Skip to main content
Log in

Local antibiotic delivery with demineralized bone matrix

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

A method of care for these infected nonunions is prolonged intravenous systemic antibiotic treatment and implantation of methyl methacrylate antibiotic carrier beads to delivery high local doses of antibiotics. This method requires a second surgery to remove the beads once the infection has cleared. Recent studies have investigated the use of biodegradable materials that have been impregnated with antibiotics as tools to treat bone infections. In the present study, human demineralized bone matrix (DBM) was investigated for its ability to be loaded with an antibiotic. The data presented herein demonstrates that this osteoinductive and biodegradable material can be loaded with gentamicin and release clinically relevant levels of the drug for at least 13 days in vitro. This study also demonstrates that the antibiotic loaded onto the graft has no adverse effects on the osteoinductive nature of the DBM as measured in vitro and in vivo. This bone void filler may represent a promising option for local antibiotic delivery in orthopedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexeeff M, Mahomed N, Morsi E, Garbuz D, Gross A (1996) Structural allograft in two-stage revisions for failed septic hip arthroplasty. J Bone Joint Surg Br 78:213–216

    PubMed  CAS  Google Scholar 

  • Anguita-Alonso P, Rouse MS, Piper KE, Jacofsky DJ, Osmon DR, Patel R (2006) Comparative study of antimicrobial release kinetics from polymethylmethacrylate. Clin Orthop Relat Res 445:239–244

    PubMed  Google Scholar 

  • Bunetel L, Segui A, Cormier M, Percheron E, Langlais F (1989) Release of gentamicin from acrylic bone cement. Clin Pharmacokinet 17:291–297

    Article  PubMed  CAS  Google Scholar 

  • Buttaro M, Valentini R, Piccaluga F (2004) Persistent infection associated with residual cement after resection arthroplasty of the hip. Acta Orthop Scand 75:427–429

    PubMed  Google Scholar 

  • Chesmel KD, Branger J, Wertheim H, Scarborough N (1998) Healing response to various forms of human demineralized bone matrix in athymic rat cranial defects. J Oral Maxillofac Surg 56:857–863 (discussion 864–865)

    Google Scholar 

  • Cornell CN (1999) Osteoconductive materials and their role as substitutes for autogenous bone grafts. Orthop Clin North Am 30:591–598

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  • Deirmengian C, Greenbaum J, Stern J, Braffman M, Lotke PA, Booth RE Jr., Lonner JH (2003) Open debridement of acute gram-positive infections after total knee arthroplasty. Clin Orthop Relat Res 416:129–134

    Google Scholar 

  • Delloye C, De Nayer P, Allington N, Munting E, Coutelier L, Vincent A (1988) Massive bone allografts in large skeletal defects after tumor surgery: a clinical and microradiographic evaluation. Arch Orthop Trauma Surg 107:31–41

    Article  PubMed  CAS  Google Scholar 

  • Dick HM, Strauch RJ (1994) Infection of massive bone allografts. Clin Orthop Relat Res 306:46–53

    Google Scholar 

  • Dimaio FR, O’Halloran JJ, Quale JM (1994) In vitro elution of ciprofloxacin from polymethylmethacrylate cement beads. J Orthop Res 12:79–82

    Article  PubMed  CAS  Google Scholar 

  • Edwards JT, Diegmann MH, Scarborough NL (1998) Osteoinduction of human demineralized bone: characterization in a rat model. Clin Orthop Relat Res 357:219–228

    Google Scholar 

  • Gilbert P, Das J, Foley I (1997) Biofilm susceptibility to antimicrobials. Adv Dent Res 11:160–167

    Article  PubMed  CAS  Google Scholar 

  • Glowacki J, Kaban LB, Murray JE, Folkman J, Mulliken JB (1981) Application of the biological principle of induced osteogenesis for craniofacial defects. Lancet 1:959–962

    Article  PubMed  CAS  Google Scholar 

  • Hanssen AD (2005) Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. Clin Orthop Relat Res 437:91–96

    Google Scholar 

  • Hanssen AD, Osmon DR, Patel R (2005) Local antibiotic delivery systems: where are we and where are we going? Clin Orthop Relat Res 437:111–114

    Google Scholar 

  • Henry SL, Galloway KP (1995) Local antibacterial therapy for the management of orthopaedic infections. Pharmacokinetic considerations. Clin Pharmacokinet 29:36–45

    Article  PubMed  CAS  Google Scholar 

  • Kado KE, Gambetta LA, Perlman MD (1996) Uses of Grafton for reconstructive foot and ankle surgery. J Foot Ankle Surg 35:59–66

    Article  PubMed  CAS  Google Scholar 

  • Katz JM, Diegl EC, Nataraj C (2006) Time course of DBM induced intermuscular endochondral ossification (abs 912)

  • Levin PD (1975) The effectiveness of various antibiotics in methyl methacrylate. J Bone Joint Surg Br 57:234–237

    PubMed  CAS  Google Scholar 

  • Lewis CS, Katz JM, Baker MI, Supronowicz PR, Gill E, Cobb RR (2010) Local antibiotic delivery with cancellous chips and cubes. J Biomater Appl (in publication)

  • Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H (2005) Engineering bone: challenges and obstacles. J Cell Mol Med 9:72–84

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Esser MP, Shelley P, Wroblewski BM (1987) Deep infection in Charnley low-friction arthroplasty. Comparison of plain and gentamicin-loaded cement. J Bone Joint Surg Br 69:355–360

