Skip to main content
Erschienen in: Cardiovascular Drugs and Therapy 6/2011

01.12.2011

Aliskiren and Valsartan Reduce Myocardial AT1 Receptor Expression and Limit Myocardial Infarct Size in Diabetic Mice

verfasst von: Yumei Ye, Jinqiao Qian, Alexander C. Castillo, Jose Regino Perez-Polo, Yochai Birnbaum

Erschienen in: Cardiovascular Drugs and Therapy | Ausgabe 6/2011

Einloggen, um Zugang zu erhalten

Abstract

Purpose

We assessed the ability of Aliskiren (AL), a direct renin inhibitor, and Valsartan (VA), an angiotensin receptor blocker, to limit myocardial infarct size (IS) in mice with type-2 diabetes mellitus.

Methods

Db/Db mice, fed Western Diet, received 15-day pretreatment with: 1) vehicle; 2) AL 25 mg/kg/d; 3) AL 50 mg/kg/d; 4) VA 8 mg/kg/d; 5) VA 16 mg/kg/d; 6) AL 25+VA 16 mg/kg/d; or 7) AL 50+VA 16 mg/kg/d. Mice underwent 30 min coronary artery occlusion and 24 h reperfusion. Area at risk (AR) was assessed by blue dye and IS by TTC staining. Protein expression was assessed by immunobloting.

Results

IS in the control group was 42.9 ± 2.1% of the AR. AL at 25 (21.9 ± 2.9%) and 50 mg/kg/d (15.5 ± 1.3%) reduced IS. VA at 16 mg/kg/d (18.8 ± 1.2%), but not at 8 mg/kg/d (35.2 ± 4.0%), limited IS. IS was the smallest in the AL50+VA16 group (6.3 ± 0.9%). Both AL and VA reduced myocardial AT1R levels, without affecting AT2R levels, and increased the expression of Sirt1 and PGC-1α with increased phosphorylation of Akt and eNOS.

