Skip to main content
Erschienen in: Cardiovascular Drugs and Therapy 5/2013

01.10.2013 | ORIGINAL ARTICLE

The Consequences of Long-Term Glycogen Synthase Kinase-3 Inhibition on Normal and Insulin Resistant Rat Hearts

verfasst von: T. B. Flepisi, Amanda Lochner, Barbara Huisamen

Erschienen in: Cardiovascular Drugs and Therapy | Ausgabe 5/2013

Einloggen, um Zugang zu erhalten

Abstract

Background

Glycogen synthase kinase-3 (GSK-3) is a serine-threonine protein kinase, discovered as a regulator of glycogen synthase. GSK-3 may regulate the expression of SERCA-2a potentially affecting myocardial contractility. It is known to phosphorylate and inhibit IRS-1, thus disrupting insulin signalling. This study aimed to determine whether myocardial GSK-3 protein and its substrate proteins are dysregulated in obesity and insulin resistance, and whether chronic GSK-3 inhibition can prevent or reverse this.

Methods

Weight matched male Wistar rats were rendered obese by hyperphagia using a special diet (DIO) for 16 weeks and compared to chow fed controls. Half of each group was treated with the GSK-3 inhibitor CHIR118637 (30 mg/kg/day) from week 12 to16 of the diet period. Biometric and biochemical parameters were measured and protein expression determined by Western blotting and specific antibodies. Ca2+ATPase activity was determined spectrophotometrically. Cardiomyocytes were prepared by collagenase perfusion and insulin stimulated 2-deoxy-glucose uptake determined.

Results

DIO rats were significantly heavier than controls, associated with increased intra-peritoneal fat and insulin resistance. GSK-3 inhibition did not affect weight but improved insulin resistance, also on cellular level. It had no effect on GSK-3 expression but elevated its phospho/total ratio and elevated IRS-2 expression. Obesity lowered SERCA-2a expression and activity while GSK-3 inhibition alleviated this. The phospho/total ratio of phospholamban underscored inhibition of SERCA-2a in obesity. In addition, signs of myocardial hypertrophy were observed in treated control rats.

