Skip to main content
Erschienen in: Cancer and Metastasis Reviews 1-2/2019

27.04.2019 | NON-THEMATIC REVIEW

Exosomes, metastases, and the miracle of cancer stem cell markers

verfasst von: Zhe Wang, Margot Zöller

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 1-2/2019

Einloggen, um Zugang zu erhalten

Abstract

Cancer-initiating cells (CIC) are the driving force in tumor progression. There is strong evidence that CIC fulfill this task via exosomes (TEX), which modulate and reprogram stroma, nontransformed cells, and non-CIC. Characterization of CIC, besides others, builds on expression of CIC markers, many of which are known as metastasis-associated molecules. We here discuss that the linkage between CIC/CIC-TEX and metastasis-associated molecules is not fortuitously, but relies on the contribution of these markers to TEX biogenesis including loading and TEX target interactions. In addition, CIC markers contribute to TEX binding- and uptake-promoted activation of signaling cascades, transcription initiation, and translational control. Our point of view will be outlined for pancreas and colon CIC highly expressing CD44v6, Tspan8, EPCAM, claudin7, and LGR5, which distinctly but coordinately contribute to tumor progression. Despite overwhelming progress in unraveling the metastatic cascade and the multiple tasks taken over by CIC-TEX, there remains a considerable gap in linking CIC biomarkers, TEX, and TEX-initiated target modulation with metastasis. We will try to outline possible bridges, which could allow depicting pathways for new and expectedly powerful therapeutic interference with tumor progression.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Full names of proteins and genes are listed in Table S1.
 
Literatur
1.
Zurück zum Zitat Steck, P. A., North, S. M., & Nicolson, G. L. (1987). Purification and partial characterization of a tumour-metastasis-associated high-Mr glycoprotein from rat 13762NF mammary adenocarcinoma cells. The Biochemical Journal, 242(3), 779–787.CrossRefPubMedPubMedCentral Steck, P. A., North, S. M., & Nicolson, G. L. (1987). Purification and partial characterization of a tumour-metastasis-associated high-Mr glycoprotein from rat 13762NF mammary adenocarcinoma cells. The Biochemical Journal, 242(3), 779–787.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Raz, A., Pazerini, G., & Carmi, P. (1989). Identification of the metastasis-associated, galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein. Cancer Research, 49(13), 3489–3493.PubMed Raz, A., Pazerini, G., & Carmi, P. (1989). Identification of the metastasis-associated, galactoside-binding lectin as a chimeric gene product with homology to an IgE-binding protein. Cancer Research, 49(13), 3489–3493.PubMed
3.
Zurück zum Zitat Rao, C. N., Castronovo, V., Schmitt, M. C., Wewer, U. M., Claysmith, A. P., Liotta, L. A., et al. (1989). Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry, 28(18), 7476–7486.CrossRefPubMed Rao, C. N., Castronovo, V., Schmitt, M. C., Wewer, U. M., Claysmith, A. P., Liotta, L. A., et al. (1989). Evidence for a precursor of the high-affinity metastasis-associated murine laminin receptor. Biochemistry, 28(18), 7476–7486.CrossRefPubMed
5.
Zurück zum Zitat Günthert, U., Hofmann, M., Rudy, W., Reber, S., Zöller, M., Haussmann, I., et al. (1991). A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell, 65(1), 13–24.CrossRefPubMed Günthert, U., Hofmann, M., Rudy, W., Reber, S., Zöller, M., Haussmann, I., et al. (1991). A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell, 65(1), 13–24.CrossRefPubMed
6.
Zurück zum Zitat Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.PubMed Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.PubMed
10.
Zurück zum Zitat Zhang, Y. Y., Chen, B., & Ding, Y. Q. (2012). Metastasis-associated factors facilitating the progression of colorectal cancer. Asian Pacific Journal of Cancer Prevention, 13(6), 2437–2244.CrossRefPubMed Zhang, Y. Y., Chen, B., & Ding, Y. Q. (2012). Metastasis-associated factors facilitating the progression of colorectal cancer. Asian Pacific Journal of Cancer Prevention, 13(6), 2437–2244.CrossRefPubMed
11.
Zurück zum Zitat Gupta, P. B., Mani, S., Yang, J., Hartwell, K., & Weinberg, R. A. (2005). The evolving portrait of cancer metastasis. Cold Spring Harbor Symposia on Quantitative Biology, 70, 291–297.CrossRefPubMed Gupta, P. B., Mani, S., Yang, J., Hartwell, K., & Weinberg, R. A. (2005). The evolving portrait of cancer metastasis. Cold Spring Harbor Symposia on Quantitative Biology, 70, 291–297.CrossRefPubMed
12.
Zurück zum Zitat Dexter, T. M. (1979). Haemopoiesis in long-term bone marrow cultures. A review. Acta Haematologica, 62(5–6), 299–305.CrossRefPubMed Dexter, T. M. (1979). Haemopoiesis in long-term bone marrow cultures. A review. Acta Haematologica, 62(5–6), 299–305.CrossRefPubMed
13.
Zurück zum Zitat Leventhal, B. G., & Konior, G. S. (1976). Leukemia: a critical review. Seminars in Oncology, 3(3), 319–325.PubMed Leventhal, B. G., & Konior, G. S. (1976). Leukemia: a critical review. Seminars in Oncology, 3(3), 319–325.PubMed
14.
Zurück zum Zitat Ailles, L. E., & Weissman, I. L. (2007). Cancer stem cells in solid tumors. Current Opinion in Biotechnology, 18(5), 460–466.CrossRefPubMed Ailles, L. E., & Weissman, I. L. (2007). Cancer stem cells in solid tumors. Current Opinion in Biotechnology, 18(5), 460–466.CrossRefPubMed
20.
Zurück zum Zitat Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of Biological Chemistry, 262(19), 9412–9420.PubMed Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L., & Turbide, C. (1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of Biological Chemistry, 262(19), 9412–9420.PubMed
29.
30.
31.
Zurück zum Zitat Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., et al. (2008). Cancer statistics. CA: a Cancer Journal for Clinicians, 58(2), 71–96. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., et al. (2008). Cancer statistics. CA: a Cancer Journal for Clinicians, 58(2), 71–96.
32.
33.
Zurück zum Zitat Ahrendt, S. A., & Pitt, H. A. (2002). Surgical management of pancreatic cancer. Oncology (Williston Park), 16(6), 725–734 discussion 734, 736–728, 740, 743. Ahrendt, S. A., & Pitt, H. A. (2002). Surgical management of pancreatic cancer. Oncology (Williston Park), 16(6), 725–734 discussion 734, 736–728, 740, 743.
35.
Zurück zum Zitat Del Chiaro, M., Segersvärd, R., Lohr, M., & Verbeke, C. (2014). Early detection and prevention of pancreatic cancer: is it really possible today? World Journal of Gastroenterology, 20, 12118–12131.CrossRefPubMedPubMedCentral Del Chiaro, M., Segersvärd, R., Lohr, M., & Verbeke, C. (2014). Early detection and prevention of pancreatic cancer: is it really possible today? World Journal of Gastroenterology, 20, 12118–12131.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Ajani, J. A., Song, S., Hochster, H. S., & Steinberg, I. B. (2015). Cancer stem cells: the promise and the potential. Seminars in Oncology, 42(Suppl 1), S3–S17. Ajani, J. A., Song, S., Hochster, H. S., & Steinberg, I. B. (2015). Cancer stem cells: the promise and the potential. Seminars in Oncology, 42(Suppl 1), S3–S17.
