Naito, S., Zoubeidi, A., & Gleave, M. E. (2012). Clusterin mediates TGF-beta-induced epithelial–mesenchymal transition and metastasis via Twist1 in prostate cancer cells. Cancer Research, 72, 5261–5272.PubMed Shiota, M., Zardan, A., Takeuchi, A., Kumano, M., Beraldi, E., Naito, S., Zoubeidi, A., & Gleave, M. E. (2012). Clusterin mediates TGF-beta-induced epithelial–mesenchymal transition and metastasis via Twist1 in prostate cancer cells. Cancer Research, 72, 5261–5272.PubMed
90.
Zurück zum Zitat Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C. A., Gouvin, L. M., Sharma, V. M., & Mercurio, A. M. (2010). ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 17, 319–332.PubMedCentralPubMed Mak, P., Leav, I., Pursell, B., Bae, D., Yang, X., Taglienti, C. A., Gouvin, L. M., Sharma, V. M., & Mercurio, A. M. (2010). ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell, 17, 319–332.PubMedCentralPubMed
91.
Zurück zum Zitat Poon, S., Easterbrook-Smith, S. B., Rybchyn, M. S., Carver, J. A., & Wilson, M. R. (2000). Clusterin is an ATP-independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry, 39, 15953–15960.PubMed Poon, S., Easterbrook-Smith, S. B., Rybchyn, M. S., Carver, J. A., & Wilson, M. R. (2000). Clusterin is an ATP-independent chaperone with very broad substrate specificity that stabilizes stressed proteins in a folding-competent state. Biochemistry, 39, 15953–15960.PubMed
92.
Zurück zum Zitat Chi, K. N., Hotte, S. J., Yu, E. Y., Tu, D., Eigl, B. J., Tannock, I., Saad, F., North, S., Powers, J., Gleave, M. E., & Eisenhauer, E. A. (2010). Randomized phase II study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. Journal of Clinical Oncology, 28, 4247–4254.PubMed Chi, K. N., Hotte, S. J., Yu, E. Y., Tu, D., Eigl, B. J., Tannock, I., Saad, F., North, S., Powers, J., Gleave, M. E., & Eisenhauer, E. A. (2010). Randomized phase II study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. Journal of Clinical Oncology, 28, 4247–4254.PubMed
93.
Zurück zum Zitat Zoubeidi, A., Chi, K., & Gleave, M. (2010). Targeting the cytoprotective chaperone, clusterin, for treatment of advanced cancer. Clinical Cancer Research, 16, 1088–1093.PubMedCentralPubMed Zoubeidi, A., Chi, K., & Gleave, M. (2010). Targeting the cytoprotective chaperone, clusterin, for treatment of advanced cancer. Clinical Cancer Research, 16, 1088–1093.PubMedCentralPubMed
94.
Zurück zum Zitat Turley, R. S., Finger, E. C., Hempel, N., How, T., Fields, T. A., & Blobe, G. C. (2007). The type III transforming growth factor-beta receptor as a novel tumor suppressor gene in prostate cancer. Cancer Research, 67, 1090–1098.PubMed Turley, R. S., Finger, E. C., Hempel, N., How, T., Fields, T. A., & Blobe, G. C. (2007). The type III transforming growth factor-beta receptor as a novel tumor suppressor gene in prostate cancer. Cancer Research, 67, 1090–1098.PubMed
95.
Zurück zum Zitat Ikushima, H., & Miyazono, K. (2010). TGFbeta signalling: a complex web in cancer progression. Nature Reviews Cancer, 10, 415–424.PubMed Ikushima, H., & Miyazono, K. (2010). TGFbeta signalling: a complex web in cancer progression. Nature Reviews Cancer, 10, 415–424.PubMed
96.
Zurück zum Zitat Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., Solari, A., Bobisse, S., Rondina, M. B., Guzzardo, V., Parenti, A. R., Rosato, A., Bicciato, S., Balmain, A., & Piccolo, S. (2009). A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell, 137, 87–98.PubMed Adorno, M., Cordenonsi, M., Montagner, M., Dupont, S., Wong, C., Hann, B., Solari, A., Bobisse, S., Rondina, M. B., Guzzardo, V., Parenti, A. R., Rosato, A., Bicciato, S., Balmain, A., & Piccolo, S. (2009). A Mutant-p53/Smad complex opposes p63 to empower TGFbeta-induced metastasis. Cell, 137, 87–98.PubMed
97.
Zurück zum Zitat Ding, Z., Wu, C. J., Chu, G. C., Xiao, Y., Ho, D., Zhang, J., Perry, S. R., Labrot, E. S., Wu, X., Lis, R., Hoshida, Y., Hiller, D., Hu, B., Jiang, S., Zheng, H., Stegh, A. H., Scott, K. L., Signoretti, S., Bardeesy, N., Wang, Y. A., Hill, D. E., Golub, T. R., Stampfer, M. J., Wong, W. H., Loda, M., Mucci, L., Chin, L., & DePinho, R. A. (2011). SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature, 470, 269–273.PubMedCentralPubMed Ding, Z., Wu, C. J., Chu, G. C., Xiao, Y., Ho, D., Zhang, J., Perry, S. R., Labrot, E. S., Wu, X., Lis, R., Hoshida, Y., Hiller, D., Hu, B., Jiang, S., Zheng, H., Stegh, A. H., Scott, K. L., Signoretti, S., Bardeesy, N., Wang, Y. A., Hill, D. E., Golub, T. R., Stampfer, M. J., Wong, W. H., Loda, M., Mucci, L., Chin, L., & DePinho, R. A. (2011). SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature, 470, 269–273.PubMedCentralPubMed
98.
Zurück zum Zitat Qin, J., Wu, S. P., Creighton, C. J., Dai, F., Xie, X., Cheng, C. M., Frolov, A., Ayala, G., Lin, X., Feng, X. H., Ittmann, M. M., Tsai, S. J., Tsai, M. J., & Tsai, S. Y. (2013). COUP-TFII inhibits TGF-beta-induced growth barrier to promote prostate tumorigenesis. Nature, 493, 236–240.PubMedCentralPubMed Qin, J., Wu, S. P., Creighton, C. J., Dai, F., Xie, X., Cheng, C. M., Frolov, A., Ayala, G., Lin, X., Feng, X. H., Ittmann, M. M., Tsai, S. J., Tsai, M. J., & Tsai, S. Y. (2013). COUP-TFII inhibits TGF-beta-induced growth barrier to promote prostate tumorigenesis. Nature, 493, 236–240.PubMedCentralPubMed
99.
Zurück zum Zitat Buijs, J. T., Henriquez, N. V., van Overveld, P. G., van der Horst, G., ten Dijke, P., & van der Pluijm, G. (2007). TGF-beta and BMP7 interactions in tumour progression and bone metastasis. Clinical & Experimental Metastasis, 24, 609–617. Buijs, J. T., Henriquez, N. V., van Overveld, P. G., van der Horst, G., ten Dijke, P., & van der Pluijm, G. (2007). TGF-beta and BMP7 interactions in tumour progression and bone metastasis. Clinical & Experimental Metastasis, 24, 609–617.
100.
Zurück zum Zitat Grivennikov, S., Karin, E., Terzic, J., Mucida, D., Yu, G. Y., Vallabhapurapu, S., Scheller, J., Rose-John, S., Cheroutre, H., Eckmann, L., & Karin, M. (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 15, 103–113.PubMedCentralPubMed Grivennikov, S., Karin, E., Terzic, J., Mucida, D., Yu, G. Y., Vallabhapurapu, S., Scheller, J., Rose-John, S., Cheroutre, H., Eckmann, L., & Karin, M. (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell, 15, 103–113.PubMedCentralPubMed
101.
Zurück zum Zitat Bollrath, J., Phesse, T. J., von Burstin, V. A., Putoczki, T., Bennecke, M., Bateman, T., Nebelsiek, T., Lundgren-May, T., Canli, O., Schwitalla, S., Matthews, V., Schmid, R. M., Kirchner, T., Arkan, M. C., Ernst, M., & Greten, F. R. (2009). gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 15, 91–102.PubMed Bollrath, J., Phesse, T. J., von Burstin, V. A., Putoczki, T., Bennecke, M., Bateman, T., Nebelsiek, T., Lundgren-May, T., Canli, O., Schwitalla, S., Matthews, V., Schmid, R. M., Kirchner, T., Arkan, M. C., Ernst, M., & Greten, F. R. (2009). gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell, 15, 91–102.PubMed
102.
Zurück zum Zitat Yadav, A., Kumar, B., Datta, J., Teknos, T. N., & Kumar, P. (2011). IL-6 promotes head and neck tumor metastasis by inducing epithelial–mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Molecular Cancer Research, 9, 1658–1667.PubMedCentralPubMed Yadav, A., Kumar, B., Datta, J., Teknos, T. N., & Kumar, P. (2011). IL-6 promotes head and neck tumor metastasis by inducing epithelial–mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Molecular Cancer Research, 9, 1658–1667.PubMedCentralPubMed
103.
Zurück zum Zitat Yao, Z., Fenoglio, S., Gao, D. C., Camiolo, M., Stiles, B., Lindsted, T., Schlederer, M., Johns, C., Altorki, N., Mittal, V., Kenner, L., & Sordella, R. (2010). TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 107, 15535–15540.PubMedCentralPubMed Yao, Z., Fenoglio, S., Gao, D. C., Camiolo, M., Stiles, B., Lindsted, T., Schlederer, M., Johns, C., Altorki, N., Mittal, V., Kenner, L., & Sordella, R. (2010). TGF-beta IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 107, 15535–15540.PubMedCentralPubMed
104.
Zurück zum Zitat Sullivan, N. J., Sasser, A. K., Axel, A. E., Vesuna, F., Raman, V., Ramirez, N., Oberyszyn, T. M., & Hall, B. M. (2009). Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene, 28, 2940–2947.PubMed Sullivan, N. J., Sasser, A. K., Axel, A. E., Vesuna, F., Raman, V., Ramirez, N., Oberyszyn, T. M., & Hall, B. M. (2009). Interleukin-6 induces an epithelial–mesenchymal transition phenotype in human breast cancer cells. Oncogene, 28, 2940–2947.PubMed
105.
Zurück zum Zitat Tenniswood, M. P., Guenette, R. S., Lakins, J., Mooibroek, M., Wong, P., & Welsh, J. E. (1992). Active cell death in hormone-dependent tissues. Cancer Metastasis Reviews, 11, 197–220.PubMed Tenniswood, M. P., Guenette, R. S., Lakins, J., Mooibroek, M., Wong, P., & Welsh, J. E. (1992). Active cell death in hormone-dependent tissues. Cancer Metastasis Reviews, 11, 197–220.PubMed
106.
Zurück zum Zitat Paul, C., Manero, F., Gonin, S., Kretz-Remy, C., Virot, S., & Arrigo, A. P. (2002). Hsp27 as a negative regulator of cytochrome C release. Molecular and Cellular Biology, 22, 816–834.PubMedCentralPubMed Paul, C., Manero, F., Gonin, S., Kretz-Remy, C., Virot, S., & Arrigo, A. P. (2002). Hsp27 as a negative regulator of cytochrome C release. Molecular and Cellular Biology, 22, 816–834.PubMedCentralPubMed
107.
Zurück zum Zitat Zoubeidi, A., & Gleave, M. (2012). Small heat shock proteins in cancer therapy and prognosis. The International Journal of Biochemistry & Cell Biology, 44, 1646–1656. Zoubeidi, A., & Gleave, M. (2012). Small heat shock proteins in cancer therapy and prognosis. The International Journal of Biochemistry & Cell Biology, 44, 1646–1656.
108.
Zurück zum Zitat Shiota, M., Bishop, J. L., Nip, K. M., Zardan, A., Takeuchi, A., Cordonnier, T., Beraldi, E., Bazov, J., Fazli, L., Chi, K., Gleave, M., & Zoubeidi, A. (2013). Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Research, 73, 3109–3119.PubMed Shiota, M., Bishop, J. L., Nip, K. M., Zardan, A., Takeuchi, A., Cordonnier, T., Beraldi, E., Bazov, J., Fazli, L., Chi, K., Gleave, M., & Zoubeidi, A. (2013). Hsp27 regulates epithelial mesenchymal transition, metastasis, and circulating tumor cells in prostate cancer. Cancer Research, 73, 3109–3119.PubMed
109.
Zurück zum Zitat Lue, H. W., Yang, X., Wang, R., Qian, W., Xu, R. Z., Lyles, R., Osunkoya, A. O., Zhou, B. P., Vessella, R. L., Zayzafoon, M., Liu, Z. R., Zhau, H. E., & Chung, L. W. (2011). LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS One, 6, e27720.PubMedCentralPubMed Lue, H. W., Yang, X., Wang, R., Qian, W., Xu, R. Z., Lyles, R., Osunkoya, A. O., Zhou, B. P., Vessella, R. L., Zayzafoon, M., Liu, Z. R., Zhau, H. E., & Chung, L. W. (2011). LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling. PLoS One, 6, e27720.PubMedCentralPubMed
110.
Zurück zum Zitat Mimeault, M., & Batra, S. K. (2010). Divergent molecular mechanisms underlying the pleiotropic functions of macrophage inhibitory cytokine-1 in cancer. Journal of Cellular Physiology, 224, 626–635.PubMedCentralPubMed Mimeault, M., & Batra, S. K. (2010). Divergent molecular mechanisms underlying the pleiotropic functions of macrophage inhibitory cytokine-1 in cancer. Journal of Cellular Physiology, 224, 626–635.PubMedCentralPubMed
111.
Zurück zum Zitat Cheung, P. K., Woolcock, B., Adomat, H., Sutcliffe, M., Bainbridge, T. C., Jones, E. C., Webber, D., Kinahan, T., Sadar, M., Gleave, M. E., & Vielkind, J. (2004). Protein profiling of microdissected prostate tissue links growth differentiation factor 15 to prostate carcinogenesis. Cancer Research, 64, 5929–5933.PubMed Cheung, P. K., Woolcock, B., Adomat, H., Sutcliffe, M., Bainbridge, T. C., Jones, E. C., Webber, D., Kinahan, T., Sadar, M., Gleave, M. E., & Vielkind, J. (2004). Protein profiling of microdissected prostate tissue links growth differentiation factor 15 to prostate carcinogenesis. Cancer Research, 64, 5929–5933.PubMed
112.
