Skip to main content
Erschienen in: Cardiovascular Drugs and Therapy 3/2012

01.06.2012

Effect of Chronic CPT-1 Inhibition on Myocardial Ischemia-Reperfusion Injury (I/R) in a Model of Diet-Induced Obesity

verfasst von: Gerald Maarman, Erna Marais, Amanda Lochner, Eugene F du Toit

Erschienen in: Cardiovascular Drugs and Therapy | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Abstract

Purpose

By increasing circulating free fatty acids and the rate of fatty acid oxidation, obesity decreases glucose oxidation and myocardial tolerance to ischemia. Partial inhibition of fatty acid oxidation may improve myocardial tolerance to ischemia/reperfusion (I/R) in obesity. We assessed the effects of oxfenicine treatment on post ischemic cardiac function and myocardial infarct size in obese rats.

Methods

Male Wistar rats were fed a control diet or a high calorie diet which resulted in diet induced obesity (DIO) for 16 weeks. Oxfenicine (200 mg/kg/day) was administered to control and DIO rats for the last 8 weeks. Isolated hearts were perfused and infarct size and post ischemic cardiac function was assessed after regional or global ischemia and reperfusion. Cardiac mitochondrial function was assessed and myocardial expression and activity of CPT-1 (carnitine palmitoyl transferase-1) and IRS-1 (insulin receptor substrate-1) was assessed using Western blot analysis.

Results

In the DIO rats, chronic oxfenicine treatment improved post ischemic cardiac function and reduced myocardial infarct size after I/R but had no effect on the cardiac mitochondrial respiration. Chronic oxfenicine treatment worsened post ischemic cardiac function, myocardial infarct size and basal mitochondrial respiration in control rat hearts. Basal respiratory control index (RCI) values, state 2 and state 4 respiration rates and ADP phosphorylation rates were compromised by oxfenicine treatment.

