Skip to main content
Log in

Investigation of acetaminophen toxicity in HepG2/C3a microscale cultures using a system biology model of glutathione depletion

  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

We have integrated in vitro and in silico information to investigate acetaminophen (APAP) and its metabolite N-acetyl-p-benzoquinone imine (NAPQI) toxicity in liver biochip. In previous works, we observed higher cytotoxicity of HepG2/C3a cultivated in biochips when exposed to 1 mM of APAP for 72 h as compared to Petri cultures. We complete our investigation with the present in silico approach to extend the mechanistic interpretation of the intracellular kinetics of the toxicity process. For that purpose, we propose a mathematical model based on the coupling of a drug pharmacokinetic model (PK) with a systemic biology model (SB) describing the reactive oxygen species (ROS) production by NAPQI and the subsequent glutathione (GSH) depletion. The SB model was parameterized using (i) transcriptomic data, (ii) qualitative results of time lapses ROS fluorescent curves for both control and 1-mM APAP-treated experiments, and (iii) additional GSH literature data. The PK model was parameterized (i) using the in vitro kinetic data (at 160 μM, 1 mM, 10 mM), (ii) using the parameters resulting from a physiologically based pharmacokinetic (PBPK) literature model for APAP, and (iii) by literature data describing NAPQI formation. The PK-SB model predicted a ROS increase and GSH depletion due to the NAPQI formation. The transition from a detoxification phase and NAPQI and ROS accumulation was predicted for a NAPQI concentration ranging between 0.025 and 0.25 μM in the cytosol. In parallel, we performed a dose response analysis in biochips that shows a reduction of the final hepatic cell number appeared in agreement with the time and doses associated with the switch of the NAPQI detoxification/accumulation. As a result, we were able to correlate in vitro extracellular APAP exposures with an intracellular in silico ROS accumulation using an integration of a coupled mathematical and experimental liver on chip approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ahr:

Aryl hydrocarbon receptor

APAP:

Acetaminophen

CYP:

Cytochrome P450 gene

DCFDA:

2′,7′-Dichlorofluorescin diacetate

GCLC:

Glutamate-cysteine ligase catalityc subunit gene

GCLM:

Glutamate-cysteine ligase regulatory subunit gene

GPX:

Glutathione peroxidase gene

GSH:

Glutathione

GS:

Glutathione synthetase gene

GST:

Glutathione S transferase gene

Keap-1:

Kelch-like ECH-associated protein 1

MRP:

Multidrug resistance-associated protein gene

NAPQI:

N-Acetyl-p-benzoquinone imine

NFE2L2:

Nuclear factor (erythroid-derived 2)-like 2 gene

Nrf2:

Protein code by NFE2L2 gene

PBPK:

Physiologically based pharmacokinetic

PK:

Pharmacokinetic

ROS:

Reactive oxygen species

SB:

Systems biology

References

  • Baudoin R, Alberto G, Legendre A, Paullier P, Naudot M, Fleury MJ, et al. Investigation of the levels of expression and activity of detoxication genes of primary rat hepatocytes under various flow rates and cell densities in microfluidic biochips. Biotechnol Prog. 2014a;30:401–10.

    Article  CAS  PubMed  Google Scholar 

  • Baudoin R, Legendre A, Jacques S, Cotton J, Bois F, Leclerc E. Evaluation of a liver microfluidic biochip to predict In vivo clearances of seven drugs in rats. J Pharm Sci. 2014b;103:706–18.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Shachar R, Chen Y, Luo S, Hartman C, Reed M, Nijhout F. The biochemistry of acetaminophen hepatotoxicity and rescue: a mathematical model. Theor Biol Med Model. 2012;9:55–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bois FY. GNU MCSIM: Bayesian statistical inference for SBML coded systems biology models. Bioinformatics. 2009;25:1453–4.

    Article  CAS  PubMed  Google Scholar 

  • Bois FY. Baysian inference. Methods Mol Biol. 2013;930:597–636.

    CAS  PubMed  Google Scholar 

  • Bricks T, Paullier P, Legendre A, Cotton J, Fleury MJ, Zeller P, et al. Development of a new microfluidic platform integrating co cultures of intestinal and liver cell lines. Toxicol in Vitro. 2014;28:885–95.

    Article  CAS  PubMed  Google Scholar 

  • Choucha Snouber L, Jacques S, Monge M, Legallais C, Leclerc E. Transcriptomic analysis of the effect of the ifosfamide on MDCK cells cultivated in microfluidic biochips. Genomics. 2012a;100:27–34.