Conclusions

AL, dose dependently limited myocardial IS in mice with type-2 diabetes mellitus. At doses shown to limit IS in non-diabetic animals, VA failed to reduce IS in Db/Db mice. However, at higher dose (16 mg/kg/d), VA reduced IS. Both drugs reduced the expression of AT1R and increased myocardial levels of the longevity genes Sirt1 and PGC-1α along with increased Akt and eNOS phosphorylation.
Literatur
1.
Zurück zum Zitat Zhu BQ, Sievers RE, Browne AE, Lee RJ, Chatterjee K, Grossman W, et al. Comparative effects of aspirin with ACE inhibitor or angiotensin receptor blocker on myocardial infarction and vascular function. J Renin Angiotensin Aldosterone Syst. 2003;4:31–7.PubMedCrossRef Zhu BQ, Sievers RE, Browne AE, Lee RJ, Chatterjee K, Grossman W, et al. Comparative effects of aspirin with ACE inhibitor or angiotensin receptor blocker on myocardial infarction and vascular function. J Renin Angiotensin Aldosterone Syst. 2003;4:31–7.PubMedCrossRef
2.
Zurück zum Zitat Schwarz ER, Montino H, Fleischhauer J, Klues HG, vom Dahl J, Hanrath P. Angiotensin II receptor antagonist EXP 3174 reduces infarct size comparable with enalaprilat and augments preconditioning in the pig heart. Cardiovasc Drugs Ther. 1997;11:687–95.PubMedCrossRef Schwarz ER, Montino H, Fleischhauer J, Klues HG, vom Dahl J, Hanrath P. Angiotensin II receptor antagonist EXP 3174 reduces infarct size comparable with enalaprilat and augments preconditioning in the pig heart. Cardiovasc Drugs Ther. 1997;11:687–95.PubMedCrossRef
3.
Zurück zum Zitat Hoshida S, Yamashita N, Kuzuya T, Hori M. Differential effects of long-term renin-angiotensin system blockade on limitation of infarct size in cholesterol-fed rabbits. Atherosclerosis. 2000;149:287–94.PubMedCrossRef Hoshida S, Yamashita N, Kuzuya T, Hori M. Differential effects of long-term renin-angiotensin system blockade on limitation of infarct size in cholesterol-fed rabbits. Atherosclerosis. 2000;149:287–94.PubMedCrossRef
4.
Zurück zum Zitat Ozer MK, Sahna E, Birincioglu M, Acet A. Effects of captopril and losartan on myocardial ischemia-reperfusion induced arrhythmias and necrosis in rats. Pharmacol Res. 2002;45:257–63.PubMedCrossRef Ozer MK, Sahna E, Birincioglu M, Acet A. Effects of captopril and losartan on myocardial ischemia-reperfusion induced arrhythmias and necrosis in rats. Pharmacol Res. 2002;45:257–63.PubMedCrossRef
5.
Zurück zum Zitat Griol-Charhbili V, Messadi-Laribi E, Bascands JL, Heudes D, Meneton P, Giudicelli JF, et al. Role of tissue kallikrein in the cardioprotective effects of ischemic and pharmacological preconditioning in myocardial ischemia. FASEB J. 2005;19:1172–4.PubMed Griol-Charhbili V, Messadi-Laribi E, Bascands JL, Heudes D, Meneton P, Giudicelli JF, et al. Role of tissue kallikrein in the cardioprotective effects of ischemic and pharmacological preconditioning in myocardial ischemia. FASEB J. 2005;19:1172–4.PubMed
6.
Zurück zum Zitat Chen X, Minatoguchi S, Wang N, Arai M, Lu C, Uno Y, et al. Quinaprilat reduces myocardial infarct size involving nitric oxide production and mitochondrial KATP channel in rabbits. J Cardiovasc Pharmacol. 2003;41:938–45.PubMedCrossRef Chen X, Minatoguchi S, Wang N, Arai M, Lu C, Uno Y, et al. Quinaprilat reduces myocardial infarct size involving nitric oxide production and mitochondrial KATP channel in rabbits. J Cardiovasc Pharmacol. 2003;41:938–45.PubMedCrossRef
7.
Zurück zum Zitat Kobara M, Tatsumi T, Kambayashi D, Mano A, Yamanaka S, Shiraishi J, et al. Effects of ACE inhibition on myocardial apoptosis in an ischemia-reperfusion rat heart model. J Cardiovasc Pharmacol. 2003;41:880–9.PubMedCrossRef Kobara M, Tatsumi T, Kambayashi D, Mano A, Yamanaka S, Shiraishi J, et al. Effects of ACE inhibition on myocardial apoptosis in an ischemia-reperfusion rat heart model. J Cardiovasc Pharmacol. 2003;41:880–9.PubMedCrossRef
8.
Zurück zum Zitat Lazar HL, Bao Y, Rivers S, Colton T, Bernard SA. High tissue affinity angiotensin-converting enzyme inhibitors improve endothelial function and reduce infarct size. Ann Thorac Surg. 2001;72:548–53. discussion 553–544.PubMedCrossRef Lazar HL, Bao Y, Rivers S, Colton T, Bernard SA. High tissue affinity angiotensin-converting enzyme inhibitors improve endothelial function and reduce infarct size. Ann Thorac Surg. 2001;72:548–53. discussion 553–544.PubMedCrossRef
9.