Conclusion

Chronic oxfenicine treatment improved myocardial tolerance to I/R in the obese rat hearts but decreased myocardial tolerance to I/R in control rat hearts. This decreased tolerance to ischemia of oxfenicine treated controls was associated with adverse changes in basal and reoxygenation mitochondrial function. These changes were absent in oxfenicine treated hearts from obese rats.
Literatur
1.
Zurück zum Zitat Mathieu P, Pibarot P, Larose E, Poirier P, Marette A, Despés JP. Visceral obesity and the heart. Int J Biochem Cell Biol. 2008;40:821–36.PubMedCrossRef Mathieu P, Pibarot P, Larose E, Poirier P, Marette A, Despés JP. Visceral obesity and the heart. Int J Biochem Cell Biol. 2008;40:821–36.PubMedCrossRef
2.
Zurück zum Zitat Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. Obesity and cardiovascular disease: pathophysiology, evaluation and effect of weight loss: an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the obesity committee of the council on nutrition, physical activity and metabolism. Circulation. 2006;113:898–918.PubMedCrossRef Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. Obesity and cardiovascular disease: pathophysiology, evaluation and effect of weight loss: an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the obesity committee of the council on nutrition, physical activity and metabolism. Circulation. 2006;113:898–918.PubMedCrossRef
3.
Zurück zum Zitat Diniz YS, Burneiko RM, Seiva FRF, Almeida FQA, Galhardi CM, Filho JL. Diet compounds, glycemic index and obesity-related cardiac effects. Int J Cardiol. 2008;124:92–9.PubMedCrossRef Diniz YS, Burneiko RM, Seiva FRF, Almeida FQA, Galhardi CM, Filho JL. Diet compounds, glycemic index and obesity-related cardiac effects. Int J Cardiol. 2008;124:92–9.PubMedCrossRef
4.
Zurück zum Zitat Kobayashi H, Nakamura T, Miyaoka K, Nishida M, Funahashi T, Yamashita S, et al. Visceral fat accumulation contributes to insulin resistance, small sized low-density lipoprotein and progression of coronary artery disease in middle-aged non-obese Japanese men. Jpn Circ J. 2001;65:193–9.PubMedCrossRef Kobayashi H, Nakamura T, Miyaoka K, Nishida M, Funahashi T, Yamashita S, et al. Visceral fat accumulation contributes to insulin resistance, small sized low-density lipoprotein and progression of coronary artery disease in middle-aged non-obese Japanese men. Jpn Circ J. 2001;65:193–9.PubMedCrossRef
5.
Zurück zum Zitat Thim T, Bentzon JF, Kristiansen SB, Simonsen U, Anderson HL, Wassermann K, et al. Size of myocardial infarction induced by ischemia/reperfusion is unaltered in rats with metabolic syndrome. Clin Sci. 2006;110:665–71.PubMedCrossRef Thim T, Bentzon JF, Kristiansen SB, Simonsen U, Anderson HL, Wassermann K, et al. Size of myocardial infarction induced by ischemia/reperfusion is unaltered in rats with metabolic syndrome. Clin Sci. 2006;110:665–71.PubMedCrossRef
6.
Zurück zum Zitat Hegarty BD, Turner N, Cooney GJ, Kraegen EW. Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase. Acta Physiol. 2009;196:129–45.CrossRef Hegarty BD, Turner N, Cooney GJ, Kraegen EW. Insulin resistance and fuel homeostasis: the role of AMP-activated protein kinase. Acta Physiol. 2009;196:129–45.CrossRef
7.
Zurück zum Zitat Lopaschuk GD, Ussher JR, Folmes CL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–58.PubMedCrossRef Lopaschuk GD, Ussher JR, Folmes CL, Jaswal JS, Stanley WC. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90:207–58.PubMedCrossRef
8.
Zurück zum Zitat Lopaschuk GD, Folmes CD, Stanley WC. Cardiac energy metabolism in obesity. Circ Res. 2007;101:335–47.PubMedCrossRef Lopaschuk GD, Folmes CD, Stanley WC. Cardiac energy metabolism in obesity. Circ Res. 2007;101:335–47.PubMedCrossRef
9.