    Article  CAS  PubMed  Google Scholar 

  • Choucha Snouber L, Letourneur F, Chafey P, Broussard C, Monge M, Legallais C, et al. Analysis of transcriptomic and proteomic profiles demonstrates the improvement of the MDCK cell function in a renal microfluidic biochip. Biotechnol Prog. 2012b;28:474–84.

    Article  Google Scholar 

  • Choucha Snouber L, Aninat C, Grsicom L, Madalinski G, Brochot C, Poleni PE, et al. Investigation of ifosfamide nephrotoxicity induced in a liver kidney co-culture biochip. Biotechnol Bioeng. 2013;110:597–608.

    Article  CAS  PubMed  Google Scholar 

  • Coles B, Wilson I, Wardaman P, Hinson J, Nelson S, Ketterer B. The spontaneous and enzymatic reaction of N-acetyl-pbenzoquinonimine with glutathione: a stopped-flow kinetic study. Arch Biochem Biophys. 1998;264:253–60.

    Article  Google Scholar 

  • Esch M, King T, Shuler M. The role of body-on-a-chip devices in drug and toxicity studies. Annu Rev Biomed Eng. 2011;13:55–72.

    Article  CAS  PubMed  Google Scholar 

  • Geenen S, Yates J, Kenna G, Bois F, Wilson I, Westerhoff H. Multiscale modelling approach combining a kinetic model of glutathione metabolism with PBPK models of acetaminophen and the potential glutathionedepletion biomarkers ophthalmic acid and 5-oxoproline in humans and rats. Integr Biol. 2013;5:877–83.

    Article  CAS  Google Scholar 

  • Gelman A, Rubin DB. Inference from iterative simulation using multiple sequences (with discussion). Stat Sci. 1992;7:457–511.

    Article  Google Scholar 

  • Ghauri FY, McLean AE, Beales D, Wilson ID, Nicholson JK. Induction of 5-oxoprolinuria in the rat following chronic feeding with N-acetyl 4-aminophenol (acetaminophen). Biochem Pharmacol. 1993;46:953–7.

    Article  CAS  PubMed  Google Scholar 

  • Gregoire N, Hovsepian L, Gualano V, Evene E, Dufour G, Gendron A. Safety and pharmacokinetics of acetaminophen following intravenous administration of 5 g during the first 24 h with a 2-g starting dose. Clin Pharmacol Ther. 2007;81:401–5.

    Article  CAS  PubMed  Google Scholar 

  • Hamon J, Jennings P, Bois F. Systems biology modeling of omics data: effect of cyclosporine a on the Nrf2 pathway in human renal cells. BMC Syst Biol. 2014;8:1752–8.

    Article  Google Scholar 

  • Huh D, Matthews B, Mammamoto A, Montoyo Zavala M, Hsin H, Ingber D. Reconstruction organ level lung function on a chip. Science. 2010;25:1662–8.

    Article  Google Scholar 

  • Leclerc E, Hamon J, Legendre A, Bois F. Integration of pharmacokinetic and NRF2 system biology models to describe reactive oxygen species production and subsequent glutathione depletion in liver microfluidic biochips after flutamide exposure. Toxicol in Vitro. 2014;28:1230–41.

    Article  CAS  PubMed  Google Scholar 

  • Legendre A, Baudoin R, Alberto G, Paullier P, Naudot M, Bricks T, et al. Metabolic characterization of primary rat hepatocytes cultivated in parallel microfluidic biochips. J Pharm Sci. 2013;102:3264–76.

    Article  CAS  PubMed  Google Scholar 

  • Legendre A, Jacques S, Dumont F, Cotton J, Paullier P, Fleury MJ, et al. Investigation of the hepatotoxicity of flutamide: pro-survival/apoptotic and necrotic switch in primary rat hepatocytes characterized by metabolic and transcriptomic profiles in microfluidic liver biochips. Toxicol in Vitro. 2014;28:1075–87.

    Article  CAS  PubMed  Google Scholar 

  • Lord R, Bralley A. Clinical applications of urinary organic acids. Part 1: detoxification markers. Altern Med Rev. 2008;13:205–15.

    PubMed  Google Scholar 

  • Lu SC. Regulation of hepatic glutathione synthesis: current concepts and controversies. FASEB J. 1999;13:1169–83.

    CAS  PubMed  Google Scholar 

  • Mahler GJ, Esch MB, Glahn RP, Shuler ML. Characterization of a gastrointestinal tract microscale cell culture analog used to predict drug toxicity. Biotechnol Bioeng. 2009;104:193–205.

    Article  CAS  PubMed  Google Scholar 

  • Mari M, Cederbaum A. CYP2E1 overexpression in HepG2 cells induces glutathione synthesis by transcriptional activation of g-glutamylcysteine synthetase. J Biol Chem. 2000;275:15563–71.