Conclusion

GSK-3 inhibition could not reverse all the detrimental effects of obesity but may be harmful in normal rat hearts. It regulates IRS-2, SERCA-2a and phospholamban expression but not IRS-1.
Literatur
1.
Zurück zum Zitat Hemmings BA, Yellowlees D, Kernohan JC, Cohen P. Purification of glycogen synthase kinase 3 from rabbit skeletal muscle. Co-purification with the activation factor(FA) of the (Mg-ATP) dependent protein phosphatase. Eur J Biochem. 1981;119:443–51.PubMedCrossRef Hemmings BA, Yellowlees D, Kernohan JC, Cohen P. Purification of glycogen synthase kinase 3 from rabbit skeletal muscle. Co-purification with the activation factor(FA) of the (Mg-ATP) dependent protein phosphatase. Eur J Biochem. 1981;119:443–51.PubMedCrossRef
2.
Zurück zum Zitat Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980;107:519–27.PubMedCrossRef Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980;107:519–27.PubMedCrossRef
3.
Zurück zum Zitat Huisamen B, Lochner A. GSK-3 protein and the heart: friend or foe? SAHeart. 2010;7:48–57. Huisamen B, Lochner A. GSK-3 protein and the heart: friend or foe? SAHeart. 2010;7:48–57.
4.
5.
Zurück zum Zitat Ciaraldi TP, Nikoulina SE, Bandukwala RA, Carter L, Henry RR. Role of glycogen synthase kinase-3 alpha in insulin action in cultured human skeletal muscle cells. Endocrinology. 2007;148:4393–9.PubMedCrossRef Ciaraldi TP, Nikoulina SE, Bandukwala RA, Carter L, Henry RR. Role of glycogen synthase kinase-3 alpha in insulin action in cultured human skeletal muscle cells. Endocrinology. 2007;148:4393–9.PubMedCrossRef
6.
Zurück zum Zitat Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990;9:2431–8.PubMed Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 1990;9:2431–8.PubMed
7.
Zurück zum Zitat Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003;116:1175–86.PubMedCrossRef Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003;116:1175–86.PubMedCrossRef
8.
Zurück zum Zitat Parker PJ, Caudwell FB, Cohen P. Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur J Biochem. 1983;130:227–34.PubMedCrossRef Parker PJ, Caudwell FB, Cohen P. Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur J Biochem. 1983;130:227–34.PubMedCrossRef
9.
Zurück zum Zitat Mora A, Sakamoto K, McManus EJ, Alessi DR. Role of the PDK-1-PKB-GSK-3 pathway in regulating glycogen synthase and glucose uptake in the heart. FEBS Lett. 2005;579:3632–8.PubMedCrossRef Mora A, Sakamoto K, McManus EJ, Alessi DR. Role of the PDK-1-PKB-GSK-3 pathway in regulating glycogen synthase and glucose uptake in the heart. FEBS Lett. 2005;579:3632–8.PubMedCrossRef
10.
Zurück zum Zitat Eldar-Finkelman H, Argast GM, Foord O, Fischer EH, Krebs EG. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells. Proc Natl Acad Sci U S A. 1996;93(19):10228–33.PubMedCrossRef Eldar-Finkelman H, Argast GM, Foord O, Fischer EH, Krebs EG. Expression and characterization of glycogen synthase kinase-3 mutants and their effect on glycogen synthase activity in intact cells. Proc Natl Acad Sci U S A. 1996;93(19):10228–33.PubMedCrossRef
11.
Zurück zum Zitat Michael A, Haq S, Chen X, Hsich E, Cui L, Walters B, et al. Glycogen synthase kinase-3beta regulates growth, calcium homeostasis, and diastolic function in the heart. J Biol Chem. 2004;279:21383–93.PubMedCrossRef Michael A, Haq S, Chen X, Hsich E, Cui L, Walters B, et al. Glycogen synthase kinase-3beta regulates growth, calcium homeostasis, and diastolic function in the heart. J Biol Chem. 2004;279:21383–93.PubMedCrossRef
12.
Zurück zum Zitat Omar MA, Wang L, Clanachan AS. Cardioprotection by GSK-3 inhibition: role of enhanced glycogen synthesis and attenuation of calcium overload. Cardiovasc Res. 2010;86(3):478–86.PubMedCrossRef Omar MA, Wang L, Clanachan AS. Cardioprotection by GSK-3 inhibition: role of enhanced glycogen synthesis and attenuation of calcium overload. Cardiovasc Res. 2010;86(3):478–86.PubMedCrossRef
13.
14.
Zurück zum Zitat Asahi M, Nakayama H, Tada M, Otsu K. Regulation of sarco(endo)plasmic reticulum Ca2+ adenosine triphosphatase by phospholamban and sarcolipin: implication for cardiac hypertrophy and failure. Trends Cardiovasc Med. 2003;13:152–7.PubMedCrossRef Asahi M, Nakayama H, Tada M, Otsu K. Regulation of sarco(endo)plasmic reticulum Ca2+ adenosine triphosphatase by phospholamban and sarcolipin: implication for cardiac hypertrophy and failure. Trends Cardiovasc Med. 2003;13:152–7.PubMedCrossRef