Zurück zum Zitat Nakamura, T., Scorilas, A., Stephan, C., Yousef, G. M., Kristiansen, G., Jung, K., & Diamandis, E. P. (2003). Quantitative analysis of macrophage inhibitory cytokine-1 (MIC-1) gene expression in human prostatic tissues. British Journal of Cancer, 88, 1101–1104.PubMedCentralPubMed Nakamura, T., Scorilas, A., Stephan, C., Yousef, G. M., Kristiansen, G., Jung, K., & Diamandis, E. P. (2003). Quantitative analysis of macrophage inhibitory cytokine-1 (MIC-1) gene expression in human prostatic tissues. British Journal of Cancer, 88, 1101–1104.PubMedCentralPubMed
113.
Zurück zum Zitat Veveris-Lowe, T. L., Lawrence, M. G., Collard, R. L., Bui, L., Herington, A. C., Nicol, D. L., & Clements, J. A. (2005). Kallikrein 4 (hK4) and prostate-specific antigen (PSA) are associated with the loss of E-cadherin and an epithelial–mesenchymal transition (EMT)-like effect in prostate cancer cells. Endocrine-Related Cancer, 12, 631–643.PubMed Veveris-Lowe, T. L., Lawrence, M. G., Collard, R. L., Bui, L., Herington, A. C., Nicol, D. L., & Clements, J. A. (2005). Kallikrein 4 (hK4) and prostate-specific antigen (PSA) are associated with the loss of E-cadherin and an epithelial–mesenchymal transition (EMT)-like effect in prostate cancer cells. Endocrine-Related Cancer, 12, 631–643.PubMed
114.
Zurück zum Zitat Jang, M. J., Baek, S. H., & Kim, J. H. (2011). UCH-L1 promotes cancer metastasis in prostate cancer cells through EMT induction. Cancer Letters, 302, 128–135.PubMed Jang, M. J., Baek, S. H., & Kim, J. H. (2011). UCH-L1 promotes cancer metastasis in prostate cancer cells through EMT induction. Cancer Letters, 302, 128–135.PubMed
115.
Zurück zum Zitat Wesche, J., Haglund, K., & Haugsten, E. M. (2011). Fibroblast growth factors and their receptors in cancer. The Biochemical Journal, 437, 199–213.PubMed Wesche, J., Haglund, K., & Haugsten, E. M. (2011). Fibroblast growth factors and their receptors in cancer. The Biochemical Journal, 437, 199–213.PubMed
116.
Zurück zum Zitat Feng, S., Wang, F., Matsubara, A., Kan, M., & McKeehan, W. L. (1997). Fibroblast growth factor receptor 2 limits and receptor 1 accelerates tumorigenicity of prostate epithelial cells. Cancer Research, 57, 5369–5378.PubMed Feng, S., Wang, F., Matsubara, A., Kan, M., & McKeehan, W. L. (1997). Fibroblast growth factor receptor 2 limits and receptor 1 accelerates tumorigenicity of prostate epithelial cells. Cancer Research, 57, 5369–5378.PubMed
117.
Zurück zum Zitat Kwabi-Addo, B., Ropiquet, F., Giri, D., & Ittmann, M. (2001). Alternative splicing of fibroblast growth factor receptors in human prostate cancer. Prostate, 46, 163–172.PubMed Kwabi-Addo, B., Ropiquet, F., Giri, D., & Ittmann, M. (2001). Alternative splicing of fibroblast growth factor receptors in human prostate cancer. Prostate, 46, 163–172.PubMed
118.
Zurück zum Zitat Carstens, R. P., Wagner, E. J., & Garcia-Blanco, M. A. (2000). An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. Molecular and Cellular Biology, 20, 7388–7400.PubMedCentralPubMed Carstens, R. P., Wagner, E. J., & Garcia-Blanco, M. A. (2000). An intronic splicing silencer causes skipping of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. Molecular and Cellular Biology, 20, 7388–7400.PubMedCentralPubMed
119.
Zurück zum Zitat Baraniak, A. P., Chen, J. R., & Garcia-Blanco, M. A. (2006). Fox-2 mediates epithelial cell-specific fibroblast growth factor receptor 2 exon choice. Molecular and Cellular Biology, 26, 1209–1222.PubMedCentralPubMed Baraniak, A. P., Chen, J. R., & Garcia-Blanco, M. A. (2006). Fox-2 mediates epithelial cell-specific fibroblast growth factor receptor 2 exon choice. Molecular and Cellular Biology, 26, 1209–1222.PubMedCentralPubMed
120.
Zurück zum Zitat Warzecha, C. C., Sato, T. K., Nabet, B., Hogenesch, J. B., & Carstens, R. P. (2009). ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Molecular Cell, 33, 591–601.PubMedCentralPubMed Warzecha, C. C., Sato, T. K., Nabet, B., Hogenesch, J. B., & Carstens, R. P. (2009). ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Molecular Cell, 33, 591–601.PubMedCentralPubMed
121.
Zurück zum Zitat Shapiro, I. M., Cheng, A. W., Flytzanis, N. C., Balsamo, M., Condeelis, J. S., Oktay, M. H., Burge, C. B., & Gertler, F. B. (2011). An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genetics, 7, e1002218.PubMedCentralPubMed Shapiro, I. M., Cheng, A. W., Flytzanis, N. C., Balsamo, M., Condeelis, J. S., Oktay, M. H., Burge, C. B., & Gertler, F. B. (2011). An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype. PLoS Genetics, 7, e1002218.PubMedCentralPubMed
122.
Zurück zum Zitat Acevedo, V. D., Gangula, R. D., Freeman, K. W., Li, R., Zhang, Y., Wang, F., Ayala, G. E., Peterson, L. E., Ittmann, M., & Spencer, D. M. (2007). Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell, 12, 559–571.PubMed Acevedo, V. D., Gangula, R. D., Freeman, K. W., Li, R., Zhang, Y., Wang, F., Ayala, G. E., Peterson, L. E., Ittmann, M., & Spencer, D. M. (2007). Inducible FGFR-1 activation leads to irreversible prostate adenocarcinoma and an epithelial-to-mesenchymal transition. Cancer Cell, 12, 559–571.PubMed
123.
Zurück zum Zitat Bao, B., Ahmad, A., Kong, D., Ali, S., Azmi, A. S., Li, Y., Banerjee, S., Padhye, S., & Sarkar, F. H. (2012). Hypoxia induced aggressiveness of prostate cancer cells is linked with deregulated expression of VEGF, IL-6 and miRNAs that are attenuated by CDF. PLoS One, 7, e43726.PubMedCentralPubMed Bao, B., Ahmad, A., Kong, D., Ali, S., Azmi, A. S., Li, Y., Banerjee, S., Padhye, S., & Sarkar, F. H. (2012). Hypoxia induced aggressiveness of prostate cancer cells is linked with deregulated expression of VEGF, IL-6 and miRNAs that are attenuated by CDF. PLoS One, 7, e43726.PubMedCentralPubMed
124.
Zurück zum Zitat Wang, G. L., & Semenza, G. L. (1993). General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 90, 4304–4308.PubMedCentralPubMed Wang, G. L., & Semenza, G. L. (1993). General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proceedings of the National Academy of Sciences of the United States of America, 90, 4304–4308.PubMedCentralPubMed
125.
Zurück zum Zitat Zhao, J. H., Luo, Y., Jiang, Y. G., He, D. L., & Wu, C. T. (2011). Knockdown of beta-catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1alpha. Cancer Investigation, 29, 377–382.PubMed Zhao, J. H., Luo, Y., Jiang, Y. G., He, D. L., & Wu, C. T. (2011). Knockdown of beta-catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1alpha. Cancer Investigation, 29, 377–382.PubMed
126.
Zurück zum Zitat Luo, Y., He, D. L., Ning, L., Shen, S. L., Li, L., & Li, X. (2006). Hypoxia-inducible factor-1alpha induces the epithelial–mesenchymal transition of human prostatecancer cells. Chinese Medical Journal, 119, 713–718.PubMed Luo, Y., He, D. L., Ning, L., Shen, S. L., Li, L., & Li, X. (2006). Hypoxia-inducible factor-1alpha induces the epithelial–mesenchymal transition of human prostatecancer cells. Chinese Medical Journal, 119, 713–718.PubMed
127.
Zurück zum Zitat Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., Teng, S. C., & Wu, K. J. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature Cell Biology, 10, 295–305.PubMed Yang, M. H., Wu, M. Z., Chiou, S. H., Chen, P. M., Chang, S. Y., Liu, C. J., Teng, S. C., & Wu, K. J. (2008). Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nature Cell Biology, 10, 295–305.PubMed
128.
Zurück zum Zitat Sun, S., Ning, X., Zhang, Y., Lu, Y., Nie, Y., Han, S., Liu, L., Du, R., Xia, L., He, L., & Fan, D. (2009). Hypoxia-inducible factor-1alpha induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney International, 75, 1278–1287.PubMed Sun, S., Ning, X., Zhang, Y., Lu, Y., Nie, Y., Han, S., Liu, L., Du, R., Xia, L., He, L., & Fan, D. (2009). Hypoxia-inducible factor-1alpha induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney International, 75, 1278–1287.PubMed
129.
Zurück zum Zitat Song, X., Wang, H., Logsdon, C. D., Rashid, A., Fleming, J. B., Abbruzzese, J. L., Gomez, H. F., & Evans, D. B. (2011). Overexpression of receptor tyrosine kinase Axl promotes tumor cell invasion and survival in pancreatic ductal adenocarcinoma. Cancer, 117, 734–743.PubMed Song, X., Wang, H., Logsdon, C. D., Rashid, A., Fleming, J. B., Abbruzzese, J. L., Gomez, H. F., & Evans, D. B. (2011). Overexpression of receptor tyrosine kinase Axl promotes tumor cell invasion and survival in pancreatic ductal adenocarcinoma. Cancer, 117, 734–743.PubMed
130.
Zurück zum Zitat Mudduluru, G., Vajkoczy, P., & Allgayer, H. (2010). Myeloid zinc finger 1 induces migration, invasion, and in vivo metastasis through Axl gene expression in solid cancer. Molecular Cancer Research, 8, 159–169.PubMed Mudduluru, G., Vajkoczy, P., & Allgayer, H. (2010). Myeloid zinc finger 1 induces migration, invasion, and in vivo metastasis through Axl gene expression in solid cancer. Molecular Cancer Research, 8, 159–169.PubMed
131.
Zurück zum Zitat Gustafsson, A., Bostrom, A. K., Ljungberg, B., Axelson, H., & Dahlback, B. (2009). Gas6 and the receptor tyrosine kinase Axl in clear cell renal cell carcinoma. PLoS One, 4, e7575.PubMedCentralPubMed Gustafsson, A., Bostrom, A. K., Ljungberg, B., Axelson, H., & Dahlback, B. (2009). Gas6 and the receptor tyrosine kinase Axl in clear cell renal cell carcinoma. PLoS One, 4, e7575.PubMedCentralPubMed
132.
Zurück zum Zitat Gjerdrum, C., Tiron, C., Hoiby, T., Stefansson, I., Haugen, H., Sandal, T., Collett, K., Li, S., McCormack, E., Gjertsen, B. T., Micklem, D. R., Akslen, L. A., Glackin, C., & Lorens, J. B. (2010). Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proceedings of the National Academy of Sciences of the United States of America, 107, 1124–1129.PubMedCentralPubMed Gjerdrum, C., Tiron, C., Hoiby, T., Stefansson, I., Haugen, H., Sandal, T., Collett, K., Li, S., McCormack, E., Gjertsen, B. T., Micklem, D. R., Akslen, L. A., Glackin, C., & Lorens, J. B. (2010). Axl is an essential epithelial-to-mesenchymal transition-induced regulator of breast cancer metastasis and patient survival. Proceedings of the National Academy of Sciences of the United States of America, 107, 1124–1129.PubMedCentralPubMed
133.
Zurück zum Zitat Vajkoczy, P., Knyazev, P., Kunkel, A., Capelle, H. H., Behrndt, S., von Tengg-Kobligk, H., Kiessling, F., Eichelsbacher, U., Essig, M., Read, T. A., Erber, R., & Ullrich, A. (2006). Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proceedings of the National Academy of Sciences of the United States of America, 103, 5799–5804.PubMedCentralPubMed Vajkoczy, P., Knyazev, P., Kunkel, A., Capelle, H. H., Behrndt, S., von Tengg-Kobligk, H., Kiessling, F., Eichelsbacher, U., Essig, M., Read, T. A., Erber, R., & Ullrich, A. (2006). Dominant-negative inhibition of the Axl receptor tyrosine kinase suppresses brain tumor cell growth and invasion and prolongs survival. Proceedings of the National Academy of Sciences of the United States of America, 103, 5799–5804.PubMedCentralPubMed
134.
Zurück zum Zitat Hector, A., Montgomery, E. A., Karikari, C., Canto, M., Dunbar, K. B., Wang, J. S., Feldmann, G., Hong, S. M., Haffner, M. C., Meeker, A. K., Holland, S. J., Yu, J., Heckrodt, T. J., Zhang, J., Ding, P., Goff, D., Singh, R., Roa, J. C., Marimuthu, A., Riggins, G. J., Eshleman, J. R., Nelkin, B. D., Pandey, A., & Maitra, A. (2010). The Axl receptor tyrosine kinase is an adverse prognostic factor and a therapeutic target in esophageal adenocarcinoma. Cancer Biology & Therapy, 10, 1009–1018. Hector, A., Montgomery, E. A., Karikari, C., Canto, M., Dunbar, K. B., Wang, J. S., Feldmann, G., Hong, S. M., Haffner, M. C., Meeker, A. K., Holland, S. J., Yu, J., Heckrodt, T. J., Zhang, J., Ding, P., Goff, D., Singh, R., Roa, J. C., Marimuthu, A., Riggins, G. J., Eshleman, J. R., Nelkin, B. D., Pandey, A., & Maitra, A. (2010). The Axl receptor tyrosine kinase is an adverse prognostic factor and a therapeutic target in esophageal adenocarcinoma. Cancer Biology & Therapy, 10, 1009–1018.