Zurück zum Zitat Kitakaze M, Node K, Takashima S, Minamino T, Kuzuya T, Hori M. Cellular mechanisms of cardioprotection afforded by inhibitors of angiotensin converting enzyme in ischemic hearts: role of bradykinin and nitric oxide. Hypertens Res. 2000;23:253–9.PubMedCrossRef Kitakaze M, Node K, Takashima S, Minamino T, Kuzuya T, Hori M. Cellular mechanisms of cardioprotection afforded by inhibitors of angiotensin converting enzyme in ischemic hearts: role of bradykinin and nitric oxide. Hypertens Res. 2000;23:253–9.PubMedCrossRef
10.
Zurück zum Zitat Liu YH, Yang XP, Sharov VG, Sigmon DH, Sabbath HN, Carretero OA. Paracrine systems in the cardioprotective effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats. Hypertension. 1996;27:7–13.PubMed Liu YH, Yang XP, Sharov VG, Sigmon DH, Sabbath HN, Carretero OA. Paracrine systems in the cardioprotective effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats. Hypertension. 1996;27:7–13.PubMed
11.
Zurück zum Zitat Hartman JC. The role of bradykinin and nitric oxide in the cardioprotective action of ACE inhibitors. Ann Thorac Surg. 1995;60:789–92.PubMedCrossRef Hartman JC. The role of bradykinin and nitric oxide in the cardioprotective action of ACE inhibitors. Ann Thorac Surg. 1995;60:789–92.PubMedCrossRef
12.
Zurück zum Zitat Hartman JC, Hullinger TG, Wall TM, Shebuski RJ. Reduction of myocardial infarct size by ramiprilat is independent of angiotensin II synthesis inhibition. Eur J Pharmacol. 1993;234:229–36.PubMedCrossRef Hartman JC, Hullinger TG, Wall TM, Shebuski RJ. Reduction of myocardial infarct size by ramiprilat is independent of angiotensin II synthesis inhibition. Eur J Pharmacol. 1993;234:229–36.PubMedCrossRef
13.
Zurück zum Zitat Hartman JC, Wall TM, Hullinger TG, Shebuski RJ. Reduction of myocardial infarct size in rabbits by ramiprilat: reversal by the bradykinin antagonist HOE 140. J Cardiovasc Pharmacol. 1993;21:996–1003.PubMedCrossRef Hartman JC, Wall TM, Hullinger TG, Shebuski RJ. Reduction of myocardial infarct size in rabbits by ramiprilat: reversal by the bradykinin antagonist HOE 140. J Cardiovasc Pharmacol. 1993;21:996–1003.PubMedCrossRef
14.
Zurück zum Zitat Weidenbach R, Schulz R, Gres P, Behrends M, Post H, Heusch G. Enhanced reduction of myocardial infarct size by combined ACE inhibition and AT(1)-receptor antagonism. Br J Pharmacol. 2000;131:138–44.PubMedCrossRef Weidenbach R, Schulz R, Gres P, Behrends M, Post H, Heusch G. Enhanced reduction of myocardial infarct size by combined ACE inhibition and AT(1)-receptor antagonism. Br J Pharmacol. 2000;131:138–44.PubMedCrossRef
15.
Zurück zum Zitat Schulz R, Heusch G. AT1-receptor blockade in experimental myocardial ischemia/reperfusion. Clin Nephrol. 2003;60:S67–74.PubMed Schulz R, Heusch G. AT1-receptor blockade in experimental myocardial ischemia/reperfusion. Clin Nephrol. 2003;60:S67–74.PubMed
16.
Zurück zum Zitat Sato M, Engelman RM, Otani H, Maulik N, Rousou JA, Flack 3rd JE, et al. Myocardial protection by preconditioning of heart with losartan, an angiotensin II type 1-receptor blocker: implication of bradykinin-dependent and bradykinin-independent mechanisms. Circulation. 2000;102:III346–51.PubMed Sato M, Engelman RM, Otani H, Maulik N, Rousou JA, Flack 3rd JE, et al. Myocardial protection by preconditioning of heart with losartan, an angiotensin II type 1-receptor blocker: implication of bradykinin-dependent and bradykinin-independent mechanisms. Circulation. 2000;102:III346–51.PubMed
17.
Zurück zum Zitat Jalowy A, Schulz R, Dorge H, Behrends M, Heusch G. Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol. 1998;32:1787–96.PubMedCrossRef Jalowy A, Schulz R, Dorge H, Behrends M, Heusch G. Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol. 1998;32:1787–96.PubMedCrossRef
18.
Zurück zum Zitat Ye Y, Keyes KT, Zhang CF, Perez-Polo JR, Lin Y, Birnbaum Y. Additive effect of TAK-491, a new angiotensin receptor blocker, and pioglitazone, in reducing myocardial infarct size. Cardiovasc Drugs Ther. 2010;24:107–20.PubMedCrossRef Ye Y, Keyes KT, Zhang CF, Perez-Polo JR, Lin Y, Birnbaum Y. Additive effect of TAK-491, a new angiotensin receptor blocker, and pioglitazone, in reducing myocardial infarct size. Cardiovasc Drugs Ther. 2010;24:107–20.PubMedCrossRef
19.
Zurück zum Zitat Jugdutt BI, Balghith M. Enhanced regional AT(2)-receptor and PKC(epsilon) expression during cardioprotection induced by AT(1)-receptor blockade after reperfused myocardial infarction. J Renin Angiotensin Aldosterone Syst. 2001;2:134–40.PubMedCrossRef Jugdutt BI, Balghith M. Enhanced regional AT(2)-receptor and PKC(epsilon) expression during cardioprotection induced by AT(1)-receptor blockade after reperfused myocardial infarction. J Renin Angiotensin Aldosterone Syst. 2001;2:134–40.PubMedCrossRef
20.