Zurück zum Zitat Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim ET Biophys Acta. 2005;1734:112–26. Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim ET Biophys Acta. 2005;1734:112–26.
10.
Zurück zum Zitat Opie LH. The heart: physiology and metabolism, second edition Raven Press 1991. Opie LH. The heart: physiology and metabolism, second edition Raven Press 1991.
11.
Zurück zum Zitat Calvani M, Reda E, Arrigoni-Martelli E. Regulation of carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Basic Res Cardiol. 2000;95:2.CrossRef Calvani M, Reda E, Arrigoni-Martelli E. Regulation of carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Basic Res Cardiol. 2000;95:2.CrossRef
12.
Zurück zum Zitat Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Research. 1997;34:25–33.CrossRef Stanley WC, Lopaschuk GD, McCormack JG. Regulation of energy substrate metabolism in the diabetic heart. Cardiovasc Research. 1997;34:25–33.CrossRef
13.
Zurück zum Zitat Rupp H, Rupp TP, Maisch B. Fatty acid oxidation inhibition with PPAR-α activation (FOXIB/PPARα) for normalizing gene expression in heart failure? Cardiovasc Research. 2005;66:423–6.CrossRef Rupp H, Rupp TP, Maisch B. Fatty acid oxidation inhibition with PPAR-α activation (FOXIB/PPARα) for normalizing gene expression in heart failure? Cardiovasc Research. 2005;66:423–6.CrossRef
14.
Zurück zum Zitat Taegtmeyer H, Wilson CR, Razeghi P, Sharma S. Metabolic energetics and genetics in the heart. Ann New York Acad Sci. 2005;1047:208–18.CrossRef Taegtmeyer H, Wilson CR, Razeghi P, Sharma S. Metabolic energetics and genetics in the heart. Ann New York Acad Sci. 2005;1047:208–18.CrossRef
15.
Zurück zum Zitat Hafstad AD, Khalid AM, How OJ, Larsen TS, Aasum E. Glucose and insulin improve cardiac efficiency and post-ischemic functional recovery in perfused hearts from type 2 diabetic (db/db) mice. Am J Physiol Endorinol Metab. 2007;292:E1288–94.CrossRef Hafstad AD, Khalid AM, How OJ, Larsen TS, Aasum E. Glucose and insulin improve cardiac efficiency and post-ischemic functional recovery in perfused hearts from type 2 diabetic (db/db) mice. Am J Physiol Endorinol Metab. 2007;292:E1288–94.CrossRef
16.
Zurück zum Zitat Rupp H, Zarain-Herzberg A, Maisch B. The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Urban Vogel. 2002;27:621–36. Rupp H, Zarain-Herzberg A, Maisch B. The use of partial fatty acid oxidation inhibitors for metabolic therapy of angina pectoris and heart failure. Urban Vogel. 2002;27:621–36.
17.
Zurück zum Zitat Beadle RM, Frenneaux M. Modification of myocardial substrate utilisation: a new therapeutic paradigm in cardiovascular disease. Heart. 2010;96:824–30.PubMedCrossRef Beadle RM, Frenneaux M. Modification of myocardial substrate utilisation: a new therapeutic paradigm in cardiovascular disease. Heart. 2010;96:824–30.PubMedCrossRef
18.
Zurück zum Zitat Opie LH, Knuuti J. The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol. 2009;54:1637–46.PubMedCrossRef Opie LH, Knuuti J. The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol. 2009;54:1637–46.PubMedCrossRef
19.
Zurück zum Zitat Stephens TW, Higgins AJ, Cook GA, Harris RA. Two mechanisms produce tissue-specific inhibition of fatty acid oxidation by oxfenicine. Biochem J. 1985;227:651–60.PubMed Stephens TW, Higgins AJ, Cook GA, Harris RA. Two mechanisms produce tissue-specific inhibition of fatty acid oxidation by oxfenicine. Biochem J. 1985;227:651–60.PubMed
20.
Zurück zum Zitat Burges RA, Gardiner DG, Higgins AJ. Protection of the ischemic dog heart by oxfenicine. Life Sci. 1981;29:1847–85.PubMedCrossRef Burges RA, Gardiner DG, Higgins AJ. Protection of the ischemic dog heart by oxfenicine. Life Sci. 1981;29:1847–85.PubMedCrossRef
21.
Zurück zum Zitat Stanley WC. Partial fatty acid oxidation inhibitors for stable angina. Expert Opin Investig Drugs. 2002;11:615–29.PubMedCrossRef Stanley WC. Partial fatty acid oxidation inhibitors for stable angina. Expert Opin Investig Drugs. 2002;11:615–29.PubMedCrossRef