135.
Zurück zum Zitat Koorstra, J. B., Karikari, C. A., Feldmann, G., Bisht, S., Rojas, P. L., Offerhaus, G. J., Alvarez, H., & Maitra, A. (2009). The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biology & Therapy, 8, 618–626. Koorstra, J. B., Karikari, C. A., Feldmann, G., Bisht, S., Rojas, P. L., Offerhaus, G. J., Alvarez, H., & Maitra, A. (2009). The Axl receptor tyrosine kinase confers an adverse prognostic influence in pancreatic cancer and represents a new therapeutic target. Cancer Biology & Therapy, 8, 618–626.
136.
Zurück zum Zitat Gustafsson, A., Martuszewska, D., Johansson, M., Ekman, C., Hafizi, S., Ljungberg, B., & Dahlback, B. (2009). Differential expression of Axl and Gas6 in renal cell carcinoma reflecting tumor advancement and survival. Clinical Cancer Research, 15, 4742–4749.PubMed Gustafsson, A., Martuszewska, D., Johansson, M., Ekman, C., Hafizi, S., Ljungberg, B., & Dahlback, B. (2009). Differential expression of Axl and Gas6 in renal cell carcinoma reflecting tumor advancement and survival. Clinical Cancer Research, 15, 4742–4749.PubMed
137.
Zurück zum Zitat Zhang, Y. X., Knyazev, P. G., Cheburkin, Y. V., Sharma, K., Knyazev, Y. P., Orfi, L., Szabadkai, I., Daub, H., Keri, G., & Ullrich, A. (2008). AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Research, 68, 1905–1915.PubMed Zhang, Y. X., Knyazev, P. G., Cheburkin, Y. V., Sharma, K., Knyazev, Y. P., Orfi, L., Szabadkai, I., Daub, H., Keri, G., & Ullrich, A. (2008). AXL is a potential target for therapeutic intervention in breast cancer progression. Cancer Research, 68, 1905–1915.PubMed
138.
Zurück zum Zitat Hutterer, M., Knyazev, P., Abate, A., Reschke, M., Maier, H., Stefanova, N., Knyazeva, T., Barbieri, V., Reindl, M., Muigg, A., Kostron, H., Stockhammer, G., & Ullrich, A. (2008). Axl and growth arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor prognosis in patients with glioblastoma multiforme. Clinical Cancer Research, 14, 130–138.PubMed Hutterer, M., Knyazev, P., Abate, A., Reschke, M., Maier, H., Stefanova, N., Knyazeva, T., Barbieri, V., Reindl, M., Muigg, A., Kostron, H., Stockhammer, G., & Ullrich, A. (2008). Axl and growth arrest-specific gene 6 are frequently overexpressed in human gliomas and predict poor prognosis in patients with glioblastoma multiforme. Clinical Cancer Research, 14, 130–138.PubMed
139.
Zurück zum Zitat Mishra, A., Wang, J., Shiozawa, Y., McGee, S., Kim, J., Jung, Y., Joseph, J., Berry, J. E., Havens, A., Pienta, K. J., & Taichman, R. S. (2012). Hypoxia stabilizes GAS6/Axl signaling in metastatic prostate cancer. Molecular Cancer Research, 10, 703–712.PubMedCentralPubMed Mishra, A., Wang, J., Shiozawa, Y., McGee, S., Kim, J., Jung, Y., Joseph, J., Berry, J. E., Havens, A., Pienta, K. J., & Taichman, R. S. (2012). Hypoxia stabilizes GAS6/Axl signaling in metastatic prostate cancer. Molecular Cancer Research, 10, 703–712.PubMedCentralPubMed
140.
Zurück zum Zitat Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6, 392–401.PubMed Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6, 392–401.PubMed
141.
Zurück zum Zitat Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour–host interface. Nature, 411, 375–379.PubMed Liotta, L. A., & Kohn, E. C. (2001). The microenvironment of the tumour–host interface. Nature, 411, 375–379.PubMed
142.
Zurück zum Zitat Chung, L. W., Baseman, A., Assikis, V., & Zhau, H. E. (2005). Molecular insights into prostate cancer progression: The missing link of tumor microenvironment. The Journal of Urology, 173, 10–20.PubMed Chung, L. W., Baseman, A., Assikis, V., & Zhau, H. E. (2005). Molecular insights into prostate cancer progression: The missing link of tumor microenvironment. The Journal of Urology, 173, 10–20.PubMed
143.
Zurück zum Zitat Kaminski, A., Hahne, J. C., Haddouti el, M., Florin, A., Wellmann, A., & Wernert, N. (2006). Tumour–stroma interactions between metastatic prostate cancer cells and fibroblasts. International Journal of Molecular Medicine, 18, 941–950.PubMed Kaminski, A., Hahne, J. C., Haddouti el, M., Florin, A., Wellmann, A., & Wernert, N. (2006). Tumour–stroma interactions between metastatic prostate cancer cells and fibroblasts. International Journal of Molecular Medicine, 18, 941–950.PubMed
144.
Zurück zum Zitat Giannoni, E., Bianchini, F., Calorini, L., & Chiarugi, P. (2011). Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxidants & Redox Signaling, 14, 2361–2371. Giannoni, E., Bianchini, F., Calorini, L., & Chiarugi, P. (2011). Cancer associated fibroblasts exploit reactive oxygen species through a proinflammatory signature leading to epithelial mesenchymal transition and stemness. Antioxidants & Redox Signaling, 14, 2361–2371.
145.
Zurück zum Zitat Lafon, C., Mathieu, C., Guerrin, M., Pierre, O., Vidal, S., & Valette, A. (1996). Transforming growth factor beta 1-induced apoptosis in human ovarian carcinoma cells: protection by the antioxidant N-acetylcysteine and bcl-2. Cell Growth & Differentiation, 7, 1095–1104. Lafon, C., Mathieu, C., Guerrin, M., Pierre, O., Vidal, S., & Valette, A. (1996). Transforming growth factor beta 1-induced apoptosis in human ovarian carcinoma cells: protection by the antioxidant N-acetylcysteine and bcl-2. Cell Growth & Differentiation, 7, 1095–1104.
146.
Zurück zum Zitat Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., & Lee, H. B. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.PubMed Rhyu, D. Y., Yang, Y., Ha, H., Lee, G. T., Song, J. S., Uh, S. T., & Lee, H. B. (2005). Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667–675.PubMed
147.
Zurück zum Zitat Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., Leake, D., Godden, E. L., Albertson, D. G., Nieto, M. A., Werb, Z., & Bissell, M. J. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.PubMedCentralPubMed Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., Leake, D., Godden, E. L., Albertson, D. G., Nieto, M. A., Werb, Z., & Bissell, M. J. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–127.PubMedCentralPubMed
148.
Zurück zum Zitat Barnett, P., Arnold, R. S., Mezencev, R., Chung, L. W., Zayzafoon, M., & Odero-Marah, V. (2011). Snail-mediated regulation of reactive oxygen species in ARCaP human prostate cancer cells. Biochemical and Biophysical Research Communications, 404, 34–39.PubMedCentralPubMed Barnett, P., Arnold, R. S., Mezencev, R., Chung, L. W., Zayzafoon, M., & Odero-Marah, V. (2011). Snail-mediated regulation of reactive oxygen species in ARCaP human prostate cancer cells. Biochemical and Biophysical Research Communications, 404, 34–39.PubMedCentralPubMed
149.
Zurück zum Zitat Das, T. P., Suman, S., & Damodaran, C. (2013). Reactive oxygen species generation inhibits epithelial–mesenchymal transition and promotes growth arrest in prostate cancer cells. Molecular Carcinogenesis. doi:10.1002/mc.22014. Das, T. P., Suman, S., & Damodaran, C. (2013). Reactive oxygen species generation inhibits epithelial–mesenchymal transition and promotes growth arrest in prostate cancer cells. Molecular Carcinogenesis. doi:10.​1002/​mc.​22014.
150.
Zurück zum Zitat Sun, Y., Campisi, J., Higano, C., Beer, T. M., Porter, P., Coleman, I., True, L., & Nelson, P. S. (2012). Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nature Medicine, 18, 1359–1368.PubMedCentralPubMed Sun, Y., Campisi, J., Higano, C., Beer, T. M., Porter, P., Coleman, I., True, L., & Nelson, P. S. (2012). Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nature Medicine, 18, 1359–1368.PubMedCentralPubMed
151.
Zurück zum Zitat Zhang, Y., Daquinag, A., Traktuev, D. O., Amaya-Manzanares, F., Simmons, P. J., March, K. L., Pasqualini, R., Arap, W., & Kolonin, M. G. (2009). White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Research, 69, 5259–5266.PubMed Zhang, Y., Daquinag, A., Traktuev, D. O., Amaya-Manzanares, F., Simmons, P. J., March, K. L., Pasqualini, R., Arap, W., & Kolonin, M. G. (2009). White adipose tissue cells are recruited by experimental tumors and promote cancer progression in mouse models. Cancer Research, 69, 5259–5266.PubMed
152.
Zurück zum Zitat Chao, Y., Wu, Q., Shepard, C., & Wells, A. (2012). Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clinical & Experimental Metastasis, 29, 39–50. Chao, Y., Wu, Q., Shepard, C., & Wells, A. (2012). Hepatocyte induced re-expression of E-cadherin in breast and prostate cancer cells increases chemoresistance. Clinical & Experimental Metastasis, 29, 39–50.
153.
Zurück zum Zitat Yates, C. C., Shepard, C. R., Stolz, D. B., & Wells, A. (2007). Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. British Journal of Cancer, 96, 1246–1252.PubMedCentralPubMed Yates, C. C., Shepard, C. R., Stolz, D. B., & Wells, A. (2007). Co-culturing human prostate carcinoma cells with hepatocytes leads to increased expression of E-cadherin. British Journal of Cancer, 96, 1246–1252.PubMedCentralPubMed
154.
Zurück zum Zitat S. Josson, S. Sharp, S. Y. Sung, P. A. Johnstone, R. Aneja, R. Wang, M. Gururajan, T. Turner, L. W. Chung, and C. Yates (2010) Tumor–stromal interactions influence radiation sensitivity in epithelial- versus mesenchymal-like prostate cancer cells. Journal of Oncology, 2010. doi:10.1155/2010/232831. S. Josson, S. Sharp, S. Y. Sung, P. A. Johnstone, R. Aneja, R. Wang, M. Gururajan, T. Turner, L. W. Chung, and C. Yates (2010) Tumor–stromal interactions influence radiation sensitivity in epithelial- versus mesenchymal-like prostate cancer cells. Journal of Oncology, 2010. doi:10.​1155/​2010/​232831.
155.
Zurück zum Zitat Oltean, S., Sorg, B. S., Albrecht, T., Bonano, V. I., Brazas, R. M., Dewhirst, M. W., & Garcia-Blanco, M. A. (2006). Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 103, 14116–14121.PubMedCentralPubMed Oltean, S., Sorg, B. S., Albrecht, T., Bonano, V. I., Brazas, R. M., Dewhirst, M. W., & Garcia-Blanco, M. A. (2006). Alternative inclusion of fibroblast growth factor receptor 2 exon IIIc in Dunning prostate tumors reveals unexpected epithelial mesenchymal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 103, 14116–14121.PubMedCentralPubMed
156.
Zurück zum Zitat Giannini, G., Cabri, W., Fattorusso, C., & Rodriquez, M. (2012). Histone deacetylase inhibitors in the treatment of cancer: Overview and perspectives. Future Medicinal Chemistry, 4, 1439–1460.PubMed Giannini, G., Cabri, W., Fattorusso, C., & Rodriquez, M. (2012). Histone deacetylase inhibitors in the treatment of cancer: Overview and perspectives. Future Medicinal Chemistry, 4, 1439–1460.PubMed
157.
Zurück zum Zitat Kong, D., Ahmad, A., Bao, B., Li, Y., Banerjee, S., & Sarkar, F. H. (2012). Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS One, 7, e45045.PubMedCentralPubMed Kong, D., Ahmad, A., Bao, B., Li, Y., Banerjee, S., & Sarkar, F. H. (2012). Histone deacetylase inhibitors induce epithelial-to-mesenchymal transition in prostate cancer cells. PLoS One, 7, e45045.PubMedCentralPubMed
158.
Zurück zum Zitat Bradley, D., Rathkopf, D., Dunn, R., Stadler, W. M., Liu, G., Smith, D. C., Pili, R., Zwiebel, J., Scher, H., & Hussain, M. (2009). Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862): trial results and interleukin-6 analysis: A study by the Department of Defense Prostate Cancer Clinical Trial Consortium and University of Chicago Phase 2 Consortium. Cancer, 115, 5541–5549.PubMedCentralPubMed Bradley, D., Rathkopf, D., Dunn, R., Stadler, W. M., Liu, G., Smith, D. C., Pili, R., Zwiebel, J., Scher, H., & Hussain, M. (2009). Vorinostat in advanced prostate cancer patients progressing on prior chemotherapy (National Cancer Institute Trial 6862): trial results and interleukin-6 analysis: A study by the Department of Defense Prostate Cancer Clinical Trial Consortium and University of Chicago Phase 2 Consortium. Cancer, 115, 5541–5549.PubMedCentralPubMed
159.
Zurück zum Zitat Martinez-Garcia, E., Popovic, R., Min, D. J., Sweet, S. M., Thomas, P. M., Zamdborg, L., Heffner, A., Will, C., Lamy, L., Staudt, L. M., Levens, D. L., Kelleher, N. L., & Licht, J. D. (2011). The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood, 117, 211–220.PubMedCentralPubMed Martinez-Garcia, E., Popovic, R., Min, D. J., Sweet, S. M., Thomas, P. M., Zamdborg, L., Heffner, A., Will, C., Lamy, L., Staudt, L. M., Levens, D. L., Kelleher, N. L., & Licht, J. D. (2011). The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells. Blood, 117, 211–220.PubMedCentralPubMed
160.
