Skip to main content

Advertisement

Log in

Look who’s talking—the crosstalk between oxidative stress and autophagy supports exosomal-dependent release of HCV particles

  • Review
  • Published:
Cell Biology and Toxicology Aims and scope Submit manuscript

Abstract

Autophagy is a highly conserved and regulated intracellular lysosomal degradation pathway that is essential for cell survival. Dysregulation has been linked to the development of various human diseases, including neurodegeneration and tumorigenesis, infection, and aging. Besides, many viruses hijack the autophagosomal pathway to support their life cycle. The hepatitis C virus (HCV), a major cause of chronic liver diseases worldwide, has been described to induce autophagy. The autophagosomal pathway can be further activated in response to elevated levels of reactive oxygen species (ROS). HCV impairs the Nrf2/ARE-dependent induction of ROS-detoxifying enzymes by a so far unprecedented mechanism. In line with this, this review aims to discuss the relevance of HCV-dependent elevated ROS levels for the induction of autophagy as a result of the impaired Nrf2 signaling and the described crosstalk between p62 and the Nrf2/Keap1 signaling pathway. Moreover, autophagy is functionally connected to the endocytic pathway as components of the endosomal trafficking are involved in the maturation of autophagosomes. The release of HCV particles is still not fully understood. Recent studies suggest an involvement of exosomes that originate from the endosomal pathway in viral release. In line with this, it is tempting to speculate whether HCV-dependent elevated ROS levels induce autophagy to support exosome-mediated release of viral particles. Based on recent findings, in this review, we will further highlight the impact of HCV-induced autophagy and its interplay with the endosomal pathway as a novel mechanism for the release of HCV particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AMPK:

AMP-Activated protein kinase

ARE:

Antioxidant response element

ATF6:

Activating transcription factor 6

Atg:

Autophagy-related genes

CHO:

Chinese hamster ovary

CMA:

Chaperone-mediated autophagy

cPLA2:

Cytosolic phospholipase A2

CYP2E1:

Cytochrome P450 2E1

DGAT-1:

Diacylglyceroltransferase

DMV:

Double-membrane vesicles

DFCP1:

Double FYVE-containing protein 1

EE:

Early endosome

eIF2α:

Eukaryotic translation initiation factor 2α

ER:

Endoplasmatic reticulum

ERGIC:

ER-Golgi intermediate compartment

Ero1:

ER oxidoreductins

ESCRT:

Endosomal sorting complexes required for transport

HCC:

Hepatocellular carcinoma

HCV:

Hepatitis C virus

HOPS:

Homotypic fusion protein sorting

Hrs:

Hepatocyte growth factor-regulated tyrosine kinase substrate

IFN:

Interferon

ILV:

Intraluminal vesicle

IMM:

Inner mitochondrial membrane

IRE1:

Inositol-required protein 1

KIR:

Keap1-interacting region

LC3:

Microtubule-associated protein 1 light chain 3

LD:

Lipid droplets

LE:

Late endosome

LIR:

LC3-interacting region

MLBs:

Multilamellar bodies

MPT:

Mitochondrial permeability transition

mPTP:

Mitochondrial permeability transition pore

mTOR:

Mammalian target of rapamycin

MVB:

Multivesicular body

MW:

Membranous web

M6PR:

Mannose-6-phosphate receptor

NOX:

NADPH oxidase

NS:

Non-structural

NSF:

N-ethylmaleimide-sensitive factor

OMM:

Outer mitochondrial membrane

ORP1L:

Oxysterol-binding protein-related protein 1L

PAS:

Phagophore assembly sites

pDC:

Plasmacytoid dendritic cells

PDI:

Protein disulfide isomerase

PE:

Phosphatidylethanolamine

PERK:

Protein kinase (PKR)-like ER kinase

PI3P:

Phosphatidylinositol-3-phosphate

PI4KA:

Phosphatidylinositol-4-kinase IIIα

PLEKHM1:

Pleckstrin homology domain-containing family M member 1

PM:

Plasma membrane

RC:

Replicon complex

RE:

Recycling endosome

RILP:

Rab-interacting lysosomal protein

ROS:

Reactive oxygen species

SERCA:

Sarcoplasmic/endoplasmic reticulum calcium ATPase

SNAP:

Soluble NSF attachment protein

SNAP25:

25 kDa synaptosome-associated protein

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment receptor

Stx:

Syntaxin

Tfn:

Transferrin

TfnR:

Tfn receptor

TGN:

trans-Golgi network

TIP47:

Tail-interacting protein of 47 kDa

TMD:

Transmembrane domain

Tsg101:

Tumor susceptibility gene 101

Txlna:

α-Taxilin

UBA:

Ubiquitin-associated domain

UPR:

Unfolded protein response

VAMP:

Vesicle-associated membrane protein

VDAC:

Voltage-dependent anion channel

VLDL:

Very low-density lipoproteins

Vps4:

Vascular protein sorting 4

WIPI:

WD-repeat domain phosphoinositide-interacting protein

XBP1:

X-box binding protein 1

References

  • Ait-Goughoulte M, Kanda T, Meyer K, Ryerse J, Ray R, Ray R. Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol. 2008;82:2241–9.

