Skip to main content
Log in

Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Cyclophosphamide (CP) and ifosfamide (IF) are widely used antineoplastic agents, but their side-effect of hemorrhagic cystitis (HC) is still encountered as an important problem. Acrolein is the main molecule responsible of this side-effect and mesna (2-mercaptoethane sulfonate) is the commonly used preventive agent. Mesna binds acrolein and prevent its direct contact with uroepithelium. Current knowledge provides information about the pathophysiological mechanism of HC: several transcription factors and cytokines, free radicals and non-radical reactive molecules, as well as poly(adenosine diphosphate-ribose) polymerase (PARP) activation are now known to take part in its pathogenesis. There is no doubt that HC is an inflammatory process, including when caused by CP. Thus, many cytokines such as tumor necrosis factor (TNF) and the interleukin (IL) family and transcription factors such as nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) also play a role in its pathogenesis. When these molecular factors are taken into account, pathogenesis of CP-induced bladder toxicity can be summarized in three steps: (1) acrolein rapidly enters into the uroepithelial cells; (2) it then activates intracellular reactive oxygen species and nitric oxide production (directly or through NF-κB and AP-1) leading to peroxynitrite production; (3) finally, the increased peroxynitrite level damages lipids (lipid peroxidation), proteins (protein oxidation) and DNA (strand breaks) leading to activation of PARP, a DNA repair enzyme. DNA damage causes PARP overactivation, resulting in the depletion of oxidized nicotinamide–adenine dinucleotide and adenosine triphosphate, and consequently in necrotic cell death. For more effective prevention against HC, all pathophysiological mechanisms must be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AP-1:

activator protein-1

CAT:

catalase

CP:

cyclophosphamide

eNOS:

endothelial nitric oxide synthase

EPCG:

epigallocatechin 3-gallate

GSH:

glutathione

GSH-Px:

glutathione peroxidase

HC:

hemorrhagic cystitis

IF:

ifosfamide

IL-1:

interleukin-1

iNOS:

inducible nitric oxide synthase

MDA:

malondialdehyde

mesna:

2-mercaptoethane sulfonate

NAD+ :

nicotinamide–adenine dinucleotide

NF-κB:

nuclear factor-κB

nNOS:

neuronal nitric oxide synthase

NO:

nitric oxide

NOS:

nitric oxide synthase

O2 :

superoxide anion (radical)

ONOO :

peroxynitrite

ONOOH:

peroxynitrous acid

PAF:

platelet-activating factor

PARP:

poly(adenosine diphosphate-ribose) polymerase

ROS:

reactive oxygen species

SOD:

superoxide dismutase

TNF-α:

tumor necrosing factor alpha

References

  • Adams JD Jr, Klaidman LK. Acrolein-induced oxygen radical formation. Free Radic Biol Med. 1993;15:187–93.

    Article  PubMed  CAS  Google Scholar 

  • Batista CK, Mota JM, Souza ML, et al. Amifostine and glutathione prevent ifosfamide-and acrolein-induced hemorrhagic cystitis. Cancer Chemother Pharmacol. 2007;59:71–7.

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol. 1996;271:C1424–37.

    PubMed  CAS  Google Scholar 

  • Biswal S, Acquaah-Mensah G, Datta K, Wu X, Kehrer JP. Inhibition of cell proliferation and AP-1 activity by acrolein in human A549 lung adenocarcinoma cells due to thiol imbalance and covalent modifications. Chem Res Toxicol. 2002;15:180–6.

    Article  PubMed  CAS  Google Scholar 

  • Brock N, Pohl J, Stekar J. Studies on the urotoxicity of oxazaphosphorine cytostatics and its prevention. I. Experimental studies on the urotoxicity of alkylating compounds. Eur J Cancer. 1981;17:595–607.

    PubMed  CAS  Google Scholar 

  • Canman CE, Kastan MB. Signal transduction. Three paths to stress relief. Nature. 1996;384:213–4.

    Article  PubMed  CAS  Google Scholar 

  • Coggins PR, Ravdin RG, Eisman SH. Clinical evaluation of a new alkylating agent: cytoxan (cyclophosphamide). Cancer. 1960;13:1254–60.

    Article  PubMed  CAS  Google Scholar 

  • Gomes TNA, Santos CC, Souza-Filho MV, Cunha FQ, Ribeiro RA. Participation of TNF-α and IL-1 in the pathogenesis of cyclophosphamide induced hemorrhagic cystitis. Braz J Med Biol Res. 1995;28:1103–8.

    PubMed  CAS  Google Scholar 

  • Gray KJ, Engelmann UH, Johnson EH, Fishman IJ. Evaluation of misoprostol cytoprotection of the bladder with cyclophosphamide (cytoxan) therapy. J Urol. 1986;136:497–500.

    PubMed  CAS  Google Scholar 

  • Horton ND, Mamiya BD, Kehrer JP. Relationships between cell density, glutathione, and proliferation of A549 human lung adenocarcinoma cells treated with acrolein. Toxicology. 1997;122:111–22.

    Article  PubMed  CAS  Google Scholar 

  • Horton ND, Biswal SS, Corrigan LL, Bratta J, Kehrer JP. Acrolein causes inhibitor kappaB-independent decreases in nuclear factor kappaB activation in human lung adenocarcinoma (A549) cells. J Biol Chem. 1999;274:9200–6.

    Article  PubMed  CAS  Google Scholar 

  • Kanat O, Kurt E, Yalcinkaya U, Evrensel T, Manavoglu O. Comparison of uroprotective efficacy of mesna and amifostine in cyclophosphamide-induced hemorrhagic cystitis in rats. Indian J Cancer. 2006;43:12–15.

    Article  PubMed  Google Scholar 

  • Kehrer JP, Biswal SS. The molecular effects of acrolein. Toxicol Sci. 2000;57:6–15.