Zurück zum Zitat Hudlebusch, H. R., Skotte, J., Santoni-Rugiu, E., Zimling, Z. G., Lees, M. J., Simon, R., Sauter, G., Rota, R., De Ioris, M. A., Quarto, M., Johansen, J. V., Jorgensen, M., Rechnitzer, C., Maroun, L. L., Schroder, H., Petersen, B. L., & Helin, K. (2011). MMSET is highly expressed and associated with aggressiveness in neuroblastoma. Cancer Research, 71, 4226–4235.PubMed Hudlebusch, H. R., Skotte, J., Santoni-Rugiu, E., Zimling, Z. G., Lees, M. J., Simon, R., Sauter, G., Rota, R., De Ioris, M. A., Quarto, M., Johansen, J. V., Jorgensen, M., Rechnitzer, C., Maroun, L. L., Schroder, H., Petersen, B. L., & Helin, K. (2011). MMSET is highly expressed and associated with aggressiveness in neuroblastoma. Cancer Research, 71, 4226–4235.PubMed
161.
Zurück zum Zitat Kassambara, A., Klein, B., & Moreaux, J. (2009). MMSET is overexpressed in cancers: link with tumor aggressiveness. Biochemical and Biophysical Research Communications, 379, 840–845.PubMed Kassambara, A., Klein, B., & Moreaux, J. (2009). MMSET is overexpressed in cancers: link with tumor aggressiveness. Biochemical and Biophysical Research Communications, 379, 840–845.PubMed
162.
Zurück zum Zitat Ezponda, T., Popovic, R., Shah, M. Y., Martinez-Garcia, E., Zheng, Y., Min, D. J., Will, C., Neri, A., Kelleher, N. L., Yu, J., & Licht, J. D. (2013). The histone methyltransferase MMSET/WHSC1 activates TWIST1 to promote an epithelial–mesenchymal transition and invasive properties of prostate cancer. Oncogene, 32, 2882–2890.PubMedCentralPubMed Ezponda, T., Popovic, R., Shah, M. Y., Martinez-Garcia, E., Zheng, Y., Min, D. J., Will, C., Neri, A., Kelleher, N. L., Yu, J., & Licht, J. D. (2013). The histone methyltransferase MMSET/WHSC1 activates TWIST1 to promote an epithelial–mesenchymal transition and invasive properties of prostate cancer. Oncogene, 32, 2882–2890.PubMedCentralPubMed
163.
Zurück zum Zitat Smith, J. (2002). Human Sir2 and the “silencing” of p53 activity. Trends in Cell Biology, 12, 404–406.PubMed Smith, J. (2002). Human Sir2 and the “silencing” of p53 activity. Trends in Cell Biology, 12, 404–406.PubMed
164.
Zurück zum Zitat Giannakou, M. E., & Partridge, L. (2004). The interaction between FOXO and SIRT1: Tipping the balance towards survival. Trends in Cell Biology, 14, 408–412.PubMed Giannakou, M. E., & Partridge, L. (2004). The interaction between FOXO and SIRT1: Tipping the balance towards survival. Trends in Cell Biology, 14, 408–412.PubMed
165.
Zurück zum Zitat Byles, V., Zhu, L., Lovaas, J. D., Chmilewski, L. K., Wang, J., Faller, D. V., & Dai, Y. (2012). SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene, 31, 4619–4629.PubMed Byles, V., Zhu, L., Lovaas, J. D., Chmilewski, L. K., Wang, J., Faller, D. V., & Dai, Y. (2012). SIRT1 induces EMT by cooperating with EMT transcription factors and enhances prostate cancer cell migration and metastasis. Oncogene, 31, 4619–4629.PubMed
166.
Zurück zum Zitat Cao, Q., Yu, J., Dhanasekaran, S. M., Kim, J. H., Mani, R. S., Tomlins, S. A., Mehra, R., Laxman, B., Cao, X., Kleer, C. G., Varambally, S., & Chinnaiyan, A. M. (2008). Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene, 27, 7274–7284.PubMedCentralPubMed Cao, Q., Yu, J., Dhanasekaran, S. M., Kim, J. H., Mani, R. S., Tomlins, S. A., Mehra, R., Laxman, B., Cao, X., Kleer, C. G., Varambally, S., & Chinnaiyan, A. M. (2008). Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene, 27, 7274–7284.PubMedCentralPubMed
167.
Zurück zum Zitat Saha, B., Kaur, P., Tsao-Wei, D., Naritoku, W. Y., Groshen, S., Datar, R. H., Jones, L. W., & Imam, S. A. (2008). Unmethylated E-cadherin gene expression is significantly associated with metastatic human prostate cancer cells in bone. Prostate, 68, 1681–1688.PubMed Saha, B., Kaur, P., Tsao-Wei, D., Naritoku, W. Y., Groshen, S., Datar, R. H., Jones, L. W., & Imam, S. A. (2008). Unmethylated E-cadherin gene expression is significantly associated with metastatic human prostate cancer cells in bone. Prostate, 68, 1681–1688.PubMed
168.
Zurück zum Zitat Jansson, M. D., & Lund, A. H. (2012). MicroRNA and cancer. Molecular Oncology, 6, 590–610.PubMed Jansson, M. D., & Lund, A. H. (2012). MicroRNA and cancer. Molecular Oncology, 6, 590–610.PubMed
169.
Zurück zum Zitat Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMed Bartel, D. P. (2004). MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.PubMed
170.
Zurück zum Zitat Bullock, M. D., Sayan, A. E., Packham, G. K., & Mirnezami, A. H. (2012). MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biology of the Cell, 104, 3–12.PubMed Bullock, M. D., Sayan, A. E., Packham, G. K., & Mirnezami, A. H. (2012). MicroRNAs: critical regulators of epithelial to mesenchymal (EMT) and mesenchymal to epithelial transition (MET) in cancer progression. Biology of the Cell, 104, 3–12.PubMed
171.
Zurück zum Zitat Liu, Y. N., Yin, J. J., Abou-Kheir, W., Hynes, P. G., Casey, O. M., Fang, L., Yi, M., Stephens, R. M., Seng, V., Sheppard-Tillman, H., Martin, P., & Kelly, K. (2013). MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene, 32, 296–306.PubMed Liu, Y. N., Yin, J. J., Abou-Kheir, W., Hynes, P. G., Casey, O. M., Fang, L., Yi, M., Stephens, R. M., Seng, V., Sheppard-Tillman, H., Martin, P., & Kelly, K. (2013). MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene, 32, 296–306.PubMed
172.
Zurück zum Zitat Kong, D., Li, Y., Wang, Z., Banerjee, S., Ahmad, A., Kim, H. R., & Sarkar, F. H. (2009). miR-200 regulates PDGF-D-mediated epithelial–mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells, 27, 1712–1721.PubMedCentralPubMed Kong, D., Li, Y., Wang, Z., Banerjee, S., Ahmad, A., Kim, H. R., & Sarkar, F. H. (2009). miR-200 regulates PDGF-D-mediated epithelial–mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells, 27, 1712–1721.PubMedCentralPubMed
173.
Zurück zum Zitat Kong, D., Banerjee, S., Ahmad, A., Li, Y., Wang, Z., Sethi, S., & Sarkar, F. H. (2010). Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One, 5, e12445.PubMedCentralPubMed Kong, D., Banerjee, S., Ahmad, A., Li, Y., Wang, Z., Sethi, S., & Sarkar, F. H. (2010). Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One, 5, e12445.PubMedCentralPubMed
174.
Zurück zum Zitat Puhr, M., Hoefer, J., Schafer, G., Erb, H. H., Oh, S. J., Klocker, H., Heidegger, I., Neuwirt, H., & Culig, Z. (2012). Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. The American Journal of Pathology, 181, 2188–2201.PubMed Puhr, M., Hoefer, J., Schafer, G., Erb, H. H., Oh, S. J., Klocker, H., Heidegger, I., Neuwirt, H., & Culig, Z. (2012). Epithelial-to-mesenchymal transition leads to docetaxel resistance in prostate cancer and is mediated by reduced expression of miR-200c and miR-205. The American Journal of Pathology, 181, 2188–2201.PubMed
175.
Zurück zum Zitat Qu, Y., Li, W. C., Hellem, M. R., Rostad, K., Popa, M., McCormack, E., Oyan, A. M., Kalland, K. H., & Ke, X. S. (2013). MiR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells. International Journal of Cancer, 133, 544–555. Qu, Y., Li, W. C., Hellem, M. R., Rostad, K., Popa, M., McCormack, E., Oyan, A. M., Kalland, K. H., & Ke, X. S. (2013). MiR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells. International Journal of Cancer, 133, 544–555.
176.
Zurück zum Zitat Coppola, V., Musumeci, M., Patrizii, M., Cannistraci, A., Addario, A., Maugeri-Sacca, M., Biffoni, M., Francescangeli, F., Cordenonsi, M., Piccolo, S., Memeo, L., Pagliuca, A., Muto, G., Zeuner, A., De Maria, R., & Bonci, D. (2013). BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial–mesenchymal transition. Oncogene, 32, 1843–1853.PubMed Coppola, V., Musumeci, M., Patrizii, M., Cannistraci, A., Addario, A., Maugeri-Sacca, M., Biffoni, M., Francescangeli, F., Cordenonsi, M., Piccolo, S., Memeo, L., Pagliuca, A., Muto, G., Zeuner, A., De Maria, R., & Bonci, D. (2013). BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial–mesenchymal transition. Oncogene, 32, 1843–1853.PubMed
177.
Zurück zum Zitat Watahiki, A., Macfarlane, R. J., Gleave, M. E., Crea, F., Wang, Y., Helgason, C. D., & Chi, K. N. (2013). Plasma miRNAs as biomarkers to identify patients with castration-resistant metastatic prostate cancer. International Journal of Molecular Sciences, 14, 7757–7770.PubMedCentralPubMed Watahiki, A., Macfarlane, R. J., Gleave, M. E., Crea, F., Wang, Y., Helgason, C. D., & Chi, K. N. (2013). Plasma miRNAs as biomarkers to identify patients with castration-resistant metastatic prostate cancer. International Journal of Molecular Sciences, 14, 7757–7770.PubMedCentralPubMed
178.
Zurück zum Zitat Ru, P., Steele, R., Newhall, P., Phillips, N. J., Toth, K., & Ray, R. B. (2012). miRNA-29b suppresses prostate cancer metastasis by regulating epithelial–mesenchymal transition signaling. Molecular Cancer Therapeutics, 11, 1166–1173.PubMed Ru, P., Steele, R., Newhall, P., Phillips, N. J., Toth, K., & Ray, R. B. (2012). miRNA-29b suppresses prostate cancer metastasis by regulating epithelial–mesenchymal transition signaling. Molecular Cancer Therapeutics, 11, 1166–1173.PubMed
179.
Zurück zum Zitat Tucci, P., Agostini, M., Grespi, F., Markert, E. K., Terrinoni, A., Vousden, K. H., Muller, P. A., Dotsch, V., Kehrloesser, S., Sayan, B. S., Giaccone, G., Lowe, S. W., Takahashi, N., Vandenabeele, P., Knight, R. A., Levine, A. J., & Melino, G. (2012). Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 109, 15312–15317.PubMedCentralPubMed Tucci, P., Agostini, M., Grespi, F., Markert, E. K., Terrinoni, A., Vousden, K. H., Muller, P. A., Dotsch, V., Kehrloesser, S., Sayan, B. S., Giaccone, G., Lowe, S. W., Takahashi, N., Vandenabeele, P., Knight, R. A., Levine, A. J., & Melino, G. (2012). Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 109, 15312–15317.PubMedCentralPubMed
180.
Zurück zum Zitat Zi, X., & Agarwal, R. (1999). Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: Implications for prostate cancer intervention. Proceedings of the National Academy of Sciences of the United States of America, 96, 7490–7495.PubMedCentralPubMed Zi, X., & Agarwal, R. (1999). Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: Implications for prostate cancer intervention. Proceedings of the National Academy of Sciences of the United States of America, 96, 7490–7495.PubMedCentralPubMed
181.
Zurück zum Zitat Tyagi, A. K., Singh, R. P., Agarwal, C., Chan, D. C., & Agarwal, R. (2002). Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth Inhibition, G2-M arrest, and apoptosis. Clinical Cancer Research, 8, 3512–3519.PubMed Tyagi, A. K., Singh, R. P., Agarwal, C., Chan, D. C., & Agarwal, R. (2002). Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth Inhibition, G2-M arrest, and apoptosis. Clinical Cancer Research, 8, 3512–3519.PubMed
182.
Zurück zum Zitat Dhanalakshmi, S., Agarwal, P., Glode, L. M., & Agarwal, R. (2003). Silibinin sensitizes human prostate carcinoma DU145 cells to cisplatin- and carboplatin-induced growth inhibition and apoptotic death. International Journal of Cancer, 106, 699–705. Dhanalakshmi, S., Agarwal, P., Glode, L. M., & Agarwal, R. (2003). Silibinin sensitizes human prostate carcinoma DU145 cells to cisplatin- and carboplatin-induced growth inhibition and apoptotic death. International Journal of Cancer, 106, 699–705.
183.
Zurück zum Zitat Flaig, T. W., Su, L. J., Harrison, G., Agarwal, R., & Glode, L. M. (2007). Silibinin synergizes with mitoxantrone to inhibit cell growth and induce apoptosis in human prostate cancer cells. International Journal of Cancer, 120, 2028–2033. Flaig, T. W., Su, L. J., Harrison, G., Agarwal, R., & Glode, L. M. (2007). Silibinin synergizes with mitoxantrone to inhibit cell growth and induce apoptosis in human prostate cancer cells. International Journal of Cancer, 120, 2028–2033.
184.
Zurück zum Zitat Tyagi, A., Bhatia, N., Condon, M. S., Bosland, M. C., Agarwal, C., & Agarwal, R. (2002). Antiproliferative and apoptotic effects of silibinin in rat prostate cancer cells. Prostate, 53, 211–217.PubMed Tyagi, A., Bhatia, N., Condon, M. S., Bosland, M. C., Agarwal, C., & Agarwal, R. (2002). Antiproliferative and apoptotic effects of silibinin in rat prostate cancer cells. Prostate, 53, 211–217.PubMed
185.