Zurück zum Zitat Jugdutt BI, Menon V. AT2 receptor and apoptosis during AT1 receptor blockade in reperfused myocardial infarction in the rat. Mol Cell Biochem. 2004;262:203–14.PubMedCrossRef Jugdutt BI, Menon V. AT2 receptor and apoptosis during AT1 receptor blockade in reperfused myocardial infarction in the rat. Mol Cell Biochem. 2004;262:203–14.PubMedCrossRef
21.
Zurück zum Zitat Jalowy A, Schulz R, Heusch G. AT1 receptor blockade in experimental myocardial ischemia/reperfusion. Basic Res Cardiol. 1998;93:85–91.PubMedCrossRef Jalowy A, Schulz R, Heusch G. AT1 receptor blockade in experimental myocardial ischemia/reperfusion. Basic Res Cardiol. 1998;93:85–91.PubMedCrossRef
22.
Zurück zum Zitat Jugdutt BI, Menon V. Upregulation of angiotensin II type 2 receptor and limitation of myocardial stunning by angiotensin II type 1 receptor blockers during reperfused myocardial infarction in the rat. J Cardiovasc Pharmacol Ther. 2003;8:217–26.PubMedCrossRef Jugdutt BI, Menon V. Upregulation of angiotensin II type 2 receptor and limitation of myocardial stunning by angiotensin II type 1 receptor blockers during reperfused myocardial infarction in the rat. J Cardiovasc Pharmacol Ther. 2003;8:217–26.PubMedCrossRef
23.
Zurück zum Zitat Linz W, Scholkens BA. Role of bradykinin in the cardiac effects of angiotensin-converting enzyme inhibitors. J Cardiovasc Pharmacol. 1992;20:S83–90.PubMedCrossRef Linz W, Scholkens BA. Role of bradykinin in the cardiac effects of angiotensin-converting enzyme inhibitors. J Cardiovasc Pharmacol. 1992;20:S83–90.PubMedCrossRef
24.
Zurück zum Zitat Duggan ST, Chwieduk CM, Curran MP. Aliskiren: a review of its use as monotherapy and as combination therapy in the management of hypertension. Drugs. 2010;70:2011–49.PubMedCrossRef Duggan ST, Chwieduk CM, Curran MP. Aliskiren: a review of its use as monotherapy and as combination therapy in the management of hypertension. Drugs. 2010;70:2011–49.PubMedCrossRef
25.
26.
Zurück zum Zitat Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, et al. Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol. 2010;105:677–86.PubMedCrossRef Hausenloy DJ, Baxter G, Bell R, Botker HE, Davidson SM, Downey J, et al. Translating novel strategies for cardioprotection: the Hatter Workshop Recommendations. Basic Res Cardiol. 2010;105:677–86.PubMedCrossRef
27.
Zurück zum Zitat Hotta H, Miura T, Miki T, Togashi N, Maeda T, Kim SJ, et al. Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ Res. 2010;106:129–32.PubMedCrossRef Hotta H, Miura T, Miki T, Togashi N, Maeda T, Kim SJ, et al. Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts. Circ Res. 2010;106:129–32.PubMedCrossRef
28.
Zurück zum Zitat Kersten JR, Montgomery MW, Ghassemi T, Gross ER, Toller WG, Pagel PS, et al. Diabetes and hyperglycemia impair activation of mitochondrial K(ATP) channels. Am J Physiol Heart Circ Physiol. 2001;280:H1744–50.PubMed Kersten JR, Montgomery MW, Ghassemi T, Gross ER, Toller WG, Pagel PS, et al. Diabetes and hyperglycemia impair activation of mitochondrial K(ATP) channels. Am J Physiol Heart Circ Physiol. 2001;280:H1744–50.PubMed
29.
Zurück zum Zitat Kersten JR, Schmeling TJ, Orth KG, Pagel PS, Warltier DC. Acute hyperglycemia abolishes ischemic preconditioning in vivo. Am J Physiol. 1998;275:H721–5.PubMed Kersten JR, Schmeling TJ, Orth KG, Pagel PS, Warltier DC. Acute hyperglycemia abolishes ischemic preconditioning in vivo. Am J Physiol. 1998;275:H721–5.PubMed
30.
Zurück zum Zitat Klamann A, Sarfert P, Launhardt V, Schulte G, Schmiegel WH, Nauck MA. Myocardial infarction in diabetic vs non-diabetic subjects. Survival and infarct size following therapy with sulfonylureas (glibenclamide). Eur Heart J. 2000;21:220–9.PubMedCrossRef Klamann A, Sarfert P, Launhardt V, Schulte G, Schmiegel WH, Nauck MA. Myocardial infarction in diabetic vs non-diabetic subjects. Survival and infarct size following therapy with sulfonylureas (glibenclamide). Eur Heart J. 2000;21:220–9.PubMedCrossRef
31.
Zurück zum Zitat Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM. Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes. 2005;54:2360–4.PubMedCrossRef Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM. Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes. 2005;54:2360–4.PubMedCrossRef
32.
Zurück zum Zitat Przyklenk K, Maynard M, Greiner DL, Whittaker P. Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal. 2011;14:781–90.PubMedCrossRef Przyklenk K, Maynard M, Greiner DL, Whittaker P. Cardioprotection with postconditioning: loss of efficacy in murine models of type-2 and type-1 diabetes. Antioxid Redox Signal. 2011;14:781–90.PubMedCrossRef