15.
Zurück zum Zitat Huisamen B, Dietrich D, Blackhurst D, Flepisi B, Lochner A. Early cardiovascular changes occurring in diet-induced obese, insulin resistant rats. Mol Cell Biochem. 2012;368:37–45.PubMedCrossRef Huisamen B, Dietrich D, Blackhurst D, Flepisi B, Lochner A. Early cardiovascular changes occurring in diet-induced obese, insulin resistant rats. Mol Cell Biochem. 2012;368:37–45.PubMedCrossRef
16.
Zurück zum Zitat Huisamen B, Pêrel SJC, Friedrich SO, Salie R, Strijdom H, Lochner A. AngII receptor antagonism improves nitric oxide production, eNOS and PKB expression in hearts from a rat model of insulin resistance. Mol Cell Biochem. 2011;349:21–31.PubMedCrossRef Huisamen B, Pêrel SJC, Friedrich SO, Salie R, Strijdom H, Lochner A. AngII receptor antagonism improves nitric oxide production, eNOS and PKB expression in hearts from a rat model of insulin resistance. Mol Cell Biochem. 2011;349:21–31.PubMedCrossRef
17.
Zurück zum Zitat Huisamen B, Genis A, Lochner A. Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther. 2011;25:13–20.PubMedCrossRef Huisamen B, Genis A, Lochner A. Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther. 2011;25:13–20.PubMedCrossRef
18.
Zurück zum Zitat Henriksen EJ, Dokken BB. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets. 2006;7:1435–41.PubMedCrossRef Henriksen EJ, Dokken BB. Role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes. Curr Drug Targets. 2006;7:1435–41.PubMedCrossRef
19.
Zurück zum Zitat Cline GW, Johnson K, Regittnig W, Perret P, Tozzo E, Xiao L, et al. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes. 2002;51:2903–10.PubMedCrossRef Cline GW, Johnson K, Regittnig W, Perret P, Tozzo E, Xiao L, et al. Effects of a novel glycogen synthase kinase-3 inhibitor on insulin-stimulated glucose metabolism in Zucker diabetic fatty (fa/fa) rats. Diabetes. 2002;51:2903–10.PubMedCrossRef
20.
Zurück zum Zitat Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci. 2004;25:471–80.PubMedCrossRef Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci. 2004;25:471–80.PubMedCrossRef
21.
Zurück zum Zitat Wagman AS, Johnson KW, Bussiere DE. Discovery and development of GSK3 inhibitors for the treatment of type 2 diabetes. Curr Pharm Des. 2004;10:1105–37.PubMedCrossRef Wagman AS, Johnson KW, Bussiere DE. Discovery and development of GSK3 inhibitors for the treatment of type 2 diabetes. Curr Pharm Des. 2004;10:1105–37.PubMedCrossRef
22.
Zurück zum Zitat Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.PubMedCrossRef Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.PubMedCrossRef
23.
Zurück zum Zitat Feher JJ, Davis MD. Isolation of rat cardiac sarcoplasmic reticulum with improved Ca2+ uptake and ryanodine binding. J Mol Cell Cardiol. 1991;23:249–58.PubMedCrossRef Feher JJ, Davis MD. Isolation of rat cardiac sarcoplasmic reticulum with improved Ca2+ uptake and ryanodine binding. J Mol Cell Cardiol. 1991;23:249–58.PubMedCrossRef
24.
Zurück zum Zitat Bers DM. Isolation and characterization of cardiac sarcolemma. Biochem Biophys Acta. 1979;555:131–6.PubMedCrossRef Bers DM. Isolation and characterization of cardiac sarcolemma. Biochem Biophys Acta. 1979;555:131–6.PubMedCrossRef
25.
Zurück zum Zitat Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66:375–400. Fiske CH, Subbarow Y. The colorimetric determination of phosphorus. J Biol Chem. 1925;66:375–400.
26.
Zurück zum Zitat Donthi R, Huisamen B, Lochner A. The effect of vanadate and insulin on glucose transport in isolated adult rat cardiomyocytes. Cardiovasc Drugs Ther. 2000;14:463–70.PubMedCrossRef Donthi R, Huisamen B, Lochner A. The effect of vanadate and insulin on glucose transport in isolated adult rat cardiomyocytes. Cardiovasc Drugs Ther. 2000;14:463–70.PubMedCrossRef
27.
Zurück zum Zitat Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMed Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.PubMed
28.
Zurück zum Zitat Suarez J, Scott B, Dillmann WH. Conditional increase in SERCA2a protein is able to reverse contractile dysfunction and abnormal calcium flux in established diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1439–45.PubMedCrossRef Suarez J, Scott B, Dillmann WH. Conditional increase in SERCA2a protein is able to reverse contractile dysfunction and abnormal calcium flux in established diabetic cardiomyopathy. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1439–45.PubMedCrossRef
29.