Zurück zum Zitat Agarwal, C., Tyagi, A., Kaur, M., & Agarwal, R. (2007). Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis, 28, 1463–1470.PubMed Agarwal, C., Tyagi, A., Kaur, M., & Agarwal, R. (2007). Silibinin inhibits constitutive activation of Stat3, and causes caspase activation and apoptotic death of human prostate carcinoma DU145 cells. Carcinogenesis, 28, 1463–1470.PubMed
186.
Zurück zum Zitat Zhu, W., Zhang, J. S., & Young, C. Y. (2001). Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis, 22, 1399–1403.PubMed Zhu, W., Zhang, J. S., & Young, C. Y. (2001). Silymarin inhibits function of the androgen receptor by reducing nuclear localization of the receptor in the human prostate cancer cell line LNCaP. Carcinogenesis, 22, 1399–1403.PubMed
187.
Zurück zum Zitat Mokhtari, M. J., Motamed, N., & Shokrgozar, M. A. (2008). Evaluation of silibinin on the viability, migration and adhesion of the human prostate adenocarcinoma (PC-3) cell line. Cell Biology International, 32, 888–892.PubMed Mokhtari, M. J., Motamed, N., & Shokrgozar, M. A. (2008). Evaluation of silibinin on the viability, migration and adhesion of the human prostate adenocarcinoma (PC-3) cell line. Cell Biology International, 32, 888–892.PubMed
188.
Zurück zum Zitat Wu, K. J., Zeng, J., Zhu, G. D., Zhang, L. L., Zhang, D., Li, L., Fan, J. H., Wang, X. Y., & He, D. L. (2009). Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression. Acta Pharmacologica Sinica, 30, 1162–1168.PubMed Wu, K. J., Zeng, J., Zhu, G. D., Zhang, L. L., Zhang, D., Li, L., Fan, J. H., Wang, X. Y., & He, D. L. (2009). Silibinin inhibits prostate cancer invasion, motility and migration by suppressing vimentin and MMP-2 expression. Acta Pharmacologica Sinica, 30, 1162–1168.PubMed
189.
Zurück zum Zitat Wu, K., Zeng, J., Li, L., Fan, J., Zhang, D., Xue, Y., Zhu, G., Yang, L., Wang, X., & He, D. (2010). Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors. Oncology Reports, 23, 1545–1552.PubMed Wu, K., Zeng, J., Li, L., Fan, J., Zhang, D., Xue, Y., Zhu, G., Yang, L., Wang, X., & He, D. (2010). Silibinin reverses epithelial-to-mesenchymal transition in metastatic prostate cancer cells by targeting transcription factors. Oncology Reports, 23, 1545–1552.PubMed
190.
Zurück zum Zitat Jung, H. J., Park, J. W., Lee, J. S., Lee, S. R., Jang, B. C., Suh, S. I., Suh, M. H., & Baek, W. K. (2009). Silibinin inhibits expression of HIF-1alpha through suppression of protein translation in prostate cancer cells. Biochemical and Biophysical Research Communications, 390, 71–76.PubMed Jung, H. J., Park, J. W., Lee, J. S., Lee, S. R., Jang, B. C., Suh, S. I., Suh, M. H., & Baek, W. K. (2009). Silibinin inhibits expression of HIF-1alpha through suppression of protein translation in prostate cancer cells. Biochemical and Biophysical Research Communications, 390, 71–76.PubMed
191.
Zurück zum Zitat Zhang, L. L., Li, L., Wu, D. P., Fan, J. H., Li, X., Wu, K. J., Wang, X. Y., & He, D. L. (2008). A novel anti-cancer effect of genistein: reversal of epithelial mesenchymal transition in prostate cancer cells. Acta Pharmacologica Sinica, 29, 1060–1068.PubMed Zhang, L. L., Li, L., Wu, D. P., Fan, J. H., Li, X., Wu, K. J., Wang, X. Y., & He, D. L. (2008). A novel anti-cancer effect of genistein: reversal of epithelial mesenchymal transition in prostate cancer cells. Acta Pharmacologica Sinica, 29, 1060–1068.PubMed
192.
Zurück zum Zitat Zhang, L., Li, L., Jiao, M., Wu, D., Wu, K., Li, X., Zhu, G., Yang, L., Wang, X., Hsieh, J. T., & He, D. (2012). Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathway. Cancer Letters, 323, 48–57.PubMed Zhang, L., Li, L., Jiao, M., Wu, D., Wu, K., Li, X., Zhu, G., Yang, L., Wang, X., Hsieh, J. T., & He, D. (2012). Genistein inhibits the stemness properties of prostate cancer cells through targeting Hedgehog-Gli1 pathway. Cancer Letters, 323, 48–57.PubMed
193.
Zurück zum Zitat Chiyomaru, T., Yamamura, S., Fukuhara, S., Hidaka, H., Majid, S., Saini, S., Arora, S., Deng, G., Shahryari, V., Chang, I., Tanaka, Y., Tabatabai, Z. L., Enokida, H., Seki, N., Nakagawa, M., & Dahiya, R. (2013). Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer. PLoS One, 8, e58929.PubMedCentralPubMed Chiyomaru, T., Yamamura, S., Fukuhara, S., Hidaka, H., Majid, S., Saini, S., Arora, S., Deng, G., Shahryari, V., Chang, I., Tanaka, Y., Tabatabai, Z. L., Enokida, H., Seki, N., Nakagawa, M., & Dahiya, R. (2013). Genistein up-regulates tumor suppressor microRNA-574-3p in prostate cancer. PLoS One, 8, e58929.PubMedCentralPubMed
194.
Zurück zum Zitat Baritaki, S., Chapman, A., Yeung, K., Spandidos, D. A., Palladino, M., & Bonavida, B. (2009). Inhibition of epithelial to mesenchymal transition in metastatic prostate cancer cells by the novel proteasome inhibitor, NPI-0052: pivotal roles of Snail repression and RKIP induction. Oncogene, 28, 3573–3585.PubMed Baritaki, S., Chapman, A., Yeung, K., Spandidos, D. A., Palladino, M., & Bonavida, B. (2009). Inhibition of epithelial to mesenchymal transition in metastatic prostate cancer cells by the novel proteasome inhibitor, NPI-0052: pivotal roles of Snail repression and RKIP induction. Oncogene, 28, 3573–3585.PubMed
195.
Zurück zum Zitat Morel, A. P., Lievre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial–mesenchymal transition. PLoS One, 3, e2888.PubMedCentralPubMed Morel, A. P., Lievre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial–mesenchymal transition. PLoS One, 3, e2888.PubMedCentralPubMed
196.
Zurück zum Zitat Lan, L., Luo, Y., Cui, D., Shi, B. Y., Deng, W., Huo, L. L., Chen, H. L., Zhang, G. Y., & Deng, L. L. (2013). Epithelial–mesenchymal transition triggers cancer stem cell generation in human thyroid cancer cells. International Journal of Oncology, 43, 113–120.PubMed Lan, L., Luo, Y., Cui, D., Shi, B. Y., Deng, W., Huo, L. L., Chen, H. L., Zhang, G. Y., & Deng, L. L. (2013). Epithelial–mesenchymal transition triggers cancer stem cell generation in human thyroid cancer cells. International Journal of Oncology, 43, 113–120.PubMed
197.
Zurück zum Zitat Klarmann, G. J., Hurt, E. M., Mathews, L. A., Zhang, X., Duhagon, M. A., Mistree, T., Thomas, S. B., & Farrar, W. L. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clinical & Experimental Metastasis, 26, 433–446. Klarmann, G. J., Hurt, E. M., Mathews, L. A., Zhang, X., Duhagon, M. A., Mistree, T., Thomas, S. B., & Farrar, W. L. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clinical & Experimental Metastasis, 26, 433–446.
198.
Zurück zum Zitat Albino, D., Longoni, N., Curti, L., Mello-Grand, M., Pinton, S., Civenni, G., Thalmann, G., D’Ambrosio, G., Sarti, M., Sessa, F., Chiorino, G., Catapano, C. V., & Carbone, G. M. (2012). ESE3/EHF controls epithelial cell differentiation and its loss leads to prostate tumors with mesenchymal and stem-like features. Cancer Research, 72, 2889–2900.PubMed Albino, D., Longoni, N., Curti, L., Mello-Grand, M., Pinton, S., Civenni, G., Thalmann, G., D’Ambrosio, G., Sarti, M., Sessa, F., Chiorino, G., Catapano, C. V., & Carbone, G. M. (2012). ESE3/EHF controls epithelial cell differentiation and its loss leads to prostate tumors with mesenchymal and stem-like features. Cancer Research, 72, 2889–2900.PubMed
199.
Zurück zum Zitat Lukacs, R. U., Memarzadeh, S., Wu, H., & Witte, O. N. (2010). Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell, 7, 682–693.PubMedCentralPubMed Lukacs, R. U., Memarzadeh, S., Wu, H., & Witte, O. N. (2010). Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell, 7, 682–693.PubMedCentralPubMed
200.
Zurück zum Zitat Domingo-Domenech, J., Vidal, S. J., Rodriguez-Bravo, V., Castillo-Martin, M., Quinn, S. A., Rodriguez-Barrueco, R., Bonal, D. M., Charytonowicz, E., Gladoun, N., de la Iglesia-Vicente, J., Petrylak, D. P., Benson, M. C., Silva, J. M., & Cordon-Cardo, C. (2012). Suppression of acquired docetaxel resistance in prostate cancer through depletion of Notch- and Hedgehog-dependent tumor-initiating cells. Cancer Cell, 22, 373–388.PubMed Domingo-Domenech, J., Vidal, S. J., Rodriguez-Bravo, V., Castillo-Martin, M., Quinn, S. A., Rodriguez-Barrueco, R., Bonal, D. M., Charytonowicz, E., Gladoun, N., de la Iglesia-Vicente, J., Petrylak, D. P., Benson, M. C., Silva, J. M., & Cordon-Cardo, C. (2012). Suppression of acquired docetaxel resistance in prostate cancer through depletion of Notch- and Hedgehog-dependent tumor-initiating cells. Cancer Cell, 22, 373–388.PubMed
201.
Zurück zum Zitat Bae, K. M., Su, Z., Frye, C., McClellan, S., Allan, R. W., Andrejewski, J. T., Kelley, V., Jorgensen, M., Steindler, D. A., Vieweg, J., & Siemann, D. W. (2010). Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. The Journal of Urology, 183, 2045–2053.PubMed Bae, K. M., Su, Z., Frye, C., McClellan, S., Allan, R. W., Andrejewski, J. T., Kelley, V., Jorgensen, M., Steindler, D. A., Vieweg, J., & Siemann, D. W. (2010). Expression of pluripotent stem cell reprogramming factors by prostate tumor initiating cells. The Journal of Urology, 183, 2045–2053.PubMed
202.
Zurück zum Zitat Yan, H., Chen, X., Zhang, Q., Qin, J., Li, H., Liu, C., Calhoun-Davis, T., Coletta, L. D., Klostergaard, J., Fokt, I., Skora, S., Priebe, W., Bi, Y., & Tang, D. G. (2011). Drug-tolerant cancer cells show reduced tumor-initiating capacity: Depletion of CD44 cells and evidence for epigenetic mechanisms. PLoS One, 6, e24397.PubMedCentralPubMed Yan, H., Chen, X., Zhang, Q., Qin, J., Li, H., Liu, C., Calhoun-Davis, T., Coletta, L. D., Klostergaard, J., Fokt, I., Skora, S., Priebe, W., Bi, Y., & Tang, D. G. (2011). Drug-tolerant cancer cells show reduced tumor-initiating capacity: Depletion of CD44 cells and evidence for epigenetic mechanisms. PLoS One, 6, e24397.PubMedCentralPubMed
203.
Zurück zum Zitat Wang, Z. A., & Shen, M. M. (2011). Revisiting the concept of cancer stem cells in prostate cancer. Oncogene, 30, 1261–1271.PubMed Wang, Z. A., & Shen, M. M. (2011). Revisiting the concept of cancer stem cells in prostate cancer. Oncogene, 30, 1261–1271.PubMed
204.
Zurück zum Zitat Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., & Lander, E. S. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138, 645–659.PubMed Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., & Lander, E. S. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell, 138, 645–659.PubMed
205.
Zurück zum Zitat Allard, W. J., Matera, J., Miller, M. C., Repollet, M., Connelly, M. C., Rao, C., Tibbe, A. G., Uhr, J. W., & Terstappen, L. W. (2004). Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clinical Cancer Research, 10, 6897–6904.PubMed Allard, W. J., Matera, J., Miller, M. C., Repollet, M., Connelly, M. C., Rao, C., Tibbe, A. G., Uhr, J. W., & Terstappen, L. W. (2004). Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clinical Cancer Research, 10, 6897–6904.PubMed
206.
Zurück zum Zitat Cristofanilli, M., Budd, G. T., Ellis, M. J., Stopeck, A., Matera, J., Miller, M. C., Reuben, J. M., Doyle, G. V., Allard, W. J., Terstappen, L. W., & Hayes, D. F. (2004). Circulating tumor cells, disease progression, and survival in metastatic breast cancer. The New England Journal of Medicine, 351, 781–791.PubMed Cristofanilli, M., Budd, G. T., Ellis, M. J., Stopeck, A., Matera, J., Miller, M. C., Reuben, J. M., Doyle, G. V., Allard, W. J., Terstappen, L. W., & Hayes, D. F. (2004). Circulating tumor cells, disease progression, and survival in metastatic breast cancer. The New England Journal of Medicine, 351, 781–791.PubMed
207.
Zurück zum Zitat de Bono, J. S., Scher, H. I., Montgomery, R. B., Parker, C., Miller, M. C., Tissing, H., Doyle, G. V., Terstappen, L. W., Pienta, K. J., & Raghavan, D. (2008). Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical Cancer Research, 14, 6302–6309.PubMed de Bono, J. S., Scher, H. I., Montgomery, R. B., Parker, C., Miller, M. C., Tissing, H., Doyle, G. V., Terstappen, L. W., Pienta, K. J., & Raghavan, D. (2008). Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clinical Cancer Research, 14, 6302–6309.PubMed
208.