22.
Zurück zum Zitat Okere IC, Chandler MP, McElfresh TA, Rennison JH, Kung TA, Hoit BD, et al. Carnitine palmitoyl transferase-I inhibition is not associated with cardiac hypertrophy in rats fed a high – fat diet. Clin Exp Pharmacol Physiol. 2007;34:113–9.PubMedCrossRef Okere IC, Chandler MP, McElfresh TA, Rennison JH, Kung TA, Hoit BD, et al. Carnitine palmitoyl transferase-I inhibition is not associated with cardiac hypertrophy in rats fed a high – fat diet. Clin Exp Pharmacol Physiol. 2007;34:113–9.PubMedCrossRef
23.
Zurück zum Zitat Bachmann E, Weber E. Biochemical mechanisms of oxfenicine cardio toxicity. Pharmacol. 1988;36:238–48.CrossRef Bachmann E, Weber E. Biochemical mechanisms of oxfenicine cardio toxicity. Pharmacol. 1988;36:238–48.CrossRef
24.
Zurück zum Zitat Jodalen H, Ytrehus K, Moen P, Hokland B, Mjøs OD. Oxfenicine-induced accumulation of lipid in the rat myocardium. J Mol Cell Cardiol. 1988;20:277–82.PubMedCrossRef Jodalen H, Ytrehus K, Moen P, Hokland B, Mjøs OD. Oxfenicine-induced accumulation of lipid in the rat myocardium. J Mol Cell Cardiol. 1988;20:277–82.PubMedCrossRef
25.
Zurück zum Zitat Greaves P, Martin J, Michel MC, Mompon P. Cardiac hypertrophy in the dog and rat induced by oxfenicine, an agent which modifies muscle metabolism. Arch Toxicol. 1984;7:488–93.CrossRef Greaves P, Martin J, Michel MC, Mompon P. Cardiac hypertrophy in the dog and rat induced by oxfenicine, an agent which modifies muscle metabolism. Arch Toxicol. 1984;7:488–93.CrossRef
26.
Zurück zum Zitat Chang KC, Tseng CD, Lu SC, Liang JT, Wu MS, Tsai MS, et al. Effects of acetyl-L-carnitine and oxfenicine on aorta stiffness in diabetic rats. Eur J Clin Invest. 2010;40:1–9. Chang KC, Tseng CD, Lu SC, Liang JT, Wu MS, Tsai MS, et al. Effects of acetyl-L-carnitine and oxfenicine on aorta stiffness in diabetic rats. Eur J Clin Invest. 2010;40:1–9.
27.
Zurück zum Zitat Chavez PN, Stanley WC, McElfresh TA, Huang H, Sterk JP, Chandler ME. Effect of hyperglycemia and fatty acid oxidation inhibition during aerobic conditions and demand-induced ischemia. Am J Physiol Heart Circ Physiol. 2003;284:H1521–7.PubMed Chavez PN, Stanley WC, McElfresh TA, Huang H, Sterk JP, Chandler ME. Effect of hyperglycemia and fatty acid oxidation inhibition during aerobic conditions and demand-induced ischemia. Am J Physiol Heart Circ Physiol. 2003;284:H1521–7.PubMed
28.
Zurück zum Zitat Chandler MP, Chavez PN, McElfresh TA, Huang H, Harmon CS, Stanley WC. Partial inhibition of fatty acid oxidation increases regional contractile power and efficiency during demand-induced ischemia. Cardiovasc Research. 2003;59:143–51.CrossRef Chandler MP, Chavez PN, McElfresh TA, Huang H, Harmon CS, Stanley WC. Partial inhibition of fatty acid oxidation increases regional contractile power and efficiency during demand-induced ischemia. Cardiovasc Research. 2003;59:143–51.CrossRef
29.
Zurück zum Zitat Lionetti V, Linke A, Chandler MP, Young ME, Penn MS, Gupte S, et al. Carnitine palmitoyl transferase-I inhibition prevents ventricular remodelling and delays decompensation in pacing-induced heart failure. Cardiovasc Research. 2005;66:454–61.CrossRef Lionetti V, Linke A, Chandler MP, Young ME, Penn MS, Gupte S, et al. Carnitine palmitoyl transferase-I inhibition prevents ventricular remodelling and delays decompensation in pacing-induced heart failure. Cardiovasc Research. 2005;66:454–61.CrossRef
30.
Zurück zum Zitat Pickavance LC, Tadayyon M, Widdowson PS, Buckingham RE, Wilding JPH. Therapeutic index for rosiglitazone in dietary obese rats: separation of efficacy and haemodilution. Brit J Pharmacol. 1999;128:1570–6.CrossRef Pickavance LC, Tadayyon M, Widdowson PS, Buckingham RE, Wilding JPH. Therapeutic index for rosiglitazone in dietary obese rats: separation of efficacy and haemodilution. Brit J Pharmacol. 1999;128:1570–6.CrossRef