37.
Zurück zum Zitat Weinstein, I. B. (1987). Growth factors, oncogenes, and multistage carcinogenesis. Journal of Cellular Biochemistry, 33(3), 213–224.CrossRefPubMed Weinstein, I. B. (1987). Growth factors, oncogenes, and multistage carcinogenesis. Journal of Cellular Biochemistry, 33(3), 213–224.CrossRefPubMed
43.
Zurück zum Zitat Forsberg, E. C., Bhattacharya, D., & Weissman, I. L. (2006). Hematopoietic stem cells: expression profiling and beyond. Stem Cell Reviews, 2(1), 23–30.PubMed Forsberg, E. C., Bhattacharya, D., & Weissman, I. L. (2006). Hematopoietic stem cells: expression profiling and beyond. Stem Cell Reviews, 2(1), 23–30.PubMed
44.
Zurück zum Zitat Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810–813.CrossRefPubMed Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810–813.CrossRefPubMed
45.
Zurück zum Zitat Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.CrossRefPubMed Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663–676.CrossRefPubMed
46.
Zurück zum Zitat Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.CrossRefPubMed Park, I. H., Zhao, R., West, J. A., Yabuuchi, A., Huo, H., Ince, T. A., et al. (2008). Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 451(7175), 141–146.CrossRefPubMed
47.
Zurück zum Zitat Jonsson, J., Carlsson, L., Edlund, T., & Edlund, H. (1994). Insulin-promoter-factor 1 is required for pancreas development in mice. Nature, 371(6498), 606–609.CrossRefPubMed Jonsson, J., Carlsson, L., Edlund, T., & Edlund, H. (1994). Insulin-promoter-factor 1 is required for pancreas development in mice. Nature, 371(6498), 606–609.CrossRefPubMed
48.
Zurück zum Zitat Gu, G., Dubauskaite, J., & Melton, D. A. (2002). Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development, 129(10), 2447–2457.PubMed Gu, G., Dubauskaite, J., & Melton, D. A. (2002). Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development, 129(10), 2447–2457.PubMed
61.
Zurück zum Zitat Passegué, E., & Weisman, I. L. (2005). Leukemic stem cells: where do they come from? Stem Cell Reviews, 1(3), 181–188.CrossRefPubMed Passegué, E., & Weisman, I. L. (2005). Leukemic stem cells: where do they come from? Stem Cell Reviews, 1(3), 181–188.CrossRefPubMed
66.
Zurück zum Zitat Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.CrossRefPubMed Reya, T., Morrison, S. J., Clarke, M. F., & Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414(6859), 105–111.CrossRefPubMed
67.
Zurück zum Zitat Mantamadiotis, T., & Taraviras, S. (2011). Self-renewal mechanisms in neural cancer stem cells. Front Biosci (Landmark Ed), 16, 598–607.CrossRef Mantamadiotis, T., & Taraviras, S. (2011). Self-renewal mechanisms in neural cancer stem cells. Front Biosci (Landmark Ed), 16, 598–607.CrossRef
78.
Zurück zum Zitat Smith, G. H., & Boulanger, C. A. (2003). Mammary epithelial stem cells: transplantation and self-renewal analysis. Cell Proliferation, 36(Suppl 1), 3–15.CrossRefPubMedPubMedCentral Smith, G. H., & Boulanger, C. A. (2003). Mammary epithelial stem cells: transplantation and self-renewal analysis. Cell Proliferation, 36(Suppl 1), 3–15.CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.CrossRefPubMed Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.CrossRefPubMed
81.
Zurück zum Zitat Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.CrossRefPubMedPubMedCentral Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.CrossRefPubMedPubMedCentral
90.
Zurück zum Zitat Bao, B., Ahmad, A., Azmi, A.S., Ali, S., & Sarkar, F.H. (2013). Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol, Chapter 14:Unit 14.25. doi: 10.1002/0471141755.ph1425s61. Bao, B., Ahmad, A., Azmi, A.S., Ali, S., & Sarkar, F.H. (2013). Overview of cancer stem cells (CSCs) and mechanisms of their regulation: implications for cancer therapy. Curr Protoc Pharmacol, Chapter 14:Unit 14.25. doi: 10.1002/0471141755.ph1425s61.
98.
Zurück zum Zitat Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.CrossRefPubMedPubMedCentral Dalerba, P., Dylla, S. J., Park, I. K., Liu, R., Wang, X., Cho, R. W., et al. (2007). Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America, 104(24), 10158–10163.CrossRefPubMedPubMedCentral
99.
Zurück zum Zitat Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.CrossRefPubMed Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C., et al. (2007). Identification and expansion of human colon-cancer-initiating cells. Nature, 445(7123), 111–115.CrossRefPubMed
103.
Zurück zum Zitat Röper, K., Corbeil, D., & Huttner, W. B. (2000). Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nature Cell Biology, 2(9), 582–592.CrossRefPubMed Röper, K., Corbeil, D., & Huttner, W. B. (2000). Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nature Cell Biology, 2(9), 582–592.CrossRefPubMed
104.
Zurück zum Zitat Giebel, B., Corbeil, D., Beckmann, J., Höhn, J., Freund, D., Giesen, K., et al. (2004). Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood, 104(8), 2332–2338.CrossRefPubMed Giebel, B., Corbeil, D., Beckmann, J., Höhn, J., Freund, D., Giesen, K., et al. (2004). Segregation of lipid raft markers including CD133 in polarized human hematopoietic stem and progenitor cells. Blood, 104(8), 2332–2338.CrossRefPubMed
105.
Zurück zum Zitat Simons, K., & Toomre, D. (2000). Lipid rafts and signal transduction. Nature Reviews. Molecular Cell Biology, 1(1), 31–39.CrossRefPubMed Simons, K., & Toomre, D. (2000). Lipid rafts and signal transduction. Nature Reviews. Molecular Cell Biology, 1(1), 31–39.CrossRefPubMed
112.
Zurück zum Zitat Idzerda, R. L., Carter, W. G., Nottenburg, C., Wayner, E. A., Gallatin, W. M., & John, T. (1989). Isolation and DNA sequence of a cDNA clone encoding a lymphocyte adhesion receptor for high endothelium. Proceedings of the National Academy of Sciences of the United States of America, 86, 4659–4663.CrossRefPubMedPubMedCentral Idzerda, R. L., Carter, W. G., Nottenburg, C., Wayner, E. A., Gallatin, W. M., & John, T. (1989). Isolation and DNA sequence of a cDNA clone encoding a lymphocyte adhesion receptor for high endothelium. Proceedings of the National Academy of Sciences of the United States of America, 86, 4659–4663.CrossRefPubMedPubMedCentral
113.
Zurück zum Zitat Goldstein, L. A., & Butcher, E. C. (1990). Identification of mRNA that encodes an alternative form of H-CAM (CD44) in lymphoid and nonlymphoid tissues. Immunogenetics, 32, 389–397.CrossRefPubMed Goldstein, L. A., & Butcher, E. C. (1990). Identification of mRNA that encodes an alternative form of H-CAM (CD44) in lymphoid and nonlymphoid tissues. Immunogenetics, 32, 389–397.CrossRefPubMed
114.