Zurück zum Zitat Cohen, S. J., Punt, C. J., Iannotti, N., Saidman, B. H., Sabbath, K. D., Gabrail, N. Y., Picus, J., Morse, M., Mitchell, E., Miller, M. C., Doyle, G. V., Tissing, H., Terstappen, L. W., & Meropol, N. J. (2008). Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. Journal of Clinical Oncology, 26, 3213–3221.PubMed Cohen, S. J., Punt, C. J., Iannotti, N., Saidman, B. H., Sabbath, K. D., Gabrail, N. Y., Picus, J., Morse, M., Mitchell, E., Miller, M. C., Doyle, G. V., Tissing, H., Terstappen, L. W., & Meropol, N. J. (2008). Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. Journal of Clinical Oncology, 26, 3213–3221.PubMed
209.
Zurück zum Zitat Khan, M. S., Kirkwood, A., Tsigani, T., Garcia-Hernandez, J., Hartley, J. A., Caplin, M. E., & Meyer, T. (2013). Circulating tumor cells as prognostic markers in neuroendocrine tumors. Journal of Clinical Oncology, 31, 365–372.PubMed Khan, M. S., Kirkwood, A., Tsigani, T., Garcia-Hernandez, J., Hartley, J. A., Caplin, M. E., & Meyer, T. (2013). Circulating tumor cells as prognostic markers in neuroendocrine tumors. Journal of Clinical Oncology, 31, 365–372.PubMed
210.
Zurück zum Zitat Scher, H. I., Morris, M. J., Basch, E., & Heller, G. (2011). End points and outcomes in castration-resistant prostate cancer: From clinical trials to clinical practice. Journal of Clinical Oncology, 29, 3695–3704.PubMedCentralPubMed Scher, H. I., Morris, M. J., Basch, E., & Heller, G. (2011). End points and outcomes in castration-resistant prostate cancer: From clinical trials to clinical practice. Journal of Clinical Oncology, 29, 3695–3704.PubMedCentralPubMed
211.
Zurück zum Zitat Lecharpentier, A., Vielh, P., Perez-Moreno, P., Planchard, D., Soria, J. C., & Farace, F. (2011). Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. British Journal of Cancer, 105, 1338–1341.PubMedCentralPubMed Lecharpentier, A., Vielh, P., Perez-Moreno, P., Planchard, D., Soria, J. C., & Farace, F. (2011). Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. British Journal of Cancer, 105, 1338–1341.PubMedCentralPubMed
212.
Zurück zum Zitat Krebs, M. G., Hou, J. M., Sloane, R., Lancashire, L., Priest, L., Nonaka, D., Ward, T. H., Backen, A., Clack, G., Hughes, A., Ranson, M., Blackhall, F. H., & Dive, C. (2012). Analysis of circulating tumor cells in patients with non-small cell lung cancer using epithelial marker-dependent and -independent approaches. Journal of Thoracic Oncology, 7, 306–315.PubMed Krebs, M. G., Hou, J. M., Sloane, R., Lancashire, L., Priest, L., Nonaka, D., Ward, T. H., Backen, A., Clack, G., Hughes, A., Ranson, M., Blackhall, F. H., & Dive, C. (2012). Analysis of circulating tumor cells in patients with non-small cell lung cancer using epithelial marker-dependent and -independent approaches. Journal of Thoracic Oncology, 7, 306–315.PubMed
213.
Zurück zum Zitat Bellizzi, A., Sebastian, S., Ceglia, P., Centonze, M., Divella, R., Manzillo, E. F., Azzariti, A., Silvestris, N., Montemurro, S., Caliandro, C., De Luca, R., Cicero, G., Rizzo, S., Russo, A., Quaranta, M., Simone, G., & Paradiso, A. (2013). Co-expression of CD133(+)/CD44(+) in human colon cancer and liver metastasis. Journal of Cellular Physiology, 228, 408–415.PubMed Bellizzi, A., Sebastian, S., Ceglia, P., Centonze, M., Divella, R., Manzillo, E. F., Azzariti, A., Silvestris, N., Montemurro, S., Caliandro, C., De Luca, R., Cicero, G., Rizzo, S., Russo, A., Quaranta, M., Simone, G., & Paradiso, A. (2013). Co-expression of CD133(+)/CD44(+) in human colon cancer and liver metastasis. Journal of Cellular Physiology, 228, 408–415.PubMed
214.
Zurück zum Zitat Barriere, G., Riouallon, A., Renaudie, J., Tartary, M., & Rigaud, M. (2012). Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis. BMC Cancer, 12, 114.PubMedCentralPubMed Barriere, G., Riouallon, A., Renaudie, J., Tartary, M., & Rigaud, M. (2012). Mesenchymal and stemness circulating tumor cells in early breast cancer diagnosis. BMC Cancer, 12, 114.PubMedCentralPubMed
215.
Zurück zum Zitat Sieuwerts, A. M., Kraan, J., Bolt, J., van der Spoel, P., Elstrodt, F., Schutte, M., Martens, J. W., Gratama, J. W., Sleijfer, S., & Foekens, J. A. (2009). Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. Journal of the National Cancer Institute, 101, 61–66.PubMedCentralPubMed Sieuwerts, A. M., Kraan, J., Bolt, J., van der Spoel, P., Elstrodt, F., Schutte, M., Martens, J. W., Gratama, J. W., Sleijfer, S., & Foekens, J. A. (2009). Anti-epithelial cell adhesion molecule antibodies and the detection of circulating normal-like breast tumor cells. Journal of the National Cancer Institute, 101, 61–66.PubMedCentralPubMed
216.
Zurück zum Zitat Raimondi, C., Gradilone, A., Naso, G., Vincenzi, B., Petracca, A., Nicolazzo, C., Palazzo, A., Saltarelli, R., Spremberg, F., Cortesi, E., & Gazzaniga, P. (2011). Epithelial–mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Research and Treatment, 130, 449–455.PubMed Raimondi, C., Gradilone, A., Naso, G., Vincenzi, B., Petracca, A., Nicolazzo, C., Palazzo, A., Saltarelli, R., Spremberg, F., Cortesi, E., & Gazzaniga, P. (2011). Epithelial–mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Research and Treatment, 130, 449–455.PubMed
217.
Zurück zum Zitat Ozkumur, E., Shah, A. M., Ciciliano, J. C., Emmink, B. L., Miyamoto, D. T., Brachtel, E., Yu, M., Chen, P. I., Morgan, B., Trautwein, J., Kimura, A., Sengupta, S., Stott, S. L., Karabacak, N. M., Barber, T. A., Walsh, J. R., Smith, K., Spuhler, P. S., Sullivan, J. P., Lee, R. J., Ting, D. T., Luo, X., Shaw, A. T., Bardia, A., Sequist, L. V., Louis, D. N., Maheswaran, S., Kapur, R., Haber, D. A., & Toner, M. (2013). “Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells,”. Science Translational Medicine, 5, 179ra47.PubMedCentralPubMed Ozkumur, E., Shah, A. M., Ciciliano, J. C., Emmink, B. L., Miyamoto, D. T., Brachtel, E., Yu, M., Chen, P. I., Morgan, B., Trautwein, J., Kimura, A., Sengupta, S., Stott, S. L., Karabacak, N. M., Barber, T. A., Walsh, J. R., Smith, K., Spuhler, P. S., Sullivan, J. P., Lee, R. J., Ting, D. T., Luo, X., Shaw, A. T., Bardia, A., Sequist, L. V., Louis, D. N., Maheswaran, S., Kapur, R., Haber, D. A., & Toner, M. (2013). “Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells,”. Science Translational Medicine, 5, 179ra47.PubMedCentralPubMed
218.
Zurück zum Zitat Ryan, C. J., Shah, S., Efstathiou, E., Smith, M. R., Taplin, M. E., Bubley, G. J., Logothetis, C. J., Kheoh, T., Kilian, C., Haqq, C. M., Molina, A., & Small, E. J. (2011). Phase II study of abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate cancer displaying bone flare discordant with serologic response. Clinical Cancer Research, 17, 4854–4861.PubMedCentralPubMed Ryan, C. J., Shah, S., Efstathiou, E., Smith, M. R., Taplin, M. E., Bubley, G. J., Logothetis, C. J., Kheoh, T., Kilian, C., Haqq, C. M., Molina, A., & Small, E. J. (2011). Phase II study of abiraterone acetate in chemotherapy-naive metastatic castration-resistant prostate cancer displaying bone flare discordant with serologic response. Clinical Cancer Research, 17, 4854–4861.PubMedCentralPubMed
219.
Zurück zum Zitat Smith, D. C., Smith, M. R., Sweeney, C., Elfiky, A. A., Logothetis, C., Corn, P. G., Vogelzang, N. J., Small, E. J., Harzstark, A. L., Gordon, M. S., Vaishampayan, U. N., Haas, N. B., Spira, A. I., Lara, P. N., Jr., Lin, C. C., Srinivas, S., Sella, A., Schoffski, P., Scheffold, C., Weitzman, A. L., & Hussain, M. (2013). Cabozantinib in patients with advanced prostate cancer: Results of a phase II randomized discontinuation trial. Journal of Clinical Oncology, 31, 412–419.PubMed Smith, D. C., Smith, M. R., Sweeney, C., Elfiky, A. A., Logothetis, C., Corn, P. G., Vogelzang, N. J., Small, E. J., Harzstark, A. L., Gordon, M. S., Vaishampayan, U. N., Haas, N. B., Spira, A. I., Lara, P. N., Jr., Lin, C. C., Srinivas, S., Sella, A., Schoffski, P., Scheffold, C., Weitzman, A. L., & Hussain, M. (2013). Cabozantinib in patients with advanced prostate cancer: Results of a phase II randomized discontinuation trial. Journal of Clinical Oncology, 31, 412–419.PubMed
220.
Zurück zum Zitat R. J. Lee, P. J. Saylor, M. D. Michaelson, S. M. Rothenberg, M. E. Smas, D. T. Miyamoto, C. A. Gurski, W. Xie, S. Maheswaran, D. A. Haber, J. G. Goldin, and M. R. Smith, “A Dose-Ranging Study of Cabozantinib in Men with Castration-Resistant Prostate Cancer and Bone Metastases,” Clin Cancer Res, May 15 2013 R. J. Lee, P. J. Saylor, M. D. Michaelson, S. M. Rothenberg, M. E. Smas, D. T. Miyamoto, C. A. Gurski, W. Xie, S. Maheswaran, D. A. Haber, J. G. Goldin, and M. R. Smith, “A Dose-Ranging Study of Cabozantinib in Men with Castration-Resistant Prostate Cancer and Bone Metastases,” Clin Cancer Res, May 15 2013
221.
Zurück zum Zitat Kwok, W. K., Ling, M. T., Lee, T. W., Lau, T. C., Zhou, C., Zhang, X., Chua, C. W., Chan, K. W., Chan, F. L., Glackin, C., Wong, Y. C., & Wang, X. (2005). Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Research, 65, 5153–5162.PubMed Kwok, W. K., Ling, M. T., Lee, T. W., Lau, T. C., Zhou, C., Zhang, X., Chua, C. W., Chan, K. W., Chan, F. L., Glackin, C., Wong, Y. C., & Wang, X. (2005). Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Research, 65, 5153–5162.PubMed
222.
Zurück zum Zitat Sethi, S., Macoska, J., Chen, W., & Sarkar, F. H. (2010). Molecular signature of epithelial–mesenchymal transition (EMT) in human prostate cancer bone metastasis. American Journal of Translational Research, 3, 90–99.PubMedCentralPubMed Sethi, S., Macoska, J., Chen, W., & Sarkar, F. H. (2010). Molecular signature of epithelial–mesenchymal transition (EMT) in human prostate cancer bone metastasis. American Journal of Translational Research, 3, 90–99.PubMedCentralPubMed
223.
Zurück zum Zitat Gravdal, K., Halvorsen, O. J., Haukaas, S. A., & Akslen, L. A. (2007). A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clinical Cancer Research, 13, 7003–7011.PubMed Gravdal, K., Halvorsen, O. J., Haukaas, S. A., & Akslen, L. A. (2007). A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clinical Cancer Research, 13, 7003–7011.PubMed
224.
Zurück zum Zitat Behnsawy, H. M., Miyake, H., Harada, K., & Fujisawa, M. (2013). Expression patterns of epithelial–mesenchymal transition markers in localized prostate cancer: Significance in clinicopathological outcomes following radical prostatectomy. BJU International, 111, 30–37.PubMed Behnsawy, H. M., Miyake, H., Harada, K., & Fujisawa, M. (2013). Expression patterns of epithelial–mesenchymal transition markers in localized prostate cancer: Significance in clinicopathological outcomes following radical prostatectomy. BJU International, 111, 30–37.PubMed
225.
Zurück zum Zitat Tomlins, S. A., Rhodes, D. R., Perner, S., Dhanasekaran, S. M., Mehra, R., Sun, X. W., Varambally, S., Cao, X., Tchinda, J., Kuefer, R., Lee, C., Montie, J. E., Shah, R. B., Pienta, K. J., Rubin, M. A., & Chinnaiyan, A. M. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 310, 644–648.PubMed Tomlins, S. A., Rhodes, D. R., Perner, S., Dhanasekaran, S. M., Mehra, R., Sun, X. W., Varambally, S., Cao, X., Tchinda, J., Kuefer, R., Lee, C., Montie, J. E., Shah, R. B., Pienta, K. J., Rubin, M. A., & Chinnaiyan, A. M. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 310, 644–648.PubMed
226.
Zurück zum Zitat Tomlins, S. A., Laxman, B., Dhanasekaran, S. M., Helgeson, B. E., Cao, X., Morris, D. S., Menon, A., Jing, X., Cao, Q., Han, B., Yu, J., Wang, L., Montie, J. E., Rubin, M. A., Pienta, K. J., Roulston, D., Shah, R. B., Varambally, S., Mehra, R., & Chinnaiyan, A. M. (2007). Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature, 448, 595–599.PubMed Tomlins, S. A., Laxman, B., Dhanasekaran, S. M., Helgeson, B. E., Cao, X., Morris, D. S., Menon, A., Jing, X., Cao, Q., Han, B., Yu, J., Wang, L., Montie, J. E., Rubin, M. A., Pienta, K. J., Roulston, D., Shah, R. B., Varambally, S., Mehra, R., & Chinnaiyan, A. M. (2007). Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature, 448, 595–599.PubMed
227.