    Article  CAS  PubMed  Google Scholar 

  • Aivazian D, Serrano R, Pfeffer S. TIP47 is a key effector for Rab9 localization. J Cell Biol. 2006;173:917–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alers S, Löffler A, Wesselborg S, Stork B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol. 2012;32:2–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumor progression. Cell Cycle. 2009;8:2014–8.

    Article  CAS  PubMed  Google Scholar 

  • Anderson M, Kashanchi F, Jacobson S. Exosomes in viral disease. Neurotherapeutics. 2016;13:535–46.

    Article  CAS  PubMed  Google Scholar 

  • Ando M, Korenaga M, Hino K, Ikeda M, Kato N, Nishina S, Hidaka I, Sakaida I. Mitochondrial electron transport inhibition in full genomic hepatitis C virus replicon cells is restored by reducing viral replication. Liver Int. 2008;28:1158–66.

    Article  CAS  PubMed  Google Scholar 

  • Ao X, Zou L, Wu Y. Regulation of autophagy by the Rab GTPase network. Cell Death Differ. 2014;21:348–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariumi Y, Kuroki M, Maki M, Ikeda M, Dansako H, Wakita T, Kato N. The ESCRT system is required for hepatitis C virus production. PLoS One. 2011;6:e14517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avadhani N, Sangar M, Bansal S, Bajpai P. Bimodal targeting of cytochrome P450s to endoplasmic reticulum and mitochondria: the concept of chimeric signals. FEBS J. 2011;278:4218–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Axe E, Walker S, Manifava M, Chandra P, Roderick H, Habermann A, Griffiths G, Ktistakis N. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol. 2008;182:685–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baixauli F, Lopez-Otin C, Mittelbrunn M. Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Front Immunol. 2014;5:403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balaban R, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell. 2005;120:483–95.

    Article  CAS  PubMed  Google Scholar 

  • Bayer K, Banning C, Bruss V, Wiltzer-Bach L, Schindler M. Hepatitis C virus is released via a non-canonical secretory route. J Virol. 2016

  • Bellingham S, Guo B, Coleman B, Hill A. Exosomes: vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol. 2012;3:124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benali-Furet N, Chami M, Houel L, de Giorgi F, Vernejoul F, Lagorce D, Buscail L, Bartenschlager R, Ichas F, Rizzuto R, Paterlini-Brechot P. Hepatitis C virus core triggers apoptosis in liver cells by inducing ER stress and ER calcium depletion. Oncogene. 2005;24:4921–33.

    Article  CAS  PubMed  Google Scholar 

  • Bernard A, Klionsky D. Toward an understanding of autophagosome-lysosome fusion: the unsuspected role of ATG14. Autophagy. 2015;11:583–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernard A, Popelka H, Klionsky D. A unique hairpin-type tail-anchored SNARE starts to solve a long-time puzzle. Autophagy. 2013;9:813–4.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bossy-Wetzel E, Schwarzenbacher R, Lipton S. Molecular pathways to neurodegeneration. Nat Med. 2004;10:S2–9.

    Article  PubMed  CAS  Google Scholar 

  • Boudreau H, Emerson S, Korzeniowska A, Jendrysik M, Leto T. Hepatitis C virus (HCV) proteins induce NADPH oxidase 4 expression in a transforming growth factor beta-dependent manner: a new contributor to HCV-induced oxidative stress. J Virol. 2009;83:12934–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukong T, Momen-Heravi F, Kodys K, Bala S, Szabo G. Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog. 2014;10:e1004424.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burdette D, Olivarez M, Waris G. Activation of transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway. J. Gen. Virol. 2010;91:681–90.

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Reinisch K, Ferro-Novick S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell. 2007;12:671–82.

    Article  CAS  PubMed  Google Scholar 

  • Camus G, Herker E, Modi A, Haas J, Ramage H, Farese R, Ott M. Diacylglycerol acyltransferase-1 localizes hepatitis C virus NS5A protein to lipid droplets and enhances NS5A interaction with the viral capsid core. J Biol Chem. 2013;288:9915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvajal-Yepes M, Himmelsbach K, Schaedler S, Ploen D, Krause J, Ludwig L, Weiss T, Klingel K, Hildt E. Hepatitis C virus impairs the induction of cytoprotective Nrf2 target genes by delocalization of small Maf proteins. J Biol Chem. 2011;286:8941–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cenedella R. Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids. 2009;44:477–87.

    Article  CAS  PubMed  Google Scholar 

  • Chahar H, Bao X, Casola A. Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses. 2015;7:3204–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan S-W, Egan P. Hepatitis C virus envelope proteins regulate CHOP via induction of the unfolded protein response. FASEB J. 2005;19:1510–2.

    CAS  PubMed  Google Scholar 

  • Chen Y, Scheller R. SNARE-mediated membrane fusion. Nat Rev Mol Cell Biol. 2001;2:98–106.

    Article  CAS  PubMed  Google Scholar 

  • Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 2013;93:269–309.

    Article  CAS  PubMed  Google Scholar 

  