    Article  PubMed  CAS  Google Scholar 

  • Korkmaz A, Oter S, Deveci S, et al. Involvement of nitric oxide and hyperbaric oxygen in the pathogenesis of cyclophosphamide induced hemorrhagic cystitis in rats. J Urol. 2003;170:2498–502.

    Article  PubMed  CAS  Google Scholar 

  • Korkmaz A, Oter S, Sadir S, et al. Peroxynitrite may be involved in bladder damage caused by cyclophosphamide in rats. J Urol. 2005;173:1793–6.

    Article  PubMed  CAS  Google Scholar 

  • Levine AL, Richie PJ. Urological complications of cyclophosphamide. J Urol. 1989;141:1063–9.

    PubMed  CAS  Google Scholar 

  • Liu Z. Molecular mechanism of TNF signaling and beyond. Cell Res. 2005;15:24–7.

    Article  PubMed  CAS  Google Scholar 

  • May MJ, Ghosh S. Rel/NF-kappa B and I kappa B proteins: an overview. Semin Cancer Biol. 1997;8:63–73.

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991;43:109–42.

    PubMed  CAS  Google Scholar 

  • Oter S, Korkmaz A, Oztas E, Yildirim I, Topal T, Bilgic H. Inducible nitric oxide synthase inhibition in cyclophosphamide induced hemorrhagic cystitis in rats. Urol Res. 2004;32:185–9.

    Article  PubMed  CAS  Google Scholar 

  • Ozcan A, Korkmaz A, Oter S, Coskun O. Contribution of flavonoid antioxidants to the preventive effect of mesna in cyclophosphamide-induced cystitis in rats. Arch Toxicol. 2005;79:461–5.

    Article  PubMed  CAS  Google Scholar 

  • Radi R, Peluffo G, Alvarez MN, Naviliat M, Cayota A. Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med. 2001;30:463–88.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro RA, Feritas HC, Campos MC, et al. Tumor necrosis factor-α and interleukin-1β mediate the production of nitric oxide involved in the pathogenesis of ifosfamide induced hemorrhagic cystitis in mice. J Urol. 2002;167:2229–34.

    Article  PubMed  CAS  Google Scholar 

  • Sadir S, Deveci S, Korkmaz A, Oter S. Alpha-tocopherol, beta-carotene and melatonin administration protects cyclophosphamide-induced oxidative damage to bladder tissue in rats. Cell Biochem Funct. 2006; DOI: 10.1027/cbf.1347.

  • Schraufstatter I, Hyslop PA, Jackson JH, Cochrane CG. Oxidant-induced DNA damage of target cells. J Clin Invest. 1988;82:1040–50.

    Article  PubMed  CAS  Google Scholar 

  • Sener G, Sehirli O, Yegen BC, Cetinel S, Gedik N, Sakarcan A. Melatonin attenuates ifosfamide-induced Fanconi syndrome in rats. J Pineal Res. 2004;37:17–25.

    Article  PubMed  CAS  Google Scholar 

  • Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82:291–5.

    PubMed  CAS  Google Scholar 

  • Sies H. Glutathione and its role in cellular functions. Free Radic Biol Med. 1999;27:916–21.

    Article  PubMed  CAS  Google Scholar 

  • Souza-Filho MV, Lima MV, Pompeu MM, Ballejo G, Cunha FQ, Riberio RA. Involvement of nitric oxide in the pathogenesis of cyclophosphamide-induced hemorrhagic cystitis. Am J Pathol. 1997;150:247–56.

    CAS  Google Scholar 

  • Szabo C. The pathophysiological role of peroxynitrite in shock, inflammation, and ischemia—reperfusion injury. Shock. 1996;6:79–88.

    Article  PubMed  CAS  Google Scholar 

  • Szabo C. Multiple pathways of peroxynitrite cytotoxicity. Toxicol Lett. 2003;140–141:105–12.

    Article  PubMed  CAS  Google Scholar 

  • Szabo C, Zingarelli B, O'Connor M, Salzman AL. DNA strand breakage, activation of poly (ADP-ribose) synthetase and cellular energy depletion are involved in the cytotoxicity of macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci USA. 1996;93:1753–8.

    Article  PubMed  CAS  Google Scholar 

  • Takamoto S, Sakura N, Namere A, Yashiki M. Monitoring of urinary acrolein concentration in patients receiving cyclophosphamide and ifosphamide. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;806:59–63.

    Article  PubMed  CAS  Google Scholar 

  • Topal T, Oztas Y, Korkmaz A, et al. Melatonin ameliorates bladder damage induced by cyclophosphamide in rats. J Pineal Res. 2005;38:272–7.

    Article  PubMed  CAS  Google Scholar 

  • Vieira MM, Macêdo FY, Filho JN, et al. Ternatin, a flavonoid, prevents cyclophosphamide and ifosfamide-induced hemorrhagic cystitis in rats. Phytother Res. 2004;18:135–41.

    Article  PubMed  CAS  Google Scholar 

  • Virag L, Szabo C. The therapeutic potential of poly(ADPRibose) polymerase inhibitors. Pharmacol Rev. 2002;54:375–429.

    Article  PubMed  CAS  Google Scholar 

  • Yildirim I, Korkmaz A, Oter S, Ozcan A, Oztas E. Contribution of antioxidants to preventive effect of mesna in cyclophosphamide-induced hemorrhagic cystitis in rats. Cancer Chemother Pharmacol. 2004;54:469–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Oter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Korkmaz, A., Topal, T. & Oter, S. Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation. Cell Biol Toxicol 23, 303–312 (2007). https://doi.org/10.1007/s10565-006-0078-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-006-0078-0

Keywords

Navigation