Zurück zum Zitat Eldar-Finkelman H, Licht-Murava A, Pietrokovski S, Eisenstein M. Substrate competitive GSK-3 inhibitors—strategy and implications. Biochim Biophys Acta. 1804;2010:598–603. Eldar-Finkelman H, Licht-Murava A, Pietrokovski S, Eisenstein M. Substrate competitive GSK-3 inhibitors—strategy and implications. Biochim Biophys Acta. 1804;2010:598–603.
30.
Zurück zum Zitat Martinez A. Preclinical efficacy on GSK-3 inhibitors: towards a future generation of powerful drugs. Med Res Rev. 2008;28:773–96.PubMedCrossRef Martinez A. Preclinical efficacy on GSK-3 inhibitors: towards a future generation of powerful drugs. Med Res Rev. 2008;28:773–96.PubMedCrossRef
31.
Zurück zum Zitat Lee S, Yang WK, Song JH, Ra YM, Jeong JH, Choe W, et al. Anti-obesity effects of 3-hydroxychromone derivative, a novel small-molecule inhibitor of glycogen synthase kinase-3. Biochem Pharmacol. 2013;85:965–76.PubMedCrossRef Lee S, Yang WK, Song JH, Ra YM, Jeong JH, Choe W, et al. Anti-obesity effects of 3-hydroxychromone derivative, a novel small-molecule inhibitor of glycogen synthase kinase-3. Biochem Pharmacol. 2013;85:965–76.PubMedCrossRef
32.
Zurück zum Zitat Abel ED, Litwin SE, Sweeney G. Cardiac remodeling in obesity. Physiol Rev. 2008;88:389–419.PubMedCrossRef Abel ED, Litwin SE, Sweeney G. Cardiac remodeling in obesity. Physiol Rev. 2008;88:389–419.PubMedCrossRef
33.
Zurück zum Zitat Chess DJ, Stanley WC. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res. 2008;79:269–78.PubMedCrossRef Chess DJ, Stanley WC. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res. 2008;79:269–78.PubMedCrossRef
34.
Zurück zum Zitat Wolk R. Arrhythmogenic mechanisms in left ventricular hypertrophy. Europace. 2000;2:216–23.PubMedCrossRef Wolk R. Arrhythmogenic mechanisms in left ventricular hypertrophy. Europace. 2000;2:216–23.PubMedCrossRef
35.
Zurück zum Zitat Haq S, Choukroun G, Kang ZB, Ranu H, Matsui T, Rosenzweig A, et al. Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol. 2000;151:117–30.PubMedCrossRef Haq S, Choukroun G, Kang ZB, Ranu H, Matsui T, Rosenzweig A, et al. Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol. 2000;151:117–30.PubMedCrossRef
36.
Zurück zum Zitat Roach PJ. Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J. 1990;4:2961–8.PubMed Roach PJ. Control of glycogen synthase by hierarchal protein phosphorylation. FASEB J. 1990;4:2961–8.PubMed
37.
Zurück zum Zitat Zhang W, DePaoli-Roach AA, Roach PJ. Mechanisms of multisite phosphorylation and inactivation of rabbit muscle glycogen synthase. Arch Biochem Biophys. 1993;304:219–25.PubMedCrossRef Zhang W, DePaoli-Roach AA, Roach PJ. Mechanisms of multisite phosphorylation and inactivation of rabbit muscle glycogen synthase. Arch Biochem Biophys. 1993;304:219–25.PubMedCrossRef
38.
Zurück zum Zitat Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990;322:223–8.PubMedCrossRef Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG. Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 1990;322:223–8.PubMedCrossRef
39.
Zurück zum Zitat Cline GW, Rothman DL, Magnusson I, Katz LD, Shulman GI. 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus. J Clin Invest. 1994;94:2369–76.PubMedCrossRef Cline GW, Rothman DL, Magnusson I, Katz LD, Shulman GI. 13C-nuclear magnetic resonance spectroscopy studies of hepatic glucose metabolism in normal subjects and subjects with insulin-dependent diabetes mellitus. J Clin Invest. 1994;94:2369–76.PubMedCrossRef
40.
Zurück zum Zitat Ring DB, Johnson KW, Henriksen EJ, Nuss JM, Goff D, Kinnick TR, et al. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes. 2003;52:588–95.PubMedCrossRef Ring DB, Johnson KW, Henriksen EJ, Nuss JM, Goff D, Kinnick TR, et al. Selective glycogen synthase kinase 3 inhibitors potentiate insulin activation of glucose transport and utilization in vitro and in vivo. Diabetes. 2003;52:588–95.PubMedCrossRef
41.
Zurück zum Zitat Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol. 2000;7:793–803.PubMedCrossRef Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, et al. Selective small molecule inhibitors of glycogen synthase kinase-3 modulate glycogen metabolism and gene transcription. Chem Biol. 2000;7:793–803.PubMedCrossRef
42.