31.
Zurück zum Zitat Du Toit EF, Smith W, Muller C, Strijdom H, Stouthammer B, Woodiwiss AJ, et al. Myocardial susceptibility to ischemic-reperfusion injury in a pre-diabetic model of dietary-induced obesity. Am J Physiol Heart Circ Physiol. 2008;294:H2336–43.PubMedCrossRef Du Toit EF, Smith W, Muller C, Strijdom H, Stouthammer B, Woodiwiss AJ, et al. Myocardial susceptibility to ischemic-reperfusion injury in a pre-diabetic model of dietary-induced obesity. Am J Physiol Heart Circ Physiol. 2008;294:H2336–43.PubMedCrossRef
32.
Zurück zum Zitat Lindenmayer GE, Sordahl LA, Schwartz A. Re-evaluation of oxidative phosphorylation in cardiac mitochondria from normal animals and animals in heart failure. Circ Res. 1968;23:439–50.PubMed Lindenmayer GE, Sordahl LA, Schwartz A. Re-evaluation of oxidative phosphorylation in cardiac mitochondria from normal animals and animals in heart failure. Circ Res. 1968;23:439–50.PubMed
33.
Zurück zum Zitat Lanza IR, Nair KS. Functional assessment of isolated mitochondria in vitro. Methods Enzymol. 2009;457:349–72.PubMedCrossRef Lanza IR, Nair KS. Functional assessment of isolated mitochondria in vitro. Methods Enzymol. 2009;457:349–72.PubMedCrossRef
34.
Zurück zum Zitat Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMed
35.
Zurück zum Zitat Bradford MM. A rapid sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;71:248–54.CrossRef Bradford MM. A rapid sensitive method for quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;71:248–54.CrossRef
36.
Zurück zum Zitat Higgins AJ, Morville M, Burges RA. Oxfenicine diverts rat muscle metabolism from fatty acid to carbohydrate oxidation and protects the ischemic rat heart. Life Sci. 1980;27:963–70.PubMedCrossRef Higgins AJ, Morville M, Burges RA. Oxfenicine diverts rat muscle metabolism from fatty acid to carbohydrate oxidation and protects the ischemic rat heart. Life Sci. 1980;27:963–70.PubMedCrossRef
37.
Zurück zum Zitat Higgins AJ, Morville M, Burges RA. Mechanism of action of oxfenicine on muscle metabolism. Biochem Biophys Res Comm. 1981;100:291–6.PubMedCrossRef Higgins AJ, Morville M, Burges RA. Mechanism of action of oxfenicine on muscle metabolism. Biochem Biophys Res Comm. 1981;100:291–6.PubMedCrossRef
38.
Zurück zum Zitat Molaparast-Sales F, Liedtke AJ, Nellis SH. Effects of the fatty acid blocking agents, oxfenicine and 4-bromocrotonic acid, on performance in aerobic and ischemic myocardium. J Mol Cell Cardiol. 1987;19:509–20.CrossRef Molaparast-Sales F, Liedtke AJ, Nellis SH. Effects of the fatty acid blocking agents, oxfenicine and 4-bromocrotonic acid, on performance in aerobic and ischemic myocardium. J Mol Cell Cardiol. 1987;19:509–20.CrossRef
39.
Zurück zum Zitat Essop MF, Chan WYA, Valle A, García-Palmer FJ, Du Toit EF. Impaired contractile function and mitochondrial respiratory capacity in response to oxygen deprivation in a rat model of pre-diabetes. Acta Physiol. 2009;197:289–96.CrossRef Essop MF, Chan WYA, Valle A, García-Palmer FJ, Du Toit EF. Impaired contractile function and mitochondrial respiratory capacity in response to oxygen deprivation in a rat model of pre-diabetes. Acta Physiol. 2009;197:289–96.CrossRef
40.
Zurück zum Zitat Zhou L, Huang H, Yuan CL, Keung W, Lopaschuk GD, Stanley WC. Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation. Am J Physiol Heart Circ Physiol. 2008;294:H954–60.PubMedCrossRef Zhou L, Huang H, Yuan CL, Keung W, Lopaschuk GD, Stanley WC. Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation. Am J Physiol Heart Circ Physiol. 2008;294:H954–60.PubMedCrossRef
41.