Zurück zum Zitat Screaton, G. R., Bell, M. V., Jackson, D. G., Cornelis, F. B., Gerth, U., & Bell, J. I. (1992). Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proceedings of the National Academy of Sciences of the United States of America, 89, 12160–12164.CrossRefPubMedPubMedCentral Screaton, G. R., Bell, M. V., Jackson, D. G., Cornelis, F. B., Gerth, U., & Bell, J. I. (1992). Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Proceedings of the National Academy of Sciences of the United States of America, 89, 12160–12164.CrossRefPubMedPubMedCentral
115.
Zurück zum Zitat Ishii, S., Ford, R., Thomas, P., Nachman, A., Steele, G., Jr., & Jessup, J. M. (1993). CD44 participates in the adhesion of human colorectal carcinoma cells to laminin and type IV collagen. Surgical Oncology, 2, 255–264.CrossRefPubMed Ishii, S., Ford, R., Thomas, P., Nachman, A., Steele, G., Jr., & Jessup, J. M. (1993). CD44 participates in the adhesion of human colorectal carcinoma cells to laminin and type IV collagen. Surgical Oncology, 2, 255–264.CrossRefPubMed
116.
Zurück zum Zitat Bennett, K. L., Jackson, D. G., Simon, J. C., Tanczos, E., Peach, R., Modrell, B., et al. (1995). CD44 isoforms containing exon v3 are responsible for the presentation of heparin-binding growth factor. The Journal of Cell Biology, 128, 687–698.CrossRefPubMed Bennett, K. L., Jackson, D. G., Simon, J. C., Tanczos, E., Peach, R., Modrell, B., et al. (1995). CD44 isoforms containing exon v3 are responsible for the presentation of heparin-binding growth factor. The Journal of Cell Biology, 128, 687–698.CrossRefPubMed
117.
Zurück zum Zitat Neame, S. J., & Isacke, C. M. (1993). The cytoplasmic tail of CD44 is required for basolateral localization in ephitelial MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibroblasts. The Journal of Cell Biology, 121, 1299–1310.CrossRefPubMed Neame, S. J., & Isacke, C. M. (1993). The cytoplasmic tail of CD44 is required for basolateral localization in ephitelial MDCK cells but does not mediate association with the detergent-insoluble cytoskeleton of fibroblasts. The Journal of Cell Biology, 121, 1299–1310.CrossRefPubMed
118.
Zurück zum Zitat Liu, D., & Sy, M. S. (1997). Phorbol myristate acetate stimulates the dimerization of CD44 involving a cysteine in the transmembrane domain. Journal of Immunology, 159, 2702–2711. Liu, D., & Sy, M. S. (1997). Phorbol myristate acetate stimulates the dimerization of CD44 involving a cysteine in the transmembrane domain. Journal of Immunology, 159, 2702–2711.
119.
Zurück zum Zitat Föger, N., Marhaba, R., & Zöller, M. (1999). Raft associated interaction of CD44 with the cytoskeleton. Journal of Cell Science, 114, 1169–1178. Föger, N., Marhaba, R., & Zöller, M. (1999). Raft associated interaction of CD44 with the cytoskeleton. Journal of Cell Science, 114, 1169–1178.
120.
Zurück zum Zitat Oliferenko, S., Paiha, K., Harder, T., Gerke, V., Schwärzler, C., Schwarz, H., et al. (1999). Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. The Journal of Cell Biology, 146, 843–854.CrossRefPubMedPubMedCentral Oliferenko, S., Paiha, K., Harder, T., Gerke, V., Schwärzler, C., Schwarz, H., et al. (1999). Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. The Journal of Cell Biology, 146, 843–854.CrossRefPubMedPubMedCentral
121.
Zurück zum Zitat Lokeshwar, V. B., Fregien, N., & Bourguignon, L. Y. (1994). Ankyrin-binding domain of CD44(Gp85) is required for the expression of hyaluronic acid-mediated adhesion function. The Journal of Cell Biology, 126, 1099–1109.CrossRefPubMed Lokeshwar, V. B., Fregien, N., & Bourguignon, L. Y. (1994). Ankyrin-binding domain of CD44(Gp85) is required for the expression of hyaluronic acid-mediated adhesion function. The Journal of Cell Biology, 126, 1099–1109.CrossRefPubMed
122.
Zurück zum Zitat Ruiz, P., Schwärzler, C., & Günthert, U. (1995). CD44 isoforms during differentiation and development. Bioessays, 17, 17–24.CrossRefPubMed Ruiz, P., Schwärzler, C., & Günthert, U. (1995). CD44 isoforms during differentiation and development. Bioessays, 17, 17–24.CrossRefPubMed
123.
Zurück zum Zitat Jalkanen, S., & Jalkanen, M. (1992). Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. The Journal of Cell Biology, 116, 817–825.CrossRefPubMed Jalkanen, S., & Jalkanen, M. (1992). Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. The Journal of Cell Biology, 116, 817–825.CrossRefPubMed
124.
Zurück zum Zitat Toyama-Sorimachi, N., & Miyasaka, M. (1994). A novel ligand for CD44 is sulfated proteoglycan. International Immunology, 6, 655–660.CrossRefPubMed Toyama-Sorimachi, N., & Miyasaka, M. (1994). A novel ligand for CD44 is sulfated proteoglycan. International Immunology, 6, 655–660.CrossRefPubMed
125.
Zurück zum Zitat Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., & Seed, B. (1990). CD44 is the principal cell surface receptor for hyaluronate. Cell, 61, 1303–1313.CrossRefPubMed Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., & Seed, B. (1990). CD44 is the principal cell surface receptor for hyaluronate. Cell, 61, 1303–1313.CrossRefPubMed
126.
Zurück zum Zitat Greenfield, B., Wang, W. C., Marquardt, H., Piepkorn, M., Wolff, E. A., Aruffo, A., et al. (1999). Characterization of the heparan sulfate and chondroitin sulfate assembly sites in CD44. The Journal of Biological Chemistry, 274, 2511–2517.CrossRefPubMed Greenfield, B., Wang, W. C., Marquardt, H., Piepkorn, M., Wolff, E. A., Aruffo, A., et al. (1999). Characterization of the heparan sulfate and chondroitin sulfate assembly sites in CD44. The Journal of Biological Chemistry, 274, 2511–2517.CrossRefPubMed
127.
Zurück zum Zitat Higman, V. A., Briggs, D. C., Mahoney, D. J., Blundell, C. D., Sattelle, B. M., Dyer, D. P., et al. (2014). A refined model for the TSG-6 link module in complex with hyaluronan: use of defined oligosaccharides to probe structure and function. The Journal of Biological Chemistry, 289, 5619–5634. https://doi.org/10.1074/jbc.M113.542357.CrossRefPubMed Higman, V. A., Briggs, D. C., Mahoney, D. J., Blundell, C. D., Sattelle, B. M., Dyer, D. P., et al. (2014). A refined model for the TSG-6 link module in complex with hyaluronan: use of defined oligosaccharides to probe structure and function. The Journal of Biological Chemistry, 289, 5619–5634. https://​doi.​org/​10.​1074/​jbc.​M113.​542357.CrossRefPubMed
128.
Zurück zum Zitat Orian-Rousseau, V., & Ponta, H. (2008). Adhesion proteins meet receptors: a common theme? Advances in Cancer Research, 101, 63–92.CrossRefPubMed Orian-Rousseau, V., & Ponta, H. (2008). Adhesion proteins meet receptors: a common theme? Advances in Cancer Research, 101, 63–92.CrossRefPubMed
130.