    PubMed  CAS  Google Scholar 

  • McGann W, Mankin HJ, Harris WH (1986) Massive allografting for severe failed total hip replacement. J Bone Joint Surg Am 68:4–12

    PubMed  CAS  Google Scholar 

  • McLaren AC (2004) Alternative materials to acrylic bone cement for delivery of depot antibiotics in orthopaedic infections. Clin Orthop Relat Res 427:101–106

    Google Scholar 

  • Miclau T, Dahners LE, Lindsey RW (1993) In vitro pharmacokinetics of antibiotic release from locally implantable materials. J Orthop Res 11:627–632

    Article  PubMed  CAS  Google Scholar 

  • Nelson CL (2004) The current status of material used for depot delivery of drugs. Clin Orthop Relat Res 427:72–78

    Google Scholar 

  • Nijhof MW, Stallmann HP, Vogley HC, Fleer A, Schouls LM, Dhert WJ, Verbout AJ (2000) Prevention of infection with tobramycin-containing bone cement or systemic cefazolin in an animal model. J Biomed Mater Res 52:709–715

    Article  PubMed  CAS  Google Scholar 

  • Perry AC, Rouse MS, Khaliq Y, Piper KE, Hanssen AD, Osmon DR, Steckelberg JM, Patel R (2002) Antimicrobial release kinetics from polymethylmethacrylate in a novel continuous flow chamber. Clin Orthop Relat Res 403:49–53

    Google Scholar 

  • Petri W H III, Schaberg SJ (1984) The effects of antibiotic-supplemented bone allografts on contaminated, partially avulsive fractures of the canine ulna. J Oral Maxillofac Surg 42:699–704

    Article  PubMed  Google Scholar 

  • Price JS, Tencer AF, Arm DM, Bohach GA (1996) Controlled release of antibiotics from coated orthopedic implants. J Biomed Mater Res 30:281–286

    Article  PubMed  CAS  Google Scholar 

  • Puleo DA, Holleran LA, Doremus RH, Bizios R (1991) Osteoblast responses to orthopedic implant materials in vitro. J Biomed Mater Res 25:711–723

    Article  PubMed  CAS  Google Scholar 

  • Sassard WR, Eidman DK, Gray PM, Block JE, Russo R, Russell JL, Taboada EM (2000) Augmenting local bone with Grafton demineralized bone matrix for posterolateral lumbar spine fusion: avoiding second site autologous bone harvest. Orthopedics 23:1059–1064 (discussion 1064–1065)

    Google Scholar 

  • Stevens CM, Tetsworth KD, Calhoun JH, Mader JT (2005) An articulated antibiotic spacer used for infected total knee arthroplasty: a comparative in vitro elution study of Simplex and Palacos bone cements. J Orthop Res 23:27–33

    Article  PubMed  CAS  Google Scholar 

  • Stigter M, Bezemer J, De Groot K, Layrolle P (2004) Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy. J Control Release 99:127–137

    Article  PubMed  CAS  Google Scholar 

  • Tiedeman JJ, Garvin KL, Kile TA, Connolly JF (1995) The role of a composite, demineralized bone matrix and bone marrow in the treatment of osseous defects. Orthopedics 18:1153–1158

    PubMed  CAS  Google Scholar 

  • Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  PubMed  CAS  Google Scholar 

  • Urist MR, Dowell TA (1968) Inductive substratum for osteogenesis in pellets of particulate bone matrix. Clin Orthop Relat Res 61:61–78

    Article  PubMed  CAS  Google Scholar 

  • Waertel G (1996) The role of antibiotic-loaded cement in the treatment of an infection after a hip replacement. J Bone Joint Surg Am 78:472–473

    PubMed  CAS  Google Scholar 

  • Waldman BJ, Hostin E, Mont MA, Hungerford DS (2000) Infected total knee arthroplasty treated by arthroscopic irrigation and debridement. J Arthroplasty 15:430–436

    Article  PubMed  CAS  Google Scholar 

  • Winkler H, Janata O, Berger C, Wein W, Georgopoulos A (2000) In vitro release of vancomycin and tobramycin from impregnated human and bovine bone grafts. J Antimicrob Chemother 46:423–428

    Article  PubMed  CAS  Google Scholar 

  • Wisto E, Persen L, Loseth K, Bergh K (1999) Adsorption and release of antibiotics from morselized cancellous bone. In vitro studies of 8 antibiotics. Acta Orthop Scand 70:298–304

    Article  Google Scholar 

  • Wisto E, Persen L, Benum P, Bergh K (2002) Release of netilmicin and vancomycin from cancellous bone. Acta Orthop Scand 73:199–205

    Article  Google Scholar 

  • Witso E, Persen L, Loseth K, Benum P, Bergh K (2000) Cancellous bone as an antibiotic carrier. Acta Orthop Scand 71:80–84

    Article  PubMed  CAS  Google Scholar 

  • Zalavras CG, Patzakis MJ, Holtom P (2004) Local antibiotic therapy in the treatment of open fractures and osteomyelitis. Clin Orthop Relat Res 427:86–93

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the donors and their families for their thankless gift of donated tissue, without which, this research would not have been possible. The authors would also like to thank RTI Biologics, Inc., for their continued support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine S. Lewis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, C.S., Supronowicz, P.R., Zhukauskas, R.M. et al. Local antibiotic delivery with demineralized bone matrix. Cell Tissue Bank 13, 119–127 (2012). https://doi.org/10.1007/s10561-010-9236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-010-9236-y

Keywords

Navigation