Skip to main content
Log in

Differential effects of calcium on PI3K-Akt and HIF-1α survival pathways

  • Original Article
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Calcium signaling participates in the regulation of numberless cellular functions including cell cycle progression and cellular migration, important processes for cancer expansion. Cancer cell growth, migration, and invasion are typically supported by PI3K/Akt activation, while a hypoxic environment is critical in cancer development. Accordingly, in the present study, we aimed at investigating whether perturbations in calcium homeostasis induce alterations of HIF-1α and activate Akt levels in epithelial A549 and A431 cells. Survival was drastically reduced in the presence of calcium chelator BAPTA-AM and thapsigargin, a SERCA inhibitor inducing store-operated calcium entry, to a lesser extent. Calcium chelation provoked a transient but strong upregulation of HIF-1α protein levels and accumulation in the nucleus, whereas in the presence of thapsigargin, HIF-1α levels were rapidly abolished before reaching and exceeding control levels. Despite cell death, calcium chelation merely inhibited Akt, which was significantly activated in the presence of thapsigargin. Moreover, when store-operated calcium entry was simulated by reintroducing calcium ions in cell suspensions, Akt was rapidly activated in the absence of any growth factor. These data further underscore the growing importance of calcium entry and directly link this elementary event of calcium homeostasis to the Akt pathway, which is commonly deregulated in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BAPTA-AM:

1,2-Bis(o-aminophenoxy)ethane-N,N,N’,N’,-tetraacetic acid tetra-(acetoxymethyl)-ester

HIF-1α:

Hypoxia-inducible factor 1α

PI3K:

Phosphoinositide 3-kinase

Tg:

Thapsigargin

Iono:

Ionomycin

References

  • Bao S, Ouyang G, et al. Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell. 2004;5(4):329–39.

    Article  CAS  PubMed  Google Scholar 

  • Bellacosa A, Kumar CC, et al. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res. 2005;94:29–86.

    Article  CAS  PubMed  Google Scholar 

  • Benzonana LL, Perry NJ, et al. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro. Anesthesiology. 2013;119(3):593–605.

    Article  CAS  PubMed  Google Scholar 

  • Berchner-Pfannschmidt U, Petrat F, et al. Chelation of cellular calcium modulates hypoxia-inducible gene expression through activation of hypoxia-inducible factor-1alpha. J Biol Chem. 2004;279(43):44976–86.

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Lipp P, et al. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Bootman MD, et al. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–29.

    Article  CAS  PubMed  Google Scholar 

  • Cardone MH, Roy N, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282(5392):1318–21.

    Article  CAS  PubMed  Google Scholar 

  • Clapham DE. Calcium signaling. Cell. 2007;131(6):1047–58.

    Article  CAS  PubMed  Google Scholar 

  • Conus NM, Hemmings BA, et al. Differential regulation by calcium reveals distinct signaling requirements for the activation of Akt and p70S6k. J Biol Chem. 1998;273(8):4776–82.

    Article  CAS  PubMed  Google Scholar 

  • Datta SR, Dudek H, et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell. 1997;91(2):231–41.

    Article  CAS  PubMed  Google Scholar 

  • Deb TB, Coticchia CM, et al. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells. J Biol Chem. 2004;279(37):38903–11.

    Article  CAS  PubMed  Google Scholar 

  • DeGracia DJ, Montie HL. Cerebral ischemia and the unfolded protein response. J Neurochem. 2004;91(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  • Dimmeler S, Fleming I, et al. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature. 1999;399(6736):601–5.

    Article  CAS  PubMed  Google Scholar 

  • Escuin D, Simons JW, et al. Exploitation of the HIF axis for cancer therapy. Cancer Biol Ther. 2004;3(7):608–11.

    Article  CAS  PubMed  Google Scholar 

  • Fedida-Metula S, Feldman B, et al. Lipid rafts couple store-operated Ca2+ entry to constitutive activation of PKB/Akt in a Ca2+/calmodulin-, Src- and PP2A-mediated pathway and promote melanoma tumor growth. Carcinogenesis. 2012;33(4):740–50.

    Article  CAS  PubMed  Google Scholar 

  • Giorgi C, Baldassari F, et al. Mitochondrial Ca(2+) and apoptosis. Cell Calcium. 2012;52(1):36–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grynkiewicz G, Poenie M, et al. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985;260(6):3440–50.

    CAS  PubMed  Google Scholar 

  • Hosoi T, Hyoda K, et al. Akt up- and down-regulation in response to endoplasmic reticulum stress. Brain Res. 2007;1152:27–31.

    Article  CAS  PubMed  Google Scholar 

  • Howe AK. Cross-talk between calcium and protein kinase A in the regulation of cell migration. Curr Opin Cell Biol. 2011;23(5):554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu P, Han Z, et al. Critical role of endogenous Akt/IAPs and MEK1/ERK pathways in counteracting endoplasmic reticulum stress-induced cell death. J Biol Chem. 2004;279(47):49420–9.