Zurück zum Zitat Kim, M. S., Park, M. J., Moon, E. J., Kim, S. J., Lee, C. H., Yoo, H., et al. (2005). Hyaluronic acid induces osteopontin via the phosphatidylinositol 3-kinase/Akt pathway to enhance the motility of human glioma cells. Cancer Research, 65, 686–691.PubMed Kim, M. S., Park, M. J., Moon, E. J., Kim, S. J., Lee, C. H., Yoo, H., et al. (2005). Hyaluronic acid induces osteopontin via the phosphatidylinositol 3-kinase/Akt pathway to enhance the motility of human glioma cells. Cancer Research, 65, 686–691.PubMed
132.
Zurück zum Zitat Mori, T., Kitano, K., Terawaki, S., Maesaki, R., Fukami, Y., & Hakoshima, T. (2008). Structural basis for CD44 recognition by ERM proteins. The Journal of Biological Chemistry, 283, 29602–29612.CrossRefPubMedPubMedCentral Mori, T., Kitano, K., Terawaki, S., Maesaki, R., Fukami, Y., & Hakoshima, T. (2008). Structural basis for CD44 recognition by ERM proteins. The Journal of Biological Chemistry, 283, 29602–29612.CrossRefPubMedPubMedCentral
133.
Zurück zum Zitat Fehon, R. G., McClatchey, A. I., & Bretscher, A. (2010). Organizing the cell cortex: the role of ERM proteins. Nature Reviews. Molecular Cell Biology, 11, 276–287.CrossRefPubMedPubMedCentral Fehon, R. G., McClatchey, A. I., & Bretscher, A. (2010). Organizing the cell cortex: the role of ERM proteins. Nature Reviews. Molecular Cell Biology, 11, 276–287.CrossRefPubMedPubMedCentral
134.
Zurück zum Zitat Stamenkovic, I., & Yu, Q. (2010). Merlin, a “magic” linker between extracellular cues and intracellular signaling pathways that regulate cell. Motility, proliferation, and survival. Current Protein & Peptide Science, 11, 471–484.CrossRef Stamenkovic, I., & Yu, Q. (2010). Merlin, a “magic” linker between extracellular cues and intracellular signaling pathways that regulate cell. Motility, proliferation, and survival. Current Protein & Peptide Science, 11, 471–484.CrossRef
136.
Zurück zum Zitat Adamia, S., Maxwell, C. A., & Pilarski, L. M. (2005). Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Current Drug Targets. Cardiovascular & Haematological Disorders, 5, 3–14.CrossRef Adamia, S., Maxwell, C. A., & Pilarski, L. M. (2005). Hyaluronan and hyaluronan synthases: potential therapeutic targets in cancer. Current Drug Targets. Cardiovascular & Haematological Disorders, 5, 3–14.CrossRef
137.
Zurück zum Zitat Misra, S., Toole, B. P., & Ghatak, S. (2006). Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. The Journal of Biological Chemistry, 281, 34936–34941.CrossRefPubMed Misra, S., Toole, B. P., & Ghatak, S. (2006). Hyaluronan constitutively regulates activation of multiple receptor tyrosine kinases in epithelial and carcinoma cells. The Journal of Biological Chemistry, 281, 34936–34941.CrossRefPubMed
140.
Zurück zum Zitat Bourguignon, L. Y. (2008). Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Seminars in Cancer Biology, 18, 251–259.CrossRefPubMedPubMedCentral Bourguignon, L. Y. (2008). Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression. Seminars in Cancer Biology, 18, 251–259.CrossRefPubMedPubMedCentral
147.
Zurück zum Zitat Stipp, C. S., Kolesnikova, T. V., & Hemler, M. E. (2003). Functional domains in tetraspanin proteins. Trends in Biochemical Sciences, 28, 106–112.CrossRefPubMed Stipp, C. S., Kolesnikova, T. V., & Hemler, M. E. (2003). Functional domains in tetraspanin proteins. Trends in Biochemical Sciences, 28, 106–112.CrossRefPubMed
148.
Zurück zum Zitat Hemler, M. E. (2005). Tetraspanin functions and associated microdomains. Nature Reviews. Molecular Cell Biology, 6, 801–811.CrossRefPubMed Hemler, M. E. (2005). Tetraspanin functions and associated microdomains. Nature Reviews. Molecular Cell Biology, 6, 801–811.CrossRefPubMed
149.
Zurück zum Zitat Levy, S., & Shoham, T. (2005). Protein-protein interactions in the tetraspanin web. Physiology (Bethesda), 20, 218–224. Levy, S., & Shoham, T. (2005). Protein-protein interactions in the tetraspanin web. Physiology (Bethesda), 20, 218–224.
151.
Zurück zum Zitat Berditchevski, F., & Odintsova, E. (2007). Tetraspanins as regulators of protein trafficking. Traffic, 8, 89–96.CrossRefPubMed Berditchevski, F., & Odintsova, E. (2007). Tetraspanins as regulators of protein trafficking. Traffic, 8, 89–96.CrossRefPubMed
158.
Zurück zum Zitat Fang, T., Lin, J., Wang, Y., Chen, G., Huang, J., Chen, J., et al. (2016). Tetraspanin-8 promotes hepatocellular carcinoma metastasis by increasing ADAM12m expression. Oncotarget, 7, 40630–40643. doi: 10.18632/oncotarget.9769. Fang, T., Lin, J., Wang, Y., Chen, G., Huang, J., Chen, J., et al. (2016). Tetraspanin-8 promotes hepatocellular carcinoma metastasis by increasing ADAM12m expression. Oncotarget, 7, 40630–40643. doi: 10.18632/oncotarget.9769.
159.
Zurück zum Zitat Wie, L., Li, Y., & Suo, Z. (2015). TSPAN8 promotes gastric cancer growth and metastasis via ERK MAPK pathway. International Journal of Clinical and Experimental Medicine, 8(6), 8599–8607. Wie, L., Li, Y., & Suo, Z. (2015). TSPAN8 promotes gastric cancer growth and metastasis via ERK MAPK pathway. International Journal of Clinical and Experimental Medicine, 8(6), 8599–8607.
163.
Zurück zum Zitat Madhavan, B., Yue, S., Galli, U., Rana, S., Groß, W., Müller, M., et al. (2015). Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. International Journal of Cancer, 136(11), 2616–2627. https://doi.org/10.1002/ijc.29324.CrossRefPubMed Madhavan, B., Yue, S., Galli, U., Rana, S., Groß, W., Müller, M., et al. (2015). Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. International Journal of Cancer, 136(11), 2616–2627. https://​doi.​org/​10.​1002/​ijc.​29324.CrossRefPubMed
171.
Zurück zum Zitat Gesierich, S., Berezovskiy, I., Ryschich, E., & Zöller, M. (2006). Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Research, 66, 7083–7094.CrossRefPubMed Gesierich, S., Berezovskiy, I., Ryschich, E., & Zöller, M. (2006). Systemic induction of the angiogenesis switch by the tetraspanin D6.1A/CO-029. Cancer Research, 66, 7083–7094.CrossRefPubMed
174.
Zurück zum Zitat Litvinov, S. V., Velders, M. P., Bakker, H. A., Fleuren, G. J., & Warnaar, S. O. (1994). Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. The Journal of Cell Biology, 125(2), 437–446.CrossRefPubMed Litvinov, S. V., Velders, M. P., Bakker, H. A., Fleuren, G. J., & Warnaar, S. O. (1994). Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. The Journal of Cell Biology, 125(2), 437–446.CrossRefPubMed
176.