Zurück zum Zitat Nikoulina SE, Ciaraldi TP, Mudaliar S, Carter L, Johnson K, Henry RR. Inhibition of glycogen synthase kinase 3 improves insulin action and glucose metabolism in human skeletal muscle. Diabetes. 2002;51:2190–8.PubMedCrossRef Nikoulina SE, Ciaraldi TP, Mudaliar S, Carter L, Johnson K, Henry RR. Inhibition of glycogen synthase kinase 3 improves insulin action and glucose metabolism in human skeletal muscle. Diabetes. 2002;51:2190–8.PubMedCrossRef
43.
Zurück zum Zitat Gao HK, Yin Z, Zhou N, Feng XY, Gao F, Wang HC. Glycogen synthase kinase 3 inhibition protects the heart from acute ischemia-reperfusion injury via inhibition of inflammation and apoptosis. J Cardiovasc Pharmacol. 2008;52:286–92.PubMedCrossRef Gao HK, Yin Z, Zhou N, Feng XY, Gao F, Wang HC. Glycogen synthase kinase 3 inhibition protects the heart from acute ischemia-reperfusion injury via inhibition of inflammation and apoptosis. J Cardiovasc Pharmacol. 2008;52:286–92.PubMedCrossRef
44.
Zurück zum Zitat MacAulay K, Blair AS, Hajduch E, Terashima T, Baba O, Sutherland C, et al. Constitutive activation of GSK3 down-regulates glycogen synthase abundance and glycogen deposition in rat skeletal muscle cells. J Biol Chem. 2005;280:9509–18.PubMedCrossRef MacAulay K, Blair AS, Hajduch E, Terashima T, Baba O, Sutherland C, et al. Constitutive activation of GSK3 down-regulates glycogen synthase abundance and glycogen deposition in rat skeletal muscle cells. J Biol Chem. 2005;280:9509–18.PubMedCrossRef
45.
Zurück zum Zitat Dihlmann S, Kloor M, Fallsehr C, Von Knebel DM. Regulation of Akt1 expression by beta-catenin/Tcf/Lef signalling in colorectal cancer cells. Carcinogenesis. 2005;26:1503–12.PubMedCrossRef Dihlmann S, Kloor M, Fallsehr C, Von Knebel DM. Regulation of Akt1 expression by beta-catenin/Tcf/Lef signalling in colorectal cancer cells. Carcinogenesis. 2005;26:1503–12.PubMedCrossRef
46.
Zurück zum Zitat Henriksen EJ, Teachey MK. Short-term in vitro inhibition of glycogen synthase kinase 3 potentiates insulin signalling in type I skeletal muscle of Zucker diabetic Fatty rats. Metabolism. 2007;56:931–8.PubMedCrossRef Henriksen EJ, Teachey MK. Short-term in vitro inhibition of glycogen synthase kinase 3 potentiates insulin signalling in type I skeletal muscle of Zucker diabetic Fatty rats. Metabolism. 2007;56:931–8.PubMedCrossRef
47.
Zurück zum Zitat Wade A. GSK-3 inhibitors and insulin receptor signalling in health, disease and therapeutics. Front Biosci. 2009;14:1558–70.CrossRef Wade A. GSK-3 inhibitors and insulin receptor signalling in health, disease and therapeutics. Front Biosci. 2009;14:1558–70.CrossRef
48.
Zurück zum Zitat Ciaraldi TP, Carter L, Mudaliar S, Henry RR. GSK-3beta and control of glucose metabolism and insulin action in human skeletal muscle. Mol Cell Endocrinol. 2010;315:153–8.PubMedCrossRef Ciaraldi TP, Carter L, Mudaliar S, Henry RR. GSK-3beta and control of glucose metabolism and insulin action in human skeletal muscle. Mol Cell Endocrinol. 2010;315:153–8.PubMedCrossRef
49.
Zurück zum Zitat Araki E, Lipes MA, Patti ME, Brüning JC, Haag 3rd B, Johnson RS, et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature. 1994;372:186–90.PubMedCrossRef Araki E, Lipes MA, Patti ME, Brüning JC, Haag 3rd B, Johnson RS, et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature. 1994;372:186–90.PubMedCrossRef
50.
Zurück zum Zitat Vittorini S, Storti S, Parri MS, Cerillo AG, Clerico A. SERCA2a, phospholamban, sarcolipin, and ryanodine receptors gene expression in children with congenital heart defects. Mol Med. 2007;13:105–11.PubMedCrossRef Vittorini S, Storti S, Parri MS, Cerillo AG, Clerico A. SERCA2a, phospholamban, sarcolipin, and ryanodine receptors gene expression in children with congenital heart defects. Mol Med. 2007;13:105–11.PubMedCrossRef
51.
Zurück zum Zitat James P, Inui M, Tada M, Chiesi M, Carafoli E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature. 1989;342:90–2.PubMedCrossRef James P, Inui M, Tada M, Chiesi M, Carafoli E. Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature. 1989;342:90–2.PubMedCrossRef
Metadaten
Titel
The Consequences of Long-Term Glycogen Synthase Kinase-3 Inhibition on Normal and Insulin Resistant Rat Hearts
verfasst von
T. B. Flepisi
Amanda Lochner
Barbara Huisamen
Publikationsdatum
01.10.2013
Verlag
Springer US
Erschienen in
Cardiovascular Drugs and Therapy / Ausgabe 5/2013
Print ISSN: 0920-3206
Elektronische ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-013-6467-8

Weitere Artikel der Ausgabe 5/2013

Cardiovascular Drugs and Therapy 5/2013 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.