    Article  CAS  PubMed  Google Scholar 

  • Huang H, Benzonana LL, et al. Prostate cancer cell malignancy via modulation of HIF-1alpha pathway with isoflurane and propofol alone and in combination. Br J Cancer. 2014;111(7):1338–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hui AS, Bauer AL, et al. Calcium signaling stimulates translation of HIF-alpha during hypoxia. FASEB J. 2006;20(3):466–75.

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki M, Zhao H, et al. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget. 2016;7(18):26042–56.

  • Jung HJ, Kim JH, et al. A novel Ca2+/calmodulin antagonist HBC inhibits angiogenesis and down-regulates hypoxia-inducible factor. J Biol Chem. 2010;285(33):25867–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimbro KS, Simons JW. Hypoxia-inducible factor-1 in human breast and prostate cancer. Endocr Relat Cancer. 2006;13(3):739–49.

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Bae SH, et al. Hypoxia-inducible factor (HIF-1)alpha: its protein stability and biological functions. Exp Mol Med. 2004;36(1):1–12.

    Article  PubMed  Google Scholar 

  • Lee M, Spokes KC, et al. Intracellular Ca2+ can compensate for the lack of NADPH oxidase-derived ROS in endothelial cells. FEBS Lett. 2010;584(14):3131–6.

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Denmeade S, et al. HIF-1alpha and calcium signaling as targets for treatment of prostate cancer by cardiac glycosides. Curr Cancer Drug Targets. 2009;9(7):881–7.

    Article  CAS  PubMed  Google Scholar 

  • Lindholm D, Wootz H, et al. ER stress and neurodegenerative diseases. Cell Death Differ. 2006;13(3):385–92.

    Article  CAS  PubMed  Google Scholar 

  • Liu YV, Hubbi ME, et al. Calcineurin promotes hypoxia-inducible factor 1alpha expression by dephosphorylating RACK1 and blocking RACK1 dimerization. J Biol Chem. 2007;282(51):37064–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Hendershot LM. The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer. 2004;4(12):966–77.

    Article  CAS  PubMed  Google Scholar 

  • Mavrofrydi O, Papazafiri P. Hypoxia-inducible factor-lalpha increase is an early and sensitive marker of lung cells responding to benzo[a]pyrene. J Environ Pathol Toxicol Oncol. 2012;31(4):335–47.

    Article  PubMed  Google Scholar 

  • Mavrofrydi O, Mavroeidi P, et al. Comparative assessment of HIF-1alpha and Akt responses in human lung and skin cells exposed to benzo[alpha]pyrene: effect of conditioned medium from pre-exposed primary fibroblasts. Environ Toxicol. 2015. doi:10.1002/tox.22119.

  • Mazure NM, Brahimi-Horn MC, et al. HIF-1: master and commander of the hypoxic world. A pharmacological approach to its regulation by siRNAs. Biochem Pharmacol. 2004;68(6):971–80.

    Article  CAS  PubMed  Google Scholar 

  • Merritt JE, Armstrong WP, et al. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J. 1990;271(2):515–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metzen E, Fandrey J, et al. Evidence against a major role for Ca2+ in hypoxia-induced gene expression in human hepatoma cells (Hep3B). J Physiol. 1999;517(Pt 3):651–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mottet D, Michel G, et al. ERK and calcium in activation of HIF-1. Ann N Y Acad Sci. 2002;973:448–53.

    Article  CAS  PubMed  Google Scholar 

  • Mottet D, Michel G, et al. Role of ERK and calcium in the hypoxia-induced activation of HIF-1. J Cell Physiol. 2003;194(1):30–44.

    Article  CAS  PubMed  Google Scholar 

  • Oda S, Oda T, et al. The calcium channel blocker cilnidipine selectively suppresses hypoxia-inducible factor 1 activity in vascular cells. Eur J Pharmacol. 2009;606(1–3):130–6.

    Article  CAS  PubMed  Google Scholar 

  • Ozeki M, Watanabe H, et al. Akt and Ca2+ signaling in endothelial cells. Mol Cell Biochem. 2004;259(1–2):169–76.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Garcia MJ, Cena V, et al. Glial cell line-derived neurotrophic factor increases intracellular calcium concentration. Role of calcium/calmodulin in the activation of the phosphatidylinositol 3-kinase pathway. J Biol Chem. 2004;279(7):6132–42.

    Article  CAS  PubMed  Google Scholar 

  • Pinton P, Giorgi C, et al. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 2008;27(50):6407–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powis G, Kirkpatrick L. Hypoxia inducible factor-1alpha as a cancer drug target. Mol Cancer Ther. 2004;3(5):647–54.

    CAS  PubMed  Google Scholar 

  • Price J, Zaidi AK, et al. Akt-1 mediates survival of chondrocytes from endoplasmic reticulum-induced stress. J Cell Physiol. 2010;222(3):502–8.