Zurück zum Zitat Imrich, S., Hachmeister, M., & Gires, O. (2012). EpCAM and its potential role in tumor-initiating cells. Cell Adhesion & Migration, 6, 30–38.CrossRef Imrich, S., Hachmeister, M., & Gires, O. (2012). EpCAM and its potential role in tumor-initiating cells. Cell Adhesion & Migration, 6, 30–38.CrossRef
177.
Zurück zum Zitat Maghzal, N., Vogt, E., Reintsch, W., Fraser, J. S., & Fagotto, F. (2010). The tumor-associated EpCAM regulates morphogenetic movements through intracellular signaling. The Journal of Cell Biology, 191, 645–659.CrossRefPubMedPubMedCentral Maghzal, N., Vogt, E., Reintsch, W., Fraser, J. S., & Fagotto, F. (2010). The tumor-associated EpCAM regulates morphogenetic movements through intracellular signaling. The Journal of Cell Biology, 191, 645–659.CrossRefPubMedPubMedCentral
178.
Zurück zum Zitat Maetzel, D., Denzel, S., Mack, B., Eggert, C., Bärr, G., & Gires, O. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nature Cell Biology, 11, 162–171.CrossRefPubMed Maetzel, D., Denzel, S., Mack, B., Eggert, C., Bärr, G., & Gires, O. (2009). Nuclear signalling by tumour-associated antigen EpCAM. Nature Cell Biology, 11, 162–171.CrossRefPubMed
179.
Zurück zum Zitat Lin, C. W., Liao, M. Y., Lin, W. W., Wang, Y. P., Lu, T. Y., & Wu, H. C. (2012). Epithelial cell adhesion molecule regulates tumor initiation and tumorigenesis via activating reprogramming factors and epithelial-mesenchymal transition genes expression in colon cancer. The Journal of Biological Chemistry, 287, 39449–39459.CrossRefPubMedPubMedCentral Lin, C. W., Liao, M. Y., Lin, W. W., Wang, Y. P., Lu, T. Y., & Wu, H. C. (2012). Epithelial cell adhesion molecule regulates tumor initiation and tumorigenesis via activating reprogramming factors and epithelial-mesenchymal transition genes expression in colon cancer. The Journal of Biological Chemistry, 287, 39449–39459.CrossRefPubMedPubMedCentral
192.
Zurück zum Zitat Sjö, A., Magnusson, K. E., & Peterson, K. H. (2010). Protein kinase C activation has distinct effects on the localization, phosphorylation and detergent solubility of the claudin protein family in tight and leaky epithelial cells. The Journal of Membrane Biology, 236, 181–189.CrossRefPubMedPubMedCentral Sjö, A., Magnusson, K. E., & Peterson, K. H. (2010). Protein kinase C activation has distinct effects on the localization, phosphorylation and detergent solubility of the claudin protein family in tight and leaky epithelial cells. The Journal of Membrane Biology, 236, 181–189.CrossRefPubMedPubMedCentral
194.
Zurück zum Zitat Shen, L. (2012). Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Annals of the New York Academy of Sciences, 1258, 9–12518.CrossRefPubMedPubMedCentral Shen, L. (2012). Tight junctions on the move: molecular mechanisms for epithelial barrier regulation. Annals of the New York Academy of Sciences, 1258, 9–12518.CrossRefPubMedPubMedCentral
196.
Zurück zum Zitat Heiler, S., Mu, W., Zöller, M., & Thuma, F. (2015). The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Communication and Signaling: CCS, 13, 29.CrossRefPubMedCentral Heiler, S., Mu, W., Zöller, M., & Thuma, F. (2015). The importance of claudin-7 palmitoylation on membrane subdomain localization and metastasis-promoting activities. Cell Communication and Signaling: CCS, 13, 29.CrossRefPubMedCentral
199.
Zurück zum Zitat Tauro, B. J., Greening, D. W., Mathias, R. A., Mathivanan, S., Ji, H., & Simpson, R. J. (2013). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular & Cellular Proteomics, 12, 587–598.CrossRef Tauro, B. J., Greening, D. W., Mathias, R. A., Mathivanan, S., Ji, H., & Simpson, R. J. (2013). Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Molecular & Cellular Proteomics, 12, 587–598.CrossRef
212.
Zurück zum Zitat Batsaikhan, B. E., Yoshikawa, K., Kurita, N., Iwata, T., Takasu, C., Kashihara, H., et al. (2014). Cyclopamine decreased the expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer Research, 34(11), 6339–6344.PubMed Batsaikhan, B. E., Yoshikawa, K., Kurita, N., Iwata, T., Takasu, C., Kashihara, H., et al. (2014). Cyclopamine decreased the expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer Research, 34(11), 6339–6344.PubMed
213.
Zurück zum Zitat Whissell, G., Montagni, E., Martinelli, P., Hernando-Momblona, X., Sevillano, M., Jung, P., et al. (2014). The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nature Cell Biology, 16(7), 695–707. https://doi.org/10.1038/ncb2992.CrossRefPubMed Whissell, G., Montagni, E., Martinelli, P., Hernando-Momblona, X., Sevillano, M., Jung, P., et al. (2014). The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nature Cell Biology, 16(7), 695–707. https://​doi.​org/​10.​1038/​ncb2992.CrossRefPubMed
214.
218.
Zurück zum Zitat Apostolou, P., Toloudi, M., Ioannou, E., Kourtidou, E., Chatziioannou, M., Kopic, A., et al. (2013). Study of the interaction among Notch pathway receptors, correlation with stemness, as well as their interaction with CD44, dipeptidyl peptidase-IV, hepatocyte growth factor receptor and the SETMAR transferase, in colon cancer stem cells. Journal of Receptor and Signal Transduction Research, 33(6), 353–358. https://doi.org/10.3109/10799893.2013.828072.CrossRefPubMed Apostolou, P., Toloudi, M., Ioannou, E., Kourtidou, E., Chatziioannou, M., Kopic, A., et al. (2013). Study of the interaction among Notch pathway receptors, correlation with stemness, as well as their interaction with CD44, dipeptidyl peptidase-IV, hepatocyte growth factor receptor and the SETMAR transferase, in colon cancer stem cells. Journal of Receptor and Signal Transduction Research, 33(6), 353–358. https://​doi.​org/​10.​3109/​10799893.​2013.​828072.CrossRefPubMed
221.
229.
Zurück zum Zitat Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Research, 66(2), 632–637.CrossRefPubMed Koukourakis, M. I., Giatromanolaki, A., Harris, A. L., & Sivridis, E. (2006). Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma. Cancer Research, 66(2), 632–637.CrossRefPubMed
235.
Zurück zum Zitat Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.CrossRefPubMed Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2), 281–297.CrossRefPubMed
236.
Zurück zum Zitat Basyuk, E., Suavet, F., Doglio, A., Bordonné, R., & Bertrand, E. (2003). Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Research, 31(22), 6593–6597.CrossRefPubMedPubMedCentral Basyuk, E., Suavet, F., Doglio, A., Bordonné, R., & Bertrand, E. (2003). Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Research, 31(22), 6593–6597.CrossRefPubMedPubMedCentral
237.
Zurück zum Zitat Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415–419.CrossRefPubMed Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., et al. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature, 425(6956), 415–419.CrossRefPubMed
238.