Zurück zum Zitat Gupta, S., Iljin, K., Sara, H., Mpindi, J. P., Mirtti, T., Vainio, P., Rantala, J., Alanen, K., Nees, M., & Kallioniemi, O. (2010). FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Research, 70, 6735–6745.PubMed Gupta, S., Iljin, K., Sara, H., Mpindi, J. P., Mirtti, T., Vainio, P., Rantala, J., Alanen, K., Nees, M., & Kallioniemi, O. (2010). FZD4 as a mediator of ERG oncogene-induced WNT signaling and epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Research, 70, 6735–6745.PubMed
228.
Zurück zum Zitat Leshem, O., Madar, S., Kogan-Sakin, I., Kamer, I., Goldstein, I., Brosh, R., Cohen, Y., Jacob-Hirsch, J., Ehrlich, M., Ben-Sasson, S., Goldfinger, N., Loewenthal, R., Gazit, E., Rotter, V., & Berger, R. (2011). TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One, 6, e21650.PubMedCentralPubMed Leshem, O., Madar, S., Kogan-Sakin, I., Kamer, I., Goldstein, I., Brosh, R., Cohen, Y., Jacob-Hirsch, J., Ehrlich, M., Ben-Sasson, S., Goldfinger, N., Loewenthal, R., Gazit, E., Rotter, V., & Berger, R. (2011). TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model. PLoS One, 6, e21650.PubMedCentralPubMed
229.
Zurück zum Zitat Demichelis, F., Fall, K., Perner, S., Andren, O., Schmidt, F., Setlur, S. R., Hoshida, Y., Mosquera, J. M., Pawitan, Y., Lee, C., Adami, H. O., Mucci, L. A., Kantoff, P. W., Andersson, S. O., Chinnaiyan, A. M., Johansson, J. E., & Rubin, M. A. (2007). TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene, 26, 4596–4599.PubMed Demichelis, F., Fall, K., Perner, S., Andren, O., Schmidt, F., Setlur, S. R., Hoshida, Y., Mosquera, J. M., Pawitan, Y., Lee, C., Adami, H. O., Mucci, L. A., Kantoff, P. W., Andersson, S. O., Chinnaiyan, A. M., Johansson, J. E., & Rubin, M. A. (2007). TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene, 26, 4596–4599.PubMed
230.
Zurück zum Zitat Nam, R. K., Sugar, L., Yang, W., Srivastava, S., Klotz, L. H., Yang, L. Y., Stanimirovic, A., Encioiu, E., Neill, M., Loblaw, D. A., Trachtenberg, J., Narod, S. A., & Seth, A. (2007). Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. British Journal of Cancer, 97, 1690–1695.PubMedCentralPubMed Nam, R. K., Sugar, L., Yang, W., Srivastava, S., Klotz, L. H., Yang, L. Y., Stanimirovic, A., Encioiu, E., Neill, M., Loblaw, D. A., Trachtenberg, J., Narod, S. A., & Seth, A. (2007). Expression of the TMPRSS2:ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer. British Journal of Cancer, 97, 1690–1695.PubMedCentralPubMed
231.
Zurück zum Zitat Attard, G., Clark, J., Ambroisine, L., Fisher, G., Kovacs, G., Flohr, P., Berney, D., Foster, C. S., Fletcher, A., Gerald, W. L., Moller, H., Reuter, V., De Bono, J. S., Scardino, P., Cuzick, J., & Cooper, C. S. (2008). Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene, 27, 253–263.PubMedCentralPubMed Attard, G., Clark, J., Ambroisine, L., Fisher, G., Kovacs, G., Flohr, P., Berney, D., Foster, C. S., Fletcher, A., Gerald, W. L., Moller, H., Reuter, V., De Bono, J. S., Scardino, P., Cuzick, J., & Cooper, C. S. (2008). Duplication of the fusion of TMPRSS2 to ERG sequences identifies fatal human prostate cancer. Oncogene, 27, 253–263.PubMedCentralPubMed
232.
Zurück zum Zitat Pettersson, A., Graff, R. E., Bauer, S. R., Pitt, M. J., Lis, R. T., Stack, E. C., Martin, N. E., Kunz, L., Penney, K. L., Ligon, A. H., Suppan, C., Flavin, R., Sesso, H. D., Rider, J. R., Sweeney, C., Stampfer, M. J., Fiorentino, M., Kantoff, P. W., Sanda, M. G., Giovannucci, E. L., Ding, E. L., Loda, M., & Mucci, L. A. (2012). The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: A cohort study and meta-analysis. Cancer Epidemiology, Biomarkers & Prevention, 21, 1497–1509. Pettersson, A., Graff, R. E., Bauer, S. R., Pitt, M. J., Lis, R. T., Stack, E. C., Martin, N. E., Kunz, L., Penney, K. L., Ligon, A. H., Suppan, C., Flavin, R., Sesso, H. D., Rider, J. R., Sweeney, C., Stampfer, M. J., Fiorentino, M., Kantoff, P. W., Sanda, M. G., Giovannucci, E. L., Ding, E. L., Loda, M., & Mucci, L. A. (2012). The TMPRSS2:ERG rearrangement, ERG expression, and prostate cancer outcomes: A cohort study and meta-analysis. Cancer Epidemiology, Biomarkers & Prevention, 21, 1497–1509.
233.
Zurück zum Zitat Chen, C. L., Mahalingam, D., Osmulski, P., Jadhav, R. R., Wang, C. M., Leach, R. J., Chang, T. C., Weitman, S. D., Kumar, A. P., Sun, L., Gaczynska, M. E., Thompson, I. M., & Huang, T. H. (2013). Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate, 73, 813–826.PubMed Chen, C. L., Mahalingam, D., Osmulski, P., Jadhav, R. R., Wang, C. M., Leach, R. J., Chang, T. C., Weitman, S. D., Kumar, A. P., Sun, L., Gaczynska, M. E., Thompson, I. M., & Huang, T. H. (2013). Single-cell analysis of circulating tumor cells identifies cumulative expression patterns of EMT-related genes in metastatic prostate cancer. Prostate, 73, 813–826.PubMed
234.
Zurück zum Zitat Jennbacken, K., Tesan, T., Wang, W., Gustavsson, H., Damber, J. E., & Welen, K. (2010). N-Cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocrine-Related Cancer, 17, 469–479.PubMed Jennbacken, K., Tesan, T., Wang, W., Gustavsson, H., Damber, J. E., & Welen, K. (2010). N-Cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocrine-Related Cancer, 17, 469–479.PubMed
235.
Zurück zum Zitat Tanaka, H., Kono, E., Tran, C. P., Miyazaki, H., Yamashiro, J., Shimomura, T., Fazli, L., Wada, R., Huang, J., Vessella, R. L., An, J., Horvath, S., Gleave, M., Rettig, M. B., Wainberg, Z. A., & Reiter, R. E. (2010). Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nature Medicine, 16, 1414–1420.PubMedCentralPubMed Tanaka, H., Kono, E., Tran, C. P., Miyazaki, H., Yamashiro, J., Shimomura, T., Fazli, L., Wada, R., Huang, J., Vessella, R. L., An, J., Horvath, S., Gleave, M., Rettig, M. B., Wainberg, Z. A., & Reiter, R. E. (2010). Monoclonal antibody targeting of N-cadherin inhibits prostate cancer growth, metastasis and castration resistance. Nature Medicine, 16, 1414–1420.PubMedCentralPubMed
236.
Zurück zum Zitat Putzke, A. P., Ventura, A. P., Bailey, A. M., Akture, C., Opoku-Ansah, J., Celiktas, M., Hwang, M. S., Darling, D. S., Coleman, I. M., Nelson, P. S., Nguyen, H. M., Corey, E., Tewari, M., Morrissey, C., Vessella, R. L., & Knudsen, B. S. (2011). Metastatic progression of prostate cancer and e-cadherin regulation by zeb1 and SRC family kinases. The American Journal of Pathology, 179, 400–410.PubMedCentralPubMed Putzke, A. P., Ventura, A. P., Bailey, A. M., Akture, C., Opoku-Ansah, J., Celiktas, M., Hwang, M. S., Darling, D. S., Coleman, I. M., Nelson, P. S., Nguyen, H. M., Corey, E., Tewari, M., Morrissey, C., Vessella, R. L., & Knudsen, B. S. (2011). Metastatic progression of prostate cancer and e-cadherin regulation by zeb1 and SRC family kinases. The American Journal of Pathology, 179, 400–410.PubMedCentralPubMed
237.
Zurück zum Zitat Giampieri, S., Manning, C., Hooper, S., Jones, L., Hill, C. S., & Sahai, E. (2009). Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biology, 11, 1287–1296.PubMedCentralPubMed Giampieri, S., Manning, C., Hooper, S., Jones, L., Hill, C. S., & Sahai, E. (2009). Localized and reversible TGFbeta signalling switches breast cancer cells from cohesive to single cell motility. Nature Cell Biology, 11, 1287–1296.PubMedCentralPubMed
238.
Zurück zum Zitat Armstrong, A. J., Tannock, I. F., de Wit, R., George, D. J., Eisenberger, M., & Halabi, S. (2010). The development of risk groups in men with metastatic castration-resistant prostate cancer based on risk factors for PSA decline and survival. European Journal of Cancer, 46, 517–525.PubMed Armstrong, A. J., Tannock, I. F., de Wit, R., George, D. J., Eisenberger, M., & Halabi, S. (2010). The development of risk groups in men with metastatic castration-resistant prostate cancer based on risk factors for PSA decline and survival. European Journal of Cancer, 46, 517–525.PubMed
239.
Zurück zum Zitat Qin, J., Liu, X., Laffin, B., Chen, X., Choy, G., Jeter, C. R., Calhoun-Davis, T., Li, H., Palapattu, G. S., Pang, S., Lin, K., Huang, J., Ivanov, I., Li, W., Suraneni, M. V., & Tang, D. G. (2012). The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell, 10, 556–569.PubMedCentralPubMed Qin, J., Liu, X., Laffin, B., Chen, X., Choy, G., Jeter, C. R., Calhoun-Davis, T., Li, H., Palapattu, G. S., Pang, S., Lin, K., Huang, J., Ivanov, I., Li, W., Suraneni, M. V., & Tang, D. G. (2012). The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell, 10, 556–569.PubMedCentralPubMed
240.
Zurück zum Zitat Kottke, T., Errington, F., Pulido, J., Galivo, F., Thompson, J., Wongthida, P., Diaz, R. M., Chong, H., Ilett, E., Chester, J., Pandha, H., Harrington, K., Selby, P., Melcher, A., & Vile, R. (2011). Broad antigenic coverage induced by vaccination with virus-based cDNA libraries cures established tumors. Nature Medicine, 17, 854–859.PubMedCentralPubMed Kottke, T., Errington, F., Pulido, J., Galivo, F., Thompson, J., Wongthida, P., Diaz, R. M., Chong, H., Ilett, E., Chester, J., Pandha, H., Harrington, K., Selby, P., Melcher, A., & Vile, R. (2011). Broad antigenic coverage induced by vaccination with virus-based cDNA libraries cures established tumors. Nature Medicine, 17, 854–859.PubMedCentralPubMed
241.
Zurück zum Zitat Kantoff, P. W., Higano, C. S., Shore, N. D., Berger, E. R., Small, E. J., Penson, D. F., Redfern, C. H., Ferrari, A. C., Dreicer, R., Sims, R. B., Xu, Y., Frohlich, M. W., & Schellhammer, P. F. (2010). Sipuleucel-T immunotherapy for castration-resistant prostate cancer. The New England Journal of Medicine, 363, 411–422.PubMed Kantoff, P. W., Higano, C. S., Shore, N. D., Berger, E. R., Small, E. J., Penson, D. F., Redfern, C. H., Ferrari, A. C., Dreicer, R., Sims, R. B., Xu, Y., Frohlich, M. W., & Schellhammer, P. F. (2010). Sipuleucel-T immunotherapy for castration-resistant prostate cancer. The New England Journal of Medicine, 363, 411–422.PubMed
242.
Zurück zum Zitat Kantoff, P. W., Schuetz, T. J., Blumenstein, B. A., Glode, L. M., Bilhartz, D. L., Wyand, M., Manson, K., Panicali, D. L., Laus, R., Schlom, J., Dahut, W. L., Arlen, P. M., Gulley, J. L., & Godfrey, W. R. (2010). Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. Journal of Clinical Oncology, 28, 1099–1105.PubMedCentralPubMed Kantoff, P. W., Schuetz, T. J., Blumenstein, B. A., Glode, L. M., Bilhartz, D. L., Wyand, M., Manson, K., Panicali, D. L., Laus, R., Schlom, J., Dahut, W. L., Arlen, P. M., Gulley, J. L., & Godfrey, W. R. (2010). Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. Journal of Clinical Oncology, 28, 1099–1105.PubMedCentralPubMed
243.
Zurück zum Zitat Yuan, T. C., Veeramani, S., & Lin, M. F. (2007). Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocrine-Related Cancer, 14, 531–547.PubMed Yuan, T. C., Veeramani, S., & Lin, M. F. (2007). Neuroendocrine-like prostate cancer cells: neuroendocrine transdifferentiation of prostate adenocarcinoma cells. Endocrine-Related Cancer, 14, 531–547.PubMed
244.
Zurück zum Zitat Carver, B. S., Chapinski, C., Wongvipat, J., Hieronymus, H., Chen, Y., Chandarlapaty, S., Arora, V. K., Le, C., Koutcher, J., Scher, H., Scardino, P. T., Rosen, N., & Sawyers, C. L. (2011). Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell, 19, 575–586.PubMedCentralPubMed Carver, B. S., Chapinski, C., Wongvipat, J., Hieronymus, H., Chen, Y., Chandarlapaty, S., Arora, V. K., Le, C., Koutcher, J., Scher, H., Scardino, P. T., Rosen, N., & Sawyers, C. L. (2011). Reciprocal feedback regulation of PI3K and androgen receptor signaling in PTEN-deficient prostate cancer. Cancer Cell, 19, 575–586.PubMedCentralPubMed
245.
Zurück zum Zitat Bitting, R. L., & Armstrong, A. J. (2013). Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocrine-Related Cancer, 20, R83–R99.PubMed Bitting, R. L., & Armstrong, A. J. (2013). Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocrine-Related Cancer, 20, R83–R99.PubMed
246.