33.
Zurück zum Zitat Ghaboura N, Tamareille S, Ducluzeau PH, Grimaud L, Loufrani L, Croue A, et al. Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3beta signaling. Basic Res Cardiol. 2011;106:147–62.PubMedCrossRef Ghaboura N, Tamareille S, Ducluzeau PH, Grimaud L, Loufrani L, Croue A, et al. Diabetes mellitus abrogates erythropoietin-induced cardioprotection against ischemic-reperfusion injury by alteration of the RISK/GSK-3beta signaling. Basic Res Cardiol. 2011;106:147–62.PubMedCrossRef
34.
Zurück zum Zitat Heusch G, Boengler K, Schulz R. Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation. 2008;118:1915–9.PubMedCrossRef Heusch G, Boengler K, Schulz R. Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation. 2008;118:1915–9.PubMedCrossRef
35.
Zurück zum Zitat Chaanine AH, Hajjar RJ. AKT signalling in the failing heart. Eur J Heart Fail. 2011;13:825–9.PubMedCrossRef Chaanine AH, Hajjar RJ. AKT signalling in the failing heart. Eur J Heart Fail. 2011;13:825–9.PubMedCrossRef
36.
Zurück zum Zitat Harris MB, Blackstone MA, Sood SG, Li C, Goolsby JM, Venema VJ, et al. Acute activation and phosphorylation of endothelial nitric oxide synthase by HMG-CoA reductase inhibitors. Am J Physiol Heart Circ Physiol. 2004;287:H560–6.PubMedCrossRef Harris MB, Blackstone MA, Sood SG, Li C, Goolsby JM, Venema VJ, et al. Acute activation and phosphorylation of endothelial nitric oxide synthase by HMG-CoA reductase inhibitors. Am J Physiol Heart Circ Physiol. 2004;287:H560–6.PubMedCrossRef
37.
Zurück zum Zitat Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007;100:1512–21.PubMedCrossRef Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, et al. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res. 2007;100:1512–21.PubMedCrossRef
38.
Zurück zum Zitat Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–42.PubMedCrossRef Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature. 2006;444:337–42.PubMedCrossRef
39.
Zurück zum Zitat Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010;5:253–95.PubMedCrossRef Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010;5:253–95.PubMedCrossRef
40.
Zurück zum Zitat Ye Y, Keyes KT, Zhang C, Perez-Polo JR, Lin Y, Birnbaum Y. The myocardial infarct size limiting effects of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol. 2010;285:H1454–65.CrossRef Ye Y, Keyes KT, Zhang C, Perez-Polo JR, Lin Y, Birnbaum Y. The myocardial infarct size limiting effects of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol. 2010;285:H1454–65.CrossRef
41.
Zurück zum Zitat Ye Y, Lin Y, Atar S, Huang MH, Perez-Polo JR, Uretsky BF, et al. Myocardial protection by pioglitazone, atorvastatin, and their combination: mechanisms and possible interactions. Am J Physiol Heart Circ Physiol. 2006;291:H1158–69.PubMedCrossRef Ye Y, Lin Y, Atar S, Huang MH, Perez-Polo JR, Uretsky BF, et al. Myocardial protection by pioglitazone, atorvastatin, and their combination: mechanisms and possible interactions. Am J Physiol Heart Circ Physiol. 2006;291:H1158–69.PubMedCrossRef
42.
43.
Zurück zum Zitat van Esch JH, Moltzer E, van Veghel R, Garrelds IM, Leijten F, Bouhuizen AM, et al. Beneficial cardiac effects of the renin inhibitor aliskiren in spontaneously hypertensive rats. J Hypertens. 2010;28:2145–55.PubMed van Esch JH, Moltzer E, van Veghel R, Garrelds IM, Leijten F, Bouhuizen AM, et al. Beneficial cardiac effects of the renin inhibitor aliskiren in spontaneously hypertensive rats. J Hypertens. 2010;28:2145–55.PubMed
44.
Zurück zum Zitat Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med. 2008;264:224–36.PubMedCrossRef Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med. 2008;264:224–36.PubMedCrossRef
45.
Zurück zum Zitat Jugdutt BI, Menon V. Valsartan-induced cardioprotection involves angiotensin II type 2 receptor upregulation in dog and rat models of in vivo reperfused myocardial infarction. J Card Fail. 2004;10:74–82.PubMedCrossRef Jugdutt BI, Menon V. Valsartan-induced cardioprotection involves angiotensin II type 2 receptor upregulation in dog and rat models of in vivo reperfused myocardial infarction. J Card Fail. 2004;10:74–82.PubMedCrossRef
46.
Zurück zum Zitat Jugdutt BI, Menon V. AT1 receptor blockade limits myocardial injury and upregulates AT2 receptors during reperfused myocardial infarction. Mol Cell Biochem. 2004;260:111–8.PubMedCrossRef Jugdutt BI, Menon V. AT1 receptor blockade limits myocardial injury and upregulates AT2 receptors during reperfused myocardial infarction. Mol Cell Biochem. 2004;260:111–8.PubMedCrossRef