Zurück zum Zitat Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., et al. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051), 740–744.CrossRefPubMedPubMedCentral Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., et al. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051), 740–744.CrossRefPubMedPubMedCentral
239.
Zurück zum Zitat Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the microprocessor complex. Nature, 432(7014), 231–235.CrossRefPubMed Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., & Hannon, G. J. (2004). Processing of primary microRNAs by the microprocessor complex. Nature, 432(7014), 231–235.CrossRefPubMed
244.
Zurück zum Zitat Liu, X., Fu, Q., Du, Y., Yang, Y., & Cho, W. C. (2016). MicroRNA as regulators of cancer stem cells and chemoresistance in colorectal cancer. Current Cancer Drug Targets, 16(9), 738–754.CrossRefPubMed Liu, X., Fu, Q., Du, Y., Yang, Y., & Cho, W. C. (2016). MicroRNA as regulators of cancer stem cells and chemoresistance in colorectal cancer. Current Cancer Drug Targets, 16(9), 738–754.CrossRefPubMed
248.
Zurück zum Zitat Johnsson, P., Ackley, A., Vidarsdottir, L., Lui, W. O., Corcoran, M., Grandér, D., et al. (2013). A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nature Structural & Molecular Biology, 20(4), 440–446. https://doi.org/10.1038/nsmb.2516.CrossRef Johnsson, P., Ackley, A., Vidarsdottir, L., Lui, W. O., Corcoran, M., Grandér, D., et al. (2013). A pseudogene long-noncoding-RNA network regulates PTEN transcription and translation in human cells. Nature Structural & Molecular Biology, 20(4), 440–446. https://​doi.​org/​10.​1038/​nsmb.​2516.CrossRef
251.
Zurück zum Zitat Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4(9), 721–726.CrossRefPubMed Ebert, M. S., Neilson, J. R., & Sharp, P. A. (2007). MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nature Methods, 4(9), 721–726.CrossRefPubMed
253.
Zurück zum Zitat Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311–1323.CrossRefPubMedPubMedCentral Rinn, J. L., Kertesz, M., Wang, J. K., Squazzo, S. L., Xu, X., Brugmann, S. A., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell, 129(7), 1311–1323.CrossRefPubMedPubMedCentral
261.
Zurück zum Zitat Han, T., Hu, H., Zhuo, M., Wang, L., Cui, J. J., Jiao, F., et al. (2016). Long non-coding RNA: an emerging paradigm of pancreatic cancer. Current Molecular Medicine, 16(8), 702–709.CrossRefPubMed Han, T., Hu, H., Zhuo, M., Wang, L., Cui, J. J., Jiao, F., et al. (2016). Long non-coding RNA: an emerging paradigm of pancreatic cancer. Current Molecular Medicine, 16(8), 702–709.CrossRefPubMed
269.
Zurück zum Zitat Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.CrossRefPubMed Valadi, H., Ekström, K., Bossios, A., Sjöstrand, M., Lee, J. J., & Lötvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.CrossRefPubMed
286.
Zurück zum Zitat Vedeler, A., Hollås, H., Grindheim, A. K., & Raddum, A. M. (2012). Multiple roles of annexin A2 in post-transcriptional regulation of gene expression. Current Protein & Peptide Science, 13, 401–412.CrossRef Vedeler, A., Hollås, H., Grindheim, A. K., & Raddum, A. M. (2012). Multiple roles of annexin A2 in post-transcriptional regulation of gene expression. Current Protein & Peptide Science, 13, 401–412.CrossRef
288.
Zurück zum Zitat Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Pérez-Hernández, D., Vázquez, J., Martin-Cofreces, N., et al. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications, 4, 2980. https://doi.org/10.1038/ncomms3980.CrossRefPubMed Villarroya-Beltri, C., Gutierrez-Vazquez, C., Sanchez-Cabo, F., Pérez-Hernández, D., Vázquez, J., Martin-Cofreces, N., et al. (2013). Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nature Communications, 4, 2980. https://​doi.​org/​10.​1038/​ncomms3980.CrossRefPubMed
291.
Zurück zum Zitat Ji, H., Greening, D. W., Barnes, T. W., Lim, J. W., Tauro, B. J., Rai, A., et al. (2013). Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics, 13, 1672–1686. https://doi.org/10.1002/pmic.201200562.CrossRefPubMed Ji, H., Greening, D. W., Barnes, T. W., Lim, J. W., Tauro, B. J., Rai, A., et al. (2013). Proteome profiling of exosomes derived from human primary and metastatic colorectal cancer cells reveal differential expression of key metastatic factors and signal transduction components. Proteomics, 13, 1672–1686. https://​doi.​org/​10.​1002/​pmic.​201200562.CrossRefPubMed
293.
Zurück zum Zitat Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., Paillasse, M., et al. (2010). Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. Journal of Lipid Research, 51, 2105–2120.CrossRefPubMedPubMedCentral Subra, C., Grand, D., Laulagnier, K., Stella, A., Lambeau, G., Paillasse, M., et al. (2010). Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. Journal of Lipid Research, 51, 2105–2120.CrossRefPubMedPubMedCentral
294.
302.
Zurück zum Zitat Mears, R., Craven, R. A., Hanrahan, S., Totty, N., Upton, C., Young, S. L., et al. (2004). Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics, 4(12), 4019–4031.CrossRefPubMed Mears, R., Craven, R. A., Hanrahan, S., Totty, N., Upton, C., Young, S. L., et al. (2004). Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. Proteomics, 4(12), 4019–4031.CrossRefPubMed
305.
Zurück zum Zitat Marhaba, R., Klingbeil, P., Nuebel, T., Nazarenko, I., Buechler, M. W., & Zöller, M. (2008). CD44 and EpCAM: cancer-initiating cell markers. Current Molecular Medicine, 8(8), 784–804.CrossRefPubMed Marhaba, R., Klingbeil, P., Nuebel, T., Nazarenko, I., Buechler, M. W., & Zöller, M. (2008). CD44 and EpCAM: cancer-initiating cell markers. Current Molecular Medicine, 8(8), 784–804.CrossRefPubMed
307.
Zurück zum Zitat Demory Beckler, M., Higginbotham, J. N., Franklin, J. L., Ham, A. J., Halvey, P. J., Imasuen, I. E., et al. (2013). Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Molecular & Cellular Proteomics, 12, 343–355. https://doi.org/10.1074/mcp.M112.022806.CrossRef Demory Beckler, M., Higginbotham, J. N., Franklin, J. L., Ham, A. J., Halvey, P. J., Imasuen, I. E., et al. (2013). Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Molecular & Cellular Proteomics, 12, 343–355. https://​doi.​org/​10.​1074/​mcp.​M112.​022806.CrossRef
308.
Zurück zum Zitat Jung, T., Castellana, D., Klingbeil, P., Cuesta Hernández, I., Vitacolonna, M., Orlicky, D. J., et al. (2009). CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia, 11(10), 1093–1105.CrossRefPubMedPubMedCentral Jung, T., Castellana, D., Klingbeil, P., Cuesta Hernández, I., Vitacolonna, M., Orlicky, D. J., et al. (2009). CD44v6 dependence of premetastatic niche preparation by exosomes. Neoplasia, 11(10), 1093–1105.CrossRefPubMedPubMedCentral
312.