Zurück zum Zitat Broderick TL, Glick B. Effect of gender and fatty acids on ischemic recovery of contractile and pump function in the rat heart. Gend Med. 2004;1:86–99.PubMedCrossRef Broderick TL, Glick B. Effect of gender and fatty acids on ischemic recovery of contractile and pump function in the rat heart. Gend Med. 2004;1:86–99.PubMedCrossRef
42.
Zurück zum Zitat Carregal M, Varela A, Dalamon V, Sacks S, Savino EA. Beneficial effects of oxfenicine on the hypoxic rat atria. Arch Physiol Biochem. 1995;103:45–9.PubMedCrossRef Carregal M, Varela A, Dalamon V, Sacks S, Savino EA. Beneficial effects of oxfenicine on the hypoxic rat atria. Arch Physiol Biochem. 1995;103:45–9.PubMedCrossRef
43.
Zurück zum Zitat Prendes MGM, Garcia JV, Testoni G, Fernandez MA, Perazzo JC, Savino EA, et al. Influence of fasting on the effects of dimethylamiloride and oxfenicine on ischemic–reperfused rat hearts. Arch Physiol Biochem. 2006;112:31–6.CrossRef Prendes MGM, Garcia JV, Testoni G, Fernandez MA, Perazzo JC, Savino EA, et al. Influence of fasting on the effects of dimethylamiloride and oxfenicine on ischemic–reperfused rat hearts. Arch Physiol Biochem. 2006;112:31–6.CrossRef
44.
Zurück zum Zitat Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785–9.PubMedCrossRef Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963;1:785–9.PubMedCrossRef
45.
Zurück zum Zitat Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabet Metab. 1998;14:263–83.CrossRef Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabet Metab. 1998;14:263–83.CrossRef
46.
Zurück zum Zitat Guo L, Tabrizchi R. Peroxisome proliferator-activated receptor gamma as a drug target in the pathogenesis of insulin resistance. Pharmacol Therap. 2006;111:147–73.CrossRef Guo L, Tabrizchi R. Peroxisome proliferator-activated receptor gamma as a drug target in the pathogenesis of insulin resistance. Pharmacol Therap. 2006;111:147–73.CrossRef
47.
Zurück zum Zitat King KL, Opie LH. Glucose and glycogen utilization in myocardial ischemia-changes in metabolism and consequences for the myocyte. Mol Cell Biochem. 1998;180:3–26.PubMedCrossRef King KL, Opie LH. Glucose and glycogen utilization in myocardial ischemia-changes in metabolism and consequences for the myocyte. Mol Cell Biochem. 1998;180:3–26.PubMedCrossRef
48.
Zurück zum Zitat Apstein CS, Opie LH. Glucose-insulin-potassium (GIK) for acute myocardial infarction: a negative study with a positive value. Cardiovasc Drugs Ther. 1999;13:185–9.PubMedCrossRef Apstein CS, Opie LH. Glucose-insulin-potassium (GIK) for acute myocardial infarction: a negative study with a positive value. Cardiovasc Drugs Ther. 1999;13:185–9.PubMedCrossRef
49.
Zurück zum Zitat Bergmann SR, Weinheimer CJ, Markham J, Herrero P. Quantitation of myocardial fatty acid metabolism using PET. J Nucl Med. 1996;37:1723–30.PubMed Bergmann SR, Weinheimer CJ, Markham J, Herrero P. Quantitation of myocardial fatty acid metabolism using PET. J Nucl Med. 1996;37:1723–30.PubMed
50.
Zurück zum Zitat Drake-Holland AJ, Passingham JE. The effect of oxfenicine on cardiac carbohydrate metabolism is intact dogs. Bas Res Cardiol. 1983;78:19–27.CrossRef Drake-Holland AJ, Passingham JE. The effect of oxfenicine on cardiac carbohydrate metabolism is intact dogs. Bas Res Cardiol. 1983;78:19–27.CrossRef
51.
Zurück zum Zitat Barr RL, Lopaschuk GD. Direct measurement of energy metabolism in the isolated working rat heart. JPM. 1997;38:11–7. Barr RL, Lopaschuk GD. Direct measurement of energy metabolism in the isolated working rat heart. JPM. 1997;38:11–7.
52.
Zurück zum Zitat Lochner A, Du Toit EF, Huisamen B, Koeslag JH, Moolman JA. Cellular injury in ischemia. Cardiovasc Journ of South Africa. 2004;15:205–6. Lochner A, Du Toit EF, Huisamen B, Koeslag JH, Moolman JA. Cellular injury in ischemia. Cardiovasc Journ of South Africa. 2004;15:205–6.
53.