47.
Zurück zum Zitat Sawicki G, Menon V, Jugdutt BI. Improved balance between TIMP-3 and MMP-9 after regional myocardial ischemia-reperfusion during AT1 receptor blockade. J Card Fail. 2004;10:442–9.PubMedCrossRef Sawicki G, Menon V, Jugdutt BI. Improved balance between TIMP-3 and MMP-9 after regional myocardial ischemia-reperfusion during AT1 receptor blockade. J Card Fail. 2004;10:442–9.PubMedCrossRef
48.
Zurück zum Zitat Yang J, Jiang H, Yang J, Ding JW, Chen LH, Li S, et al. Valsartan preconditioning protects against myocardial ischemia-reperfusion injury through TLR4/NF-kappaB signaling pathway. Mol Cell Biochem. 2009;330:39–46.PubMedCrossRef Yang J, Jiang H, Yang J, Ding JW, Chen LH, Li S, et al. Valsartan preconditioning protects against myocardial ischemia-reperfusion injury through TLR4/NF-kappaB signaling pathway. Mol Cell Biochem. 2009;330:39–46.PubMedCrossRef
49.
Zurück zum Zitat Zhao JL, Yang YJ, You SJ, Jing ZC, Wu YJ, Cheng JL, et al. Pretreatment with fosinopril or valsartan reduces myocardial no-reflow after acute myocardial infarction and reperfusion. Coron Artery Dis. 2006;17:463–9.PubMedCrossRef Zhao JL, Yang YJ, You SJ, Jing ZC, Wu YJ, Cheng JL, et al. Pretreatment with fosinopril or valsartan reduces myocardial no-reflow after acute myocardial infarction and reperfusion. Coron Artery Dis. 2006;17:463–9.PubMedCrossRef
50.
Zurück zum Zitat Mocanu MM, Field DC, Yellon DM. A potential role for PTEN in the diabetic heart. Cardiovasc Drugs Ther. 2006;20:319–21.PubMedCrossRef Mocanu MM, Field DC, Yellon DM. A potential role for PTEN in the diabetic heart. Cardiovasc Drugs Ther. 2006;20:319–21.PubMedCrossRef
51.
Zurück zum Zitat van Esch JH, van Veghel R, Garrelds IM, Leijten F, Bouhuizen AM, Danser AH. Handle region peptide counteracts the beneficial effects of the Renin inhibitor aliskiren in spontaneously hypertensive rats. Hypertension. 2011;57:852–8.PubMedCrossRef van Esch JH, van Veghel R, Garrelds IM, Leijten F, Bouhuizen AM, Danser AH. Handle region peptide counteracts the beneficial effects of the Renin inhibitor aliskiren in spontaneously hypertensive rats. Hypertension. 2011;57:852–8.PubMedCrossRef
52.
Zurück zum Zitat Lastra G, Habibi J, Whaley-Connell AT, Manrique C, Hayden MR, Rehmer J, et al. Direct renin inhibition improves systemic insulin resistance and skeletal muscle glucose transport in a transgenic rodent model of tissue renin overexpression. Endocrinology. 2009;150:2561–8.PubMedCrossRef Lastra G, Habibi J, Whaley-Connell AT, Manrique C, Hayden MR, Rehmer J, et al. Direct renin inhibition improves systemic insulin resistance and skeletal muscle glucose transport in a transgenic rodent model of tissue renin overexpression. Endocrinology. 2009;150:2561–8.PubMedCrossRef
53.
Zurück zum Zitat Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res. 2006;70:240–53.PubMedCrossRef Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res. 2006;70:240–53.PubMedCrossRef
54.
Zurück zum Zitat Su KH, Tsai JY, Kou YR, Chiang AN, Hsiao SH, Wu YL, et al. Valsartan regulates the interaction of angiotensin II type 1 receptor and endothelial nitric oxide synthase via Src/PI3K/Akt signalling. Cardiovasc Res. 2009;82:468–75.PubMedCrossRef Su KH, Tsai JY, Kou YR, Chiang AN, Hsiao SH, Wu YL, et al. Valsartan regulates the interaction of angiotensin II type 1 receptor and endothelial nitric oxide synthase via Src/PI3K/Akt signalling. Cardiovasc Res. 2009;82:468–75.PubMedCrossRef
55.
Zurück zum Zitat Zhou MS, Schulman IH, Raij L. Role of angiotensin II and oxidative stress in vascular insulin resistance linked to hypertension. Am J Physiol Heart Circ Physiol. 2009;296:H833–9.PubMedCrossRef Zhou MS, Schulman IH, Raij L. Role of angiotensin II and oxidative stress in vascular insulin resistance linked to hypertension. Am J Physiol Heart Circ Physiol. 2009;296:H833–9.PubMedCrossRef
56.
Zurück zum Zitat Matsuhisa S, Otani H, Okazaki T, Yamashita K, Akita Y, Sato D, et al. N-acetylcysteine abolishes the protective effect of losartan against left ventricular remodeling in cardiomyopathy hamster. Antioxid Redox Signal. 2008;10:1999–2008.PubMedCrossRef Matsuhisa S, Otani H, Okazaki T, Yamashita K, Akita Y, Sato D, et al. N-acetylcysteine abolishes the protective effect of losartan against left ventricular remodeling in cardiomyopathy hamster. Antioxid Redox Signal. 2008;10:1999–2008.PubMedCrossRef
57.