Zurück zum Zitat Philip, R., Heiler, S., Mu, W., Büchler, M. W., Zöller, M., & Thuma, F. (2015). Claudin-7 promotes the epithelial-mesenchymal transition in human colorectal cancer. Oncotarget, 6(4), 2046–2063.CrossRefPubMed Philip, R., Heiler, S., Mu, W., Büchler, M. W., Zöller, M., & Thuma, F. (2015). Claudin-7 promotes the epithelial-mesenchymal transition in human colorectal cancer. Oncotarget, 6(4), 2046–2063.CrossRefPubMed
315.
Zurück zum Zitat Kumar, D., Gupta, D., Shankar, S., & Srivastava, R. K. (2015). Biomolecular characterization of exosomes released from cancer stem cells: possible implications for biomarker and treatment of cancer. Oncotarget, 10.18632/oncotarget.2462, 6, 3280, 3291. Kumar, D., Gupta, D., Shankar, S., & Srivastava, R. K. (2015). Biomolecular characterization of exosomes released from cancer stem cells: possible implications for biomarker and treatment of cancer. Oncotarget, 10.18632/oncotarget.2462, 6, 3280, 3291.
321.
340.
Zurück zum Zitat Leone, D. A., Peschel, A., Brown, M., Schachner, H., Ball, M. J., Gyuraszova, M., et al. (2017). Surface LAMP-2 is an endocytic receptor that diverts antigen internalized by human dendritic cells into highly immunogenic exosomes. Journal of Immunology, 199, 531–546. https://doi.org/10.4049/jimmunol.1601263.CrossRef Leone, D. A., Peschel, A., Brown, M., Schachner, H., Ball, M. J., Gyuraszova, M., et al. (2017). Surface LAMP-2 is an endocytic receptor that diverts antigen internalized by human dendritic cells into highly immunogenic exosomes. Journal of Immunology, 199, 531–546. https://​doi.​org/​10.​4049/​jimmunol.​1601263.CrossRef
343.
Zurück zum Zitat Svensson, K. J., Kucharzewska, P., Christianson, H. C., Sköld, S., Löfstedt, T., Johansson, M. C., et al. (2011). Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 108(32), 13147–13152. https://doi.org/10.1073/pnas.1104261108.CrossRefPubMedPubMedCentral Svensson, K. J., Kucharzewska, P., Christianson, H. C., Sköld, S., Löfstedt, T., Johansson, M. C., et al. (2011). Hypoxia triggers a proangiogenic pathway involving cancer cell microvesicles and PAR-2-mediated heparin-binding EGF signaling in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 108(32), 13147–13152. https://​doi.​org/​10.​1073/​pnas.​1104261108.CrossRefPubMedPubMedCentral
345.
Zurück zum Zitat Arscott, W. T., Tandle, A. T., Zhao, S., Shabason, J. E., Gordon, I. K., Schlaff, C. D., et al. (2013). Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Translational Oncology, 6(6), 638–648.CrossRefPubMedPubMedCentral Arscott, W. T., Tandle, A. T., Zhao, S., Shabason, J. E., Gordon, I. K., Schlaff, C. D., et al. (2013). Ionizing radiation and glioblastoma exosomes: implications in tumor biology and cell migration. Translational Oncology, 6(6), 638–648.CrossRefPubMedPubMedCentral
361.
Zurück zum Zitat Gesierich, S., Paret, C., Hildebrand, D., Weitz, J., Zgraggen, K., Schmitz-Winnenthal, F. H., et al. (2005). Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clinical Cancer Research, 11(8), 2840–2852.CrossRefPubMed Gesierich, S., Paret, C., Hildebrand, D., Weitz, J., Zgraggen, K., Schmitz-Winnenthal, F. H., et al. (2005). Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clinical Cancer Research, 11(8), 2840–2852.CrossRefPubMed
362.
Zurück zum Zitat Claas, C., Wahl, J., Orlicky, D. J., Karaduman, H., Schnölzer, M., Kempf, T., et al. (2005). The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. The Biochemical Journal, 389(Pt 1), 99–110.CrossRefPubMedPubMedCentral Claas, C., Wahl, J., Orlicky, D. J., Karaduman, H., Schnölzer, M., Kempf, T., et al. (2005). The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. The Biochemical Journal, 389(Pt 1), 99–110.CrossRefPubMedPubMedCentral
364.
Zurück zum Zitat Le Naour, F., André, M., Greco, C., Billard, M., Sordat, B., Emile, J. F., et al. (2006). Profiling of the tetraspanin web of human colon cancer cells. Molecular & Cellular Proteomics, 5(5), 845–857.CrossRef Le Naour, F., André, M., Greco, C., Billard, M., Sordat, B., Emile, J. F., et al. (2006). Profiling of the tetraspanin web of human colon cancer cells. Molecular & Cellular Proteomics, 5(5), 845–857.CrossRef
366.
Zurück zum Zitat Ladwein, M., Pape, U. F., Schmidt, D. S., Schnölzer, M., Fiedler, S., Langbein, L., et al. (2005). The cell-cell adhesion molecule EpCAM interacts directly with the tight junction protein claudin-7. Experimental Cell Research, 309(2), 345–357.CrossRefPubMed Ladwein, M., Pape, U. F., Schmidt, D. S., Schnölzer, M., Fiedler, S., Langbein, L., et al. (2005). The cell-cell adhesion molecule EpCAM interacts directly with the tight junction protein claudin-7. Experimental Cell Research, 309(2), 345–357.CrossRefPubMed
367.
Zurück zum Zitat Kuhn, S., Koch, M., Nübel, T., Ladwein, M., Antolovic, D., Klingbeil, P., et al. (2007). A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Molecular Cancer Research, 5(6), 553–567.CrossRefPubMed Kuhn, S., Koch, M., Nübel, T., Ladwein, M., Antolovic, D., Klingbeil, P., et al. (2007). A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Molecular Cancer Research, 5(6), 553–567.CrossRefPubMed
370.
373.
Zurück zum Zitat Marsh, D., Horváth, L. I., Swamy, M. J., Mantripragada, S., & Kleinschmidt, J. H. (2002). Interaction of membrane-spanning proteins with peripheral and lipid-anchored membrane proteins: perspectives from protein-lipid interactions (review). Molecular Membrane Biology, 19(4), 247–255.CrossRefPubMed Marsh, D., Horváth, L. I., Swamy, M. J., Mantripragada, S., & Kleinschmidt, J. H. (2002). Interaction of membrane-spanning proteins with peripheral and lipid-anchored membrane proteins: perspectives from protein-lipid interactions (review). Molecular Membrane Biology, 19(4), 247–255.CrossRefPubMed
382.
Zurück zum Zitat Li, X., Zhao, H., Gu, J., & Zheng, L. (2015). Prognostic value of cancer stem cell marker CD133 expression in pancreatic ductal adenocarcinoma (PDAC): a systematic review and meta-analysis. International Journal of Clinical and Experimental Pathology, 8(10), 12084–12092 eCollection 2015.PubMedPubMedCentral Li, X., Zhao, H., Gu, J., & Zheng, L. (2015). Prognostic value of cancer stem cell marker CD133 expression in pancreatic ductal adenocarcinoma (PDAC): a systematic review and meta-analysis. International Journal of Clinical and Experimental Pathology, 8(10), 12084–12092 eCollection 2015.PubMedPubMedCentral
387.