    CAS  PubMed  Google Scholar 

  • Rao RV, Bredesen DE. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol. 2004;16(6):653–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherbik SV, Brinton MA. Virus-induced Ca2+ influx extends survival of West Nile virus-infected cells. J Virol. 2010;84(17):8721–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33(4):207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo MD, Enomoto M, et al. Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5-trisphosphate and ryanodine receptors. Biochim Biophys Acta. 2014;1853(9):1980–91.

    Article  PubMed  Google Scholar 

  • Seta KA, Yuan Y, et al. The role of calcium in hypoxia-induced signal transduction and gene expression. Cell Calcium. 2004;36(3–4):331–40.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan S, Ohsugi M, et al. Endoplasmic reticulum stress-induced apoptosis is partly mediated by reduced insulin signaling through phosphatidylinositol 3-kinase/Akt and increased glycogen synthase kinase-3beta in mouse insulinoma cells. Diabetes. 2005;54(4):968–75.

    Article  CAS  PubMed  Google Scholar 

  • Suresh MV, Ramakrishnan SK, et al. Activation of hypoxia-inducible factor-1alpha in type 2 alveolar epithelial cell is a major driver of acute inflammation following lung contusion. Crit Care Med. 2014;42(10):e642–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suwanjang W, Holmstrom KM, et al. Glucocorticoids reduce intracellular calcium concentration and protects neurons against glutamate toxicity. Cell Calcium. 2013;53(4):256–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi T, Taniguchi T, et al. Activation of Akt/protein kinase B after stimulation with angiotensin II in vascular smooth muscle cells. Am J Physiol. 1999;276(6 Pt 2):H1927–34.

    CAS  PubMed  Google Scholar 

  • Unwith S, Zhao H, et al. The potential role of HIF on tumour progression and dissemination. Int J Cancer. 2015;136(11):2491–503.

    Article  CAS  PubMed  Google Scholar 

  • Vander Griend DJ, Antony L, et al. Amino acid containing thapsigargin analogues deplete androgen receptor protein via synthesis inhibition and induce the death of prostate cancer cells. Mol Cancer Ther. 2009;8(5):1340–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasa-Nicotera M. The new kid on the block: the unfolded protein response in the pathogenesis of atherosclerosis. Cell Death Differ. 2004;11 Suppl 1:S10–1.

    Article  CAS  PubMed  Google Scholar 

  • Wendel HG, De Stanchina E, et al. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature. 2004;428(6980):332–7.

    Article  CAS  PubMed  Google Scholar 

  • Werno C, Zhou J, et al. A23187, ionomycin and thapsigargin upregulate mRNA of HIF-1alpha via endoplasmic reticulum stress rather than a rise in intracellular calcium. J Cell Physiol. 2008;215(3):708–14.

    Article  CAS  PubMed  Google Scholar 

  • Whitehead JP, Molero JC, et al. The role of Ca2+ in insulin-stimulated glucose transport in 3T3-L1 cells. J Biol Chem. 2001;276(30):27816–24.

    Article  CAS  PubMed  Google Scholar 

  • Woodgett JR. Recent advances in the protein kinase B signaling pathway. Curr Opin Cell Biol. 2005;17(2):150–7.

    Article  CAS  PubMed  Google Scholar 

  • Wurzinger B, Mair A, et al. Cross-talk of calcium-dependent protein kinase and MAP kinase signaling. Plant Signal Behav. 2011;6(1):8–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie J, Pan H, et al. SOCE and cancer: recent progress and new perspectives. Int J Cancer. 2016;138(9):2067–77.

    Article  CAS  PubMed  Google Scholar 

  • Yao R, Cooper GM. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science. 1995;267(5206):2003–6.

    Article  CAS  PubMed  Google Scholar 

  • Yasuoka C, Ihara Y, et al. Antiapoptotic activity of Akt is down-regulated by Ca2+ in myocardiac H9c2 cells. Evidence of Ca(2+)-dependent regulation of protein phosphatase 2Ac. J Biol Chem. 2004;279(49):51182–92.

    Article  CAS  PubMed  Google Scholar 

  • Yuan G, Nanduri J, et al. Induction of HIF-1alpha expression by intermittent hypoxia: involvement of NADPH oxidase, Ca2+ signaling, prolyl hydroxylases, and mTOR. J Cell Physiol. 2008;217(3):674–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Olga Mavrofrydi is supported by the National Scholarships Foundation of Greece. This work was partially supported by the Special Account for Research Grants of the National and Kapodistrian University of Athens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiota Papazafiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divolis, G., Mavroeidi, P., Mavrofrydi, O. et al. Differential effects of calcium on PI3K-Akt and HIF-1α survival pathways. Cell Biol Toxicol 32, 437–449 (2016). https://doi.org/10.1007/s10565-016-9345-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-016-9345-x

Keywords

Navigation