Zurück zum Zitat Rusai K, Jianxing C, Schneider R, Struijker-Boudier H, Lutz J, Heemann U, et al. Renin inhibition mitigates anti-angiogenesis in spontaneously hypertensive rats. J Hypertens. 2011;29:266–72.PubMedCrossRef Rusai K, Jianxing C, Schneider R, Struijker-Boudier H, Lutz J, Heemann U, et al. Renin inhibition mitigates anti-angiogenesis in spontaneously hypertensive rats. J Hypertens. 2011;29:266–72.PubMedCrossRef
58.
Zurück zum Zitat Habibi J, Whaley-Connell A, Hayden MR, DeMarco VG, Schneider R, Sowers SD, et al. Renin inhibition attenuates insulin resistance, oxidative stress, and pancreatic remodeling in the transgenic Ren2 rat. Endocrinology. 2008;149:5643–53.PubMedCrossRef Habibi J, Whaley-Connell A, Hayden MR, DeMarco VG, Schneider R, Sowers SD, et al. Renin inhibition attenuates insulin resistance, oxidative stress, and pancreatic remodeling in the transgenic Ren2 rat. Endocrinology. 2008;149:5643–53.PubMedCrossRef
59.
Zurück zum Zitat Imanishi T, Tsujioka H, Ikejima H, Kuroi A, Takarada S, Kitabata H, et al. Renin inhibitor aliskiren improves impaired nitric oxide bioavailability and protects against atherosclerotic changes. Hypertension. 2008;52:563–72.PubMedCrossRef Imanishi T, Tsujioka H, Ikejima H, Kuroi A, Takarada S, Kitabata H, et al. Renin inhibitor aliskiren improves impaired nitric oxide bioavailability and protects against atherosclerotic changes. Hypertension. 2008;52:563–72.PubMedCrossRef
60.
Zurück zum Zitat Westermann D, Riad A, Lettau O, Roks A, Savvatis K, Becher PM, et al. Renin inhibition improves cardiac function and remodeling after myocardial infarction independent of blood pressure. Hypertension. 2008;52:1068–75.PubMedCrossRef Westermann D, Riad A, Lettau O, Roks A, Savvatis K, Becher PM, et al. Renin inhibition improves cardiac function and remodeling after myocardial infarction independent of blood pressure. Hypertension. 2008;52:1068–75.PubMedCrossRef
61.
Zurück zum Zitat Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, et al. Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res. 2009;104:15–8.PubMedCrossRef Skyschally A, van Caster P, Boengler K, Gres P, Musiolik J, Schilawa D, et al. Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res. 2009;104:15–8.PubMedCrossRef
62.
Zurück zum Zitat Bolli R, Dawn B, Tang XL, Qiu Y, Ping P, Xuan YT, et al. The nitric oxide hypothesis of late preconditioning. Basic Res Cardiol. 1998;93:325–38.PubMedCrossRef Bolli R, Dawn B, Tang XL, Qiu Y, Ping P, Xuan YT, et al. The nitric oxide hypothesis of late preconditioning. Basic Res Cardiol. 1998;93:325–38.PubMedCrossRef
63.
Zurück zum Zitat Ye Y, Martinez JD, Perez-Polo RJ, Lin Y, Uretsky BF, Birnbaum Y. The role of eNOS, iNOS, and NF-kappaB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastatin. Am J Physiol Heart Circ Physiol. 2008;295:H343–51.PubMedCrossRef Ye Y, Martinez JD, Perez-Polo RJ, Lin Y, Uretsky BF, Birnbaum Y. The role of eNOS, iNOS, and NF-kappaB in upregulation and activation of cyclooxygenase-2 and infarct size reduction by atorvastatin. Am J Physiol Heart Circ Physiol. 2008;295:H343–51.PubMedCrossRef
64.
Zurück zum Zitat Matsuhisa S, Otani H, Okazaki T, Yamashita K, Akita Y, Sato D, et al. Angiotensin II type 1 receptor blocker preserves tolerance to ischemia-reperfusion injury in Dahl salt-sensitive rat heart. Am J Physiol Heart Circ Physiol. 2008;294:H2473–9.PubMedCrossRef Matsuhisa S, Otani H, Okazaki T, Yamashita K, Akita Y, Sato D, et al. Angiotensin II type 1 receptor blocker preserves tolerance to ischemia-reperfusion injury in Dahl salt-sensitive rat heart. Am J Physiol Heart Circ Physiol. 2008;294:H2473–9.PubMedCrossRef
65.
Zurück zum Zitat Oak JH, Cai H. Attenuation of angiotensin II signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice. Diabetes. 2007;56:118–26.PubMedCrossRef Oak JH, Cai H. Attenuation of angiotensin II signaling recouples eNOS and inhibits nonendothelial NOX activity in diabetic mice. Diabetes. 2007;56:118–26.PubMedCrossRef
66.
Zurück zum Zitat Miyazaki R, Ichiki T, Hashimoto T, Inanaga K, Imayama I, Sadoshima J, et al. SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2008;28:1263–9.PubMedCrossRef Miyazaki R, Ichiki T, Hashimoto T, Inanaga K, Imayama I, Sadoshima J, et al. SIRT1, a longevity gene, downregulates angiotensin II type 1 receptor expression in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2008;28:1263–9.PubMedCrossRef
67.
Zurück zum Zitat Orimo M, Minamino T, Miyauchi H, Tateno K, Okada S, Moriya J, et al. Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler Thromb Vasc Biol. 2009;29:889–94.PubMedCrossRef Orimo M, Minamino T, Miyauchi H, Tateno K, Okada S, Moriya J, et al. Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler Thromb Vasc Biol. 2009;29:889–94.PubMedCrossRef