    Article  CAS  PubMed  Google Scholar 

  • Midwoud PM, van Merema MT, Verpoorte E, Groothuis GMM. A microfluidic approach for in vitro assessment of interorgan interactions in drug metabolism using intestinal and liver slices. Lab Chip. 2010;10:2778–86.

    Article  PubMed  Google Scholar 

  • Nagai H, Matsumaru K, Feng G, Kaplowitz N. Reduced glutathione depletion causes necrosis and sensitization to tumor necrosis factor alpha–induced apoptosis in cultured mouse hepatocytes. Hepatology. 2002;36:55–64.

    Article  CAS  PubMed  Google Scholar 

  • Novik E, Maguire TJ, Chao P, Cheng KC, Yarmush ML. A microfluidic hepatic coculture platform for cell-based drug metabolism studies. Biochem Pharmacol. 2010;79:1036–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patten C, Thomas P, Guy R, Lee M. Cytochrome P450 enzymes involved in acetaminophen activation by Rat and human liver microsomes and their kinetics. Chem Res Toxicol. 1993;6:511–8.

    Article  CAS  PubMed  Google Scholar 

  • Prot JM, Aninat C, Griscom L, Razan F, Brochot C, Guguen Guillouzo C, et al. Improvement of HepG2/C3a cell functions in a microfluidic biochip. Biotechnol Bioeng. 2011;108:1704–15.

    Article  CAS  PubMed  Google Scholar 

  • Prot JM, Bunescu A, Elena-Hermann B, Aninat C, Choucha Snouber L, Griscom L, et al. Predictive toxicology using systemic biology and liver microfluidic “on chip” approaches: application to acetaminophen injury. Toxicol Appl Pharmacol. 2012;259:270–80.

    Article  CAS  PubMed  Google Scholar 

  • Reid AB, Kurten RC, McCullough SS, Brock RW, Hinson JA. Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther. 2005;312:509–16.

    Article  CAS  PubMed  Google Scholar 

  • Sivaraman A, Leach JK, Townsend S, Iida T, Hogan BJ, Stolz DB, Fry R, Samson LD,Tannenbaum SR, Griffith LG. A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab. 2005;6:569–92.

  • Sung JH, Kam C, Shuler MJ. A microfluidic device for a pharmacokinetic–pharmacodynamic (PK–PD) model on a chip. Lab Chip. 2010;10:446–55.

    Article  CAS  PubMed  Google Scholar 

  • Sung J, Esch M, Prot JM, Long C, Smith A, Hickman J, et al. Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip. 2013;13:1201–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toh YC, Lim TC, Tai D, Xiao G, van Noort D, Yu H. A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip. 2009;9:2026–31.

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi S. Elevation of glutathione level in Rat hepatocytes by hepatocyte growth factor via induction of 7-glutamylcysteine synthetase. J Biochem. 1999;126:815–20.

    Article  CAS  PubMed  Google Scholar 

  • Viravaidya K, Shuler ML. Incorporation of 3 T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol Prog. 2004;20:590–7.

    Article  CAS  PubMed  Google Scholar 

  • Wikswo J, Curtis E, Eagleton Z, Evans B, Kole A, Hofmeister L, et al. Scaling and systems biology for integrating multiple organs-on-a-chip. Lab Chip. 2013;13:3496–502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zanese M, Suter L, Roth A, De Giorgi F, Ichas F. High-throughput flow cytometry for predicting drug-induced hepatotoxicity. In: Schmid I, editor. Clinical Flow Cytometry – Emerging Applications. InTech, 2012. doi:10.5772/38270.

  • Zhang D. Mechanistic studies of the NRF2-KEAP1 signaling pathway. Drug Metab Rev. 2006;38:769–89.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Pi J, Woods C, Andersen M. Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses. Toxicol Appl Pharmacol. 2009;237:345–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was carried out in the framework of the Labex MS2T, which was funded by the French Government, through the program “Investments for the future” managed by the National Agency for Research (ANR-11-IDEX-0004-02). The work was supported by the “fondation UTC pour la recherche” via the chaire in predictive toxicology and the project “Puces à cellules 3D”

Conflict of interest

We declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Leclerc.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 45 kb)

ESM 2

(DOC 63 kb)

ESM 3

(DOC 3224 kb)

ESM 4

(PDF 387 kb)

ESM 5

(DOC 160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leclerc, E., Hamon, J., Claude, I. et al. Investigation of acetaminophen toxicity in HepG2/C3a microscale cultures using a system biology model of glutathione depletion. Cell Biol Toxicol 31, 173–185 (2015). https://doi.org/10.1007/s10565-015-9302-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-015-9302-0

Keywords

Navigation