Zurück zum Zitat Kristiansen, G., Sammar, M., & Altevogt, P. (2004). Tumour biological aspects of CD24, a mucin-like adhesion molecule. Journal of Molecular Histology, 35(3), 255–262.CrossRefPubMed Kristiansen, G., Sammar, M., & Altevogt, P. (2004). Tumour biological aspects of CD24, a mucin-like adhesion molecule. Journal of Molecular Histology, 35(3), 255–262.CrossRefPubMed
400.
402.
Zurück zum Zitat Levy, S., Todd, S. C., & Maecker, H. T. (1998). CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annual Review of Immunology, 16, 89–109.CrossRefPubMed Levy, S., Todd, S. C., & Maecker, H. T. (1998). CD81 (TAPA-1): a molecule involved in signal transduction and cell adhesion in the immune system. Annual Review of Immunology, 16, 89–109.CrossRefPubMed
404.
Zurück zum Zitat Lau, L. M., Wee, J. L., Wright, M. D., Moseley, G. W., Hogarth, P. M., Ashman, L. K., et al. (2004). The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood, 104(8), 2368–2375.CrossRefPubMed Lau, L. M., Wee, J. L., Wright, M. D., Moseley, G. W., Hogarth, P. M., Ashman, L. K., et al. (2004). The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood, 104(8), 2368–2375.CrossRefPubMed
406.
Zurück zum Zitat Yue, S., Mu, W., Erb, U., & Zöller, M. (2015). The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget, 6(4), 2366–2384.CrossRefPubMed Yue, S., Mu, W., Erb, U., & Zöller, M. (2015). The tetraspanins CD151 and Tspan8 are essential exosome components for the crosstalk between cancer initiating cells and their surrounding. Oncotarget, 6(4), 2366–2384.CrossRefPubMed
410.
Zurück zum Zitat Nelson, G. M., Padera, T. P., Garkavtsev, I., Shioda, T., & Jain, R. K. (2007). Differential gene expression of primary cultured lymphatic and blood vascular endothelial cells. Neoplasia, 9(12), 1038–1045.CrossRefPubMedPubMedCentral Nelson, G. M., Padera, T. P., Garkavtsev, I., Shioda, T., & Jain, R. K. (2007). Differential gene expression of primary cultured lymphatic and blood vascular endothelial cells. Neoplasia, 9(12), 1038–1045.CrossRefPubMedPubMedCentral
429.
437.
Zurück zum Zitat Roscic-Mrkic, B., Fischer, M., Leemann, C., Manrique, A., Gordon, C. J., Moore, J. P., et al. (2003). RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood, 102(4), 1169–1177.CrossRefPubMed Roscic-Mrkic, B., Fischer, M., Leemann, C., Manrique, A., Gordon, C. J., Moore, J. P., et al. (2003). RANTES (CCL5) uses the proteoglycan CD44 as an auxiliary receptor to mediate cellular activation signals and HIV-1 enhancement. Blood, 102(4), 1169–1177.CrossRefPubMed
438.
Zurück zum Zitat Zhu, B., Suzuki, K., Goldberg, H. A., Rittling, S. R., Denhardt, D. T., McCulloch, C. A., et al. (2004). Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin. Journal of Cellular Physiology, 198(1), 155–167.CrossRefPubMed Zhu, B., Suzuki, K., Goldberg, H. A., Rittling, S. R., Denhardt, D. T., McCulloch, C. A., et al. (2004). Osteopontin modulates CD44-dependent chemotaxis of peritoneal macrophages through G-protein-coupled receptors: evidence of a role for an intracellular form of osteopontin. Journal of Cellular Physiology, 198(1), 155–167.CrossRefPubMed
445.
Zurück zum Zitat Lee, J. W., Lee, Y. C., Na, S. Y., Jung, D. J., & Lee, S. K. (2001). Transcriptional coregulators of the nuclear receptor superfamily: coactivators and corepressors. Cellular and Molecular Life Sciences, 58(2), 289–297.CrossRefPubMed Lee, J. W., Lee, Y. C., Na, S. Y., Jung, D. J., & Lee, S. K. (2001). Transcriptional coregulators of the nuclear receptor superfamily: coactivators and corepressors. Cellular and Molecular Life Sciences, 58(2), 289–297.CrossRefPubMed
452.
Zurück zum Zitat García-González, V., Díaz-Villanueva, J. F., Galindo-Hernández, O., Martínez-Navarro, I., Hurtado-Ureta, G., & Pérez-Arias, A. A. (2018). Ceramide metabolism balance, a multifaceted factor in critical steps of breast cancer development. International Journal of Molecular Sciences, 19(9), E2527. https://doi.org/10.3390/ijms19092527.CrossRefPubMed García-González, V., Díaz-Villanueva, J. F., Galindo-Hernández, O., Martínez-Navarro, I., Hurtado-Ureta, G., & Pérez-Arias, A. A. (2018). Ceramide metabolism balance, a multifaceted factor in critical steps of breast cancer development. International Journal of Molecular Sciences, 19(9), E2527. https://​doi.​org/​10.​3390/​ijms19092527.CrossRefPubMed
455.
Zurück zum Zitat van Balkom, B. W., Eisele, A. S., Pegtel, D. M., Bervoets, S., & Verhaar, M. C. (2015). Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles, 4, 26760. https://doi.org/10.3402/jev.v4.26760.CrossRefPubMed van Balkom, B. W., Eisele, A. S., Pegtel, D. M., Bervoets, S., & Verhaar, M. C. (2015). Quantitative and qualitative analysis of small RNAs in human endothelial cells and exosomes provides insights into localized RNA processing, degradation and sorting. J Extracell Vesicles, 4, 26760. https://​doi.​org/​10.​3402/​jev.​v4.​26760.CrossRefPubMed
456.
458.
472.
Zurück zum Zitat Zhang, Z.Y., Lu, Y.X., Zhang, Z.Y., Chang, Y.Y., Zheng, L., Yuan, L., et al. (2016). Loss of TINCR expression promotes proliferation, metastasis through activating EpCAM cleavage in colorectal cancer. Oncotarget, 7(16), 22639–22649. doi: 10.18632/oncotarget.8141. Zhang, Z.Y., Lu, Y.X., Zhang, Z.Y., Chang, Y.Y., Zheng, L., Yuan, L., et al. (2016). Loss of TINCR expression promotes proliferation, metastasis through activating EpCAM cleavage in colorectal cancer. Oncotarget, 7(16), 22639–22649. doi: 10.18632/oncotarget.8141.
484.
Zurück zum Zitat Chen, Z., Bu, N., Qiao, X., Zuo, Z., Shu, Y., Liu, Z., et al. (2018). Forkhead box M1 transcriptionally regulates the expression of long noncoding RNAs Snhg8 and Gm26917 to promote proliferation and survival of muscle satellite cells. Stem Cells. https://doi.org/10.1002/stem.2824. Chen, Z., Bu, N., Qiao, X., Zuo, Z., Shu, Y., Liu, Z., et al. (2018). Forkhead box M1 transcriptionally regulates the expression of long noncoding RNAs Snhg8 and Gm26917 to promote proliferation and survival of muscle satellite cells. Stem Cells. https://​doi.​org/​10.​1002/​stem.​2824.
486.
Metadaten
Titel
Exosomes, metastases, and the miracle of cancer stem cell markers
verfasst von
Zhe Wang
Margot Zöller
Publikationsdatum
27.04.2019
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 1-2/2019
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-019-09793-6

Weitere Artikel der Ausgabe 1-2/2019

Cancer and Metastasis Reviews 1-2/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.