68.
Zurück zum Zitat Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience. 2009;159:993–1002.PubMedCrossRef Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA. Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience. 2009;159:993–1002.PubMedCrossRef
69.
Zurück zum Zitat Zhu HR, Wang ZY, Zhu XL, Wu XX, Li EG, Xu Y. Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1alpha expression in experimental stroke. Neuropharmacology. 2010;59:70–6.PubMedCrossRef Zhu HR, Wang ZY, Zhu XL, Wu XX, Li EG, Xu Y. Icariin protects against brain injury by enhancing SIRT1-dependent PGC-1alpha expression in experimental stroke. Neuropharmacology. 2010;59:70–6.PubMedCrossRef
70.
Zurück zum Zitat Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation. 2010;122:2170–82.PubMedCrossRef Hsu CP, Zhai P, Yamamoto T, Maejima Y, Matsushima S, Hariharan N, et al. Silent information regulator 1 protects the heart from ischemia/reperfusion. Circulation. 2010;122:2170–82.PubMedCrossRef
71.
Zurück zum Zitat Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 2011;4:46ra.CrossRef Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, et al. The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 2011;4:46ra.CrossRef
72.
Zurück zum Zitat Amat R, Planavila A, Chen SL, Iglesias R, Giralt M, Villarroya F. SIRT1 controls the transcription of the Peroxisome Proliferator-activated Receptor-{gamma} Co-activator-1{alpha} (PGC-1{alpha}) gene in skeletal muscle through the PGC-1{alpha} autoregulatory loop and interaction with MyoD. J Biol Chem. 2009;284:21872–80.PubMedCrossRef Amat R, Planavila A, Chen SL, Iglesias R, Giralt M, Villarroya F. SIRT1 controls the transcription of the Peroxisome Proliferator-activated Receptor-{gamma} Co-activator-1{alpha} (PGC-1{alpha}) gene in skeletal muscle through the PGC-1{alpha} autoregulatory loop and interaction with MyoD. J Biol Chem. 2009;284:21872–80.PubMedCrossRef
73.
Zurück zum Zitat Sheu JJ, Chua S, Sun CK, Chang LT, Yen CH, Wu CJ, et al. Intra-coronary administration of cyclosporine limits infarct size, attenuates remodeling and preserves left ventricular function in porcine acute anterior infarction. Int J Cardiol. 2011;147:79–87.PubMedCrossRef Sheu JJ, Chua S, Sun CK, Chang LT, Yen CH, Wu CJ, et al. Intra-coronary administration of cyclosporine limits infarct size, attenuates remodeling and preserves left ventricular function in porcine acute anterior infarction. Int J Cardiol. 2011;147:79–87.PubMedCrossRef
74.
Zurück zum Zitat Skyschally A, Schulz R, Heusch G. Cyclosporine A at reperfusion reduces infarct size in pigs. Cardiovasc Drugs Ther. 2010;24:85–7.PubMedCrossRef Skyschally A, Schulz R, Heusch G. Cyclosporine A at reperfusion reduces infarct size in pigs. Cardiovasc Drugs Ther. 2010;24:85–7.PubMedCrossRef
75.
Zurück zum Zitat Han JS, Wang HS, Yan DM, Wang ZW, Han HG, Zhu HY, et al. Myocardial ischaemic and diazoxide preconditioning both increase PGC-1alpha and reduce mitochondrial damage. Acta Cardiol. 2010;65:639–44.PubMed Han JS, Wang HS, Yan DM, Wang ZW, Han HG, Zhu HY, et al. Myocardial ischaemic and diazoxide preconditioning both increase PGC-1alpha and reduce mitochondrial damage. Acta Cardiol. 2010;65:639–44.PubMed
76.
Zurück zum Zitat Lynn EG, Stevens MV, Wong RP, Carabenciov D, Jacobson J, Murphy E, et al. Transient upregulation of PGC-1alpha diminishes cardiac ischemia tolerance via upregulation of ANT1. J Mol Cell Cardiol. 2010;49:693–8.PubMedCrossRef Lynn EG, Stevens MV, Wong RP, Carabenciov D, Jacobson J, Murphy E, et al. Transient upregulation of PGC-1alpha diminishes cardiac ischemia tolerance via upregulation of ANT1. J Mol Cell Cardiol. 2010;49:693–8.PubMedCrossRef
77.
Zurück zum Zitat Rasbach KA, Schnellmann RG. PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem Biophys Res Commun. 2007;355:734–9.PubMedCrossRef Rasbach KA, Schnellmann RG. PGC-1alpha over-expression promotes recovery from mitochondrial dysfunction and cell injury. Biochem Biophys Res Commun. 2007;355:734–9.PubMedCrossRef
Metadaten
Titel
Aliskiren and Valsartan Reduce Myocardial AT1 Receptor Expression and Limit Myocardial Infarct Size in Diabetic Mice
verfasst von
Yumei Ye
Jinqiao Qian
Alexander C. Castillo
Jose Regino Perez-Polo
Yochai Birnbaum
Publikationsdatum
01.12.2011
Verlag
Springer US
Erschienen in
Cardiovascular Drugs and Therapy / Ausgabe 6/2011
Print ISSN: 0920-3206
Elektronische ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-011-6339-z

Weitere Artikel der Ausgabe 6/2011

Cardiovascular Drugs and Therapy 6/2011 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.