Zurück zum Zitat Glickman, M. S., & Sawyers, C. L. (2012). Converting cancer therapies into cures: lessons from infectious diseases. Cell, 148, 1089–1098.PubMedCentralPubMed Glickman, M. S., & Sawyers, C. L. (2012). Converting cancer therapies into cures: lessons from infectious diseases. Cell, 148, 1089–1098.PubMedCentralPubMed
247.
Zurück zum Zitat Goldstein, A. S., Huang, J., Guo, C., Garraway, I. P., & Witte, O. N. (2010). Identification of a cell of origin for human prostate cancer. Science, 329, 568–571.PubMedCentralPubMed Goldstein, A. S., Huang, J., Guo, C., Garraway, I. P., & Witte, O. N. (2010). Identification of a cell of origin for human prostate cancer. Science, 329, 568–571.PubMedCentralPubMed
248.
Zurück zum Zitat Cottard, F., Asmane, I., Erdmann, E., Bergerat, J. P., Kurtz, J. E., & Ceraline, J. (2013). Constitutively active androgen receptor variants upregulate expression of mesenchymal markers in prostate cancer cells. PLoS One, 8, p. e63466. Cottard, F., Asmane, I., Erdmann, E., Bergerat, J. P., Kurtz, J. E., & Ceraline, J. (2013). Constitutively active androgen receptor variants upregulate expression of mesenchymal markers in prostate cancer cells. PLoS One, 8, p. e63466.
249.
Zurück zum Zitat Brennen, W. N., Rosen, D. M., Wang, H., Isaacs, J. T., & Denmeade, S. R. (2012). Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. Journal of the National Cancer Institute, 104, 1320–1334.PubMedCentralPubMed Brennen, W. N., Rosen, D. M., Wang, H., Isaacs, J. T., & Denmeade, S. R. (2012). Targeting carcinoma-associated fibroblasts within the tumor stroma with a fibroblast activation protein-activated prodrug. Journal of the National Cancer Institute, 104, 1320–1334.PubMedCentralPubMed
250.
Zurück zum Zitat Li, Y., Maitah, M. Y., Ahmad, A., Kong, D., Bao, B., & Sarkar, F. H. (2012). Targeting the Hedgehog signaling pathway for cancer therapy. Expert Opinion on Therapeutic Targets, 16, 49–66. Li, Y., Maitah, M. Y., Ahmad, A., Kong, D., Bao, B., & Sarkar, F. H. (2012). Targeting the Hedgehog signaling pathway for cancer therapy. Expert Opinion on Therapeutic Targets, 16, 49–66.
251.
Zurück zum Zitat Groth, C., & Fortini, M. E. (2012). Therapeutic approaches to modulating Notch signaling: Current challenges and future prospects. Seminars in Cell & Developmental Biology, 23, 465–472. Groth, C., & Fortini, M. E. (2012). Therapeutic approaches to modulating Notch signaling: Current challenges and future prospects. Seminars in Cell & Developmental Biology, 23, 465–472.
252.
Zurück zum Zitat Smith, A. L., Robin, T. P., & Ford, H. L. (2012). Molecular pathways: Targeting the TGF-beta pathway for cancer therapy. Clinical Cancer Research, 18, 4514–4521.PubMed Smith, A. L., Robin, T. P., & Ford, H. L. (2012). Molecular pathways: Targeting the TGF-beta pathway for cancer therapy. Clinical Cancer Research, 18, 4514–4521.PubMed
253.
Zurück zum Zitat Liu, G., Sprenger, C., Sun, S., Epilepsia, K. S., Haugk, K., Zhang, X., et al. (2013). AR variant ARv567es induces carcinogenesis in a novel transgenic mouse model of prostate cancer. Neoplasia, 15, pp. 1009–1017. Liu, G., Sprenger, C., Sun, S., Epilepsia, K. S., Haugk, K., Zhang, X., et al. (2013). AR variant ARv567es induces carcinogenesis in a novel transgenic mouse model of prostate cancer. Neoplasia, 15, pp. 1009–1017.
254.
Zurück zum Zitat Bitting, R. L., & Armstrong, A. J. (2013). Potential predictive biomarkers for individualizing treatment for men with castration-resistant prostate cancer. Cancer Journal, 19, 25–33. Bitting, R. L., & Armstrong, A. J. (2013). Potential predictive biomarkers for individualizing treatment for men with castration-resistant prostate cancer. Cancer Journal, 19, 25–33.
255.
Zurück zum Zitat Othus, M., Barlogie, B., Leblanc, M. L., & Crowley, J. J. (2012). Cure models as a useful statistical tool for analyzing survival. Clinical Cancer Research, 18, 3731–3736.PubMedCentralPubMed Othus, M., Barlogie, B., Leblanc, M. L., & Crowley, J. J. (2012). Cure models as a useful statistical tool for analyzing survival. Clinical Cancer Research, 18, 3731–3736.PubMedCentralPubMed
256.
Zurück zum Zitat Scher, H. I., Fizazi, K., Saad, F., Taplin, M. E., Sternberg, C. N., Miller, K., et al. (2012). Increased survival with enzalutamide in prostate cancer after chemotherapy. The New England Journal of Medicine, 367, 1187–1197. Scher, H. I., Fizazi, K., Saad, F., Taplin, M. E., Sternberg, C. N., Miller, K., et al. (2012). Increased survival with enzalutamide in prostate cancer after chemotherapy. The New England Journal of Medicine, 367, 1187–1197.
257.
Zurück zum Zitat Clegg, N. J., Wongvipat, J., Joseph, J. D., Tran, C., Ouk, S., Dilhas, A., Chen, Y., Grillot, K., Bischoff, E. D., Cai, L., Aparicio, A., Dorow, S., Arora, V., Shao, G., Qian, J., Zhao, H., Yang, G., Cao, C., Sensintaffar, J., Wasielewska, T., Herbert, M. R., Bonnefous, C., Darimont, B., Scher, H. I., Smith-Jones, P., Klang, M., Smith, N. D., De Stanchina, E., Wu, N., Ouerfelli, O., Rix, P. J., Heyman, R. A., Jung, M. E., Sawyers, C. L., & Hager, J. H. (2012). ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Research, 72, 1494–1503.PubMedCentralPubMed Clegg, N. J., Wongvipat, J., Joseph, J. D., Tran, C., Ouk, S., Dilhas, A., Chen, Y., Grillot, K., Bischoff, E. D., Cai, L., Aparicio, A., Dorow, S., Arora, V., Shao, G., Qian, J., Zhao, H., Yang, G., Cao, C., Sensintaffar, J., Wasielewska, T., Herbert, M. R., Bonnefous, C., Darimont, B., Scher, H. I., Smith-Jones, P., Klang, M., Smith, N. D., De Stanchina, E., Wu, N., Ouerfelli, O., Rix, P. J., Heyman, R. A., Jung, M. E., Sawyers, C. L., & Hager, J. H. (2012). ARN-509: a novel antiandrogen for prostate cancer treatment. Cancer Research, 72, 1494–1503.PubMedCentralPubMed
258.
Zurück zum Zitat Montgomery, R. B., Eisenberger, M. A., Rettig, M., Chu, F., Pili, R., Stephenson, J., Vogelzang, N. J., Morrison, J., & Taplin, M. (2012). Phase I clinical trial of galeterone (TOK-001), a multifunctional antiandrogen and CYP17 inhibitor in castration resistant prostate cancer. Journal of Clinical Oncology, 30, abstr 4665. Montgomery, R. B., Eisenberger, M. A., Rettig, M., Chu, F., Pili, R., Stephenson, J., Vogelzang, N. J., Morrison, J., & Taplin, M. (2012). Phase I clinical trial of galeterone (TOK-001), a multifunctional antiandrogen and CYP17 inhibitor in castration resistant prostate cancer. Journal of Clinical Oncology, 30, abstr 4665.
259.
Zurück zum Zitat de Bono, J. S., Logothetis, C. J., Molina, A., Fizazi, K., North, S., Chu, L., Chi, K. N., Jones, R. J., Goodman, O. B., Jr., Saad, F., Staffurth, J. N., Mainwaring, P., Harland, S., Flaig, T. W., Hutson, T. E., Cheng, T., Patterson, H., Hainsworth, J. D., Ryan, C. J., Sternberg, C. N., Ellard, S. L., Flechon, A., Saleh, M., Scholz, M., Efstathiou, E., Zivi, A., Bianchini, D., Loriot, Y., Chieffo, N., Kheoh, T., Haqq, C. M., & Scher, H. I. (2011). Abiraterone and increased survival in metastatic prostate cancer. The New England Journal of Medicine, 364, 1995–2005.PubMedCentralPubMed de Bono, J. S., Logothetis, C. J., Molina, A., Fizazi, K., North, S., Chu, L., Chi, K. N., Jones, R. J., Goodman, O. B., Jr., Saad, F., Staffurth, J. N., Mainwaring, P., Harland, S., Flaig, T. W., Hutson, T. E., Cheng, T., Patterson, H., Hainsworth, J. D., Ryan, C. J., Sternberg, C. N., Ellard, S. L., Flechon, A., Saleh, M., Scholz, M., Efstathiou, E., Zivi, A., Bianchini, D., Loriot, Y., Chieffo, N., Kheoh, T., Haqq, C. M., & Scher, H. I. (2011). Abiraterone and increased survival in metastatic prostate cancer. The New England Journal of Medicine, 364, 1995–2005.PubMedCentralPubMed
260.
Zurück zum Zitat Ryan, C. J., Smith, M. R., de Bono, J. S., Molina, A., Logothetis, C. J., de Souza, P., Fizazi, K., Mainwaring, P., Piulats, J. M., Ng, S., Carles, J., Mulders, P. F., Basch, E., Small, E. J., Saad, F., Schrijvers, D., Van Poppel, H., Mukherjee, S. D., Suttmann, H., Gerritsen, W. R., Flaig, T. W., George, D. J., Yu, E. Y., Efstathiou, E., Pantuck, A., Winquist, E., Higano, C. S., Taplin, M. E., Park, Y., Kheoh, T., Griffin, T., Scher, H. I., & Rathkopf, D. E. (2013). Abiraterone in metastatic prostate cancer without previous chemotherapy. The New England Journal of Medicine, 368, 138–148.PubMedCentralPubMed Ryan, C. J., Smith, M. R., de Bono, J. S., Molina, A., Logothetis, C. J., de Souza, P., Fizazi, K., Mainwaring, P., Piulats, J. M., Ng, S., Carles, J., Mulders, P. F., Basch, E., Small, E. J., Saad, F., Schrijvers, D., Van Poppel, H., Mukherjee, S. D., Suttmann, H., Gerritsen, W. R., Flaig, T. W., George, D. J., Yu, E. Y., Efstathiou, E., Pantuck, A., Winquist, E., Higano, C. S., Taplin, M. E., Park, Y., Kheoh, T., Griffin, T., Scher, H. I., & Rathkopf, D. E. (2013). Abiraterone in metastatic prostate cancer without previous chemotherapy. The New England Journal of Medicine, 368, 138–148.PubMedCentralPubMed
261.
Zurück zum Zitat Kaku, T., Hitaka, T., Ojida, A., Matsunaga, N., Adachi, M., Tanaka, T., Hara, T., Yamaoka, M., Kusaka, M., Okuda, T., Asahi, S., Furuya, S., & Tasaka, A. (2011). Discovery of orteronel (TAK-700), a naphthylmethylimidazole derivative, as a highly selective 17,20-lyase inhibitor with potential utility in the treatment of prostate cancer. Bioorganic & Medicinal Chemistry, 19, 6383–6399. Kaku, T., Hitaka, T., Ojida, A., Matsunaga, N., Adachi, M., Tanaka, T., Hara, T., Yamaoka, M., Kusaka, M., Okuda, T., Asahi, S., Furuya, S., & Tasaka, A. (2011). Discovery of orteronel (TAK-700), a naphthylmethylimidazole derivative, as a highly selective 17,20-lyase inhibitor with potential utility in the treatment of prostate cancer. Bioorganic & Medicinal Chemistry, 19, 6383–6399.
262.
Zurück zum Zitat Yarom, N., Stewart, D., Malik, R., Wells, J., Avruch, L., & Jonker, D. J. (2013). Phase I clinical trial of Exherin (ADH-1) in patients with advanced solid tumors. Current Clinical Pharmacology, 8, 81–88.PubMed Yarom, N., Stewart, D., Malik, R., Wells, J., Avruch, L., & Jonker, D. J. (2013). Phase I clinical trial of Exherin (ADH-1) in patients with advanced solid tumors. Current Clinical Pharmacology, 8, 81–88.PubMed
263.
Zurück zum Zitat Austin, P., Freeman, S. A., Gray, C. A., Gold, M. R., Vogl, A. W., Andersen, R. J., Roberge, M., & Roskelley, C. D. (2013). The invasion inhibitor sarasinoside A1 reverses mesenchymal tumor transformation in an e-cadherin-independent manner. Molecular Cancer Research, 11, 530–540.PubMed Austin, P., Freeman, S. A., Gray, C. A., Gold, M. R., Vogl, A. W., Andersen, R. J., Roberge, M., & Roskelley, C. D. (2013). The invasion inhibitor sarasinoside A1 reverses mesenchymal tumor transformation in an e-cadherin-independent manner. Molecular Cancer Research, 11, 530–540.PubMed
264.
Zurück zum Zitat Feng, S., Shao, L., Yu, W., Gavine, P., & Ittmann, M. (2012). Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression. Clinical Cancer Research, 18, 3880–3888.PubMed Feng, S., Shao, L., Yu, W., Gavine, P., & Ittmann, M. (2012). Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression. Clinical Cancer Research, 18, 3880–3888.PubMed
Metadaten
Titel
The role of epithelial plasticity in prostate cancer dissemination and treatment resistance
verfasst von
Rhonda L. Bitting
Daneen Schaeffer
Jason A. Somarelli
Mariano A. Garcia-Blanco
Andrew J. Armstrong
Publikationsdatum
01.09.2014
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2-3/2014
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-013-9483-z

Weitere Artikel der Ausgabe 2-3/2014

Cancer and Metastasis Reviews 2-3/2014 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.