Zurück zum Zitat Taegtmeyer H. Metabolism — the lost child of cardiology. J Am Coll Cardiol. 2000;36:1386–8.PubMedCrossRef Taegtmeyer H. Metabolism — the lost child of cardiology. J Am Coll Cardiol. 2000;36:1386–8.PubMedCrossRef
54.
Zurück zum Zitat Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, et al. Metabolic modulation with perhexiline in chronic heart failure a randomized, controlled trial of short-term use of a novel treatment. Circ Res. 2005;112:3280–8. Lee L, Campbell R, Scheuermann-Freestone M, Taylor R, Gunaruwan P, Williams L, et al. Metabolic modulation with perhexiline in chronic heart failure a randomized, controlled trial of short-term use of a novel treatment. Circ Res. 2005;112:3280–8.
55.
Zurück zum Zitat Aasum E, Khalid AM, Gudbrandsen OA, How OJ, Berge RK, Larsen TS. Fenofibrate modulates cardiac and hepatic metabolism and increases ischemic tolerance in diet-induced obese mice. J Mol Cell Cardiol. 2008;44:201–9.PubMedCrossRef Aasum E, Khalid AM, Gudbrandsen OA, How OJ, Berge RK, Larsen TS. Fenofibrate modulates cardiac and hepatic metabolism and increases ischemic tolerance in diet-induced obese mice. J Mol Cell Cardiol. 2008;44:201–9.PubMedCrossRef
56.
Zurück zum Zitat Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab. 2000;279:E1104–13.PubMed Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab. 2000;279:E1104–13.PubMed
57.
Zurück zum Zitat Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009;297:E578–91.PubMedCrossRef Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab. 2009;297:E578–91.PubMedCrossRef
58.
Zurück zum Zitat Dyck JRB, Cheng JF, Stanley WC, Barr R, Chandler MP, Brown S, et al. Malonyl-Coenzyme A decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ Res. 2004;94:e78–84.PubMedCrossRef Dyck JRB, Cheng JF, Stanley WC, Barr R, Chandler MP, Brown S, et al. Malonyl-Coenzyme A decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Circ Res. 2004;94:e78–84.PubMedCrossRef
59.
Zurück zum Zitat Liu Q, Docherty JC, Rendell JCT, Clanachan AS, Lopaschuk GD. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol. 2002;39:718–25.PubMedCrossRef Liu Q, Docherty JC, Rendell JCT, Clanachan AS, Lopaschuk GD. High levels of fatty acids delay the recovery of intracellular pH and cardiac efficiency in post-ischemic hearts by inhibiting glucose oxidation. J Am Coll Cardiol. 2002;39:718–25.PubMedCrossRef
60.
Zurück zum Zitat Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The anti angina drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation inhibiting mitochondrial long chain 3-Ketoacyl Coenzyme A Thiolase. Circ Res. 2000;86:580–8.PubMed Kantor PF, Lucien A, Kozak R, Lopaschuk GD. The anti angina drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation inhibiting mitochondrial long chain 3-Ketoacyl Coenzyme A Thiolase. Circ Res. 2000;86:580–8.PubMed
61.
Zurück zum Zitat Bielefeld DR, Vary TC, Neely JR. Inhibition of Carnitine Palmitoyl-CoA Transferase activity and fatty acid oxidation by lactate and oxfenicine in cardiac muscle. Mol Cell Cardiol. 1985;17:619–25. Bielefeld DR, Vary TC, Neely JR. Inhibition of Carnitine Palmitoyl-CoA Transferase activity and fatty acid oxidation by lactate and oxfenicine in cardiac muscle. Mol Cell Cardiol. 1985;17:619–25.
Metadaten
Titel
Effect of Chronic CPT-1 Inhibition on Myocardial Ischemia-Reperfusion Injury (I/R) in a Model of Diet-Induced Obesity
verfasst von
Gerald Maarman
Erna Marais
Amanda Lochner
Eugene F du Toit
Publikationsdatum
01.06.2012
Verlag
Springer US
Erschienen in
Cardiovascular Drugs and Therapy / Ausgabe 3/2012
Print ISSN: 0920-3206
Elektronische ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-012-6377-1

Weitere Artikel der Ausgabe 3/2012

Cardiovascular Drugs and Therapy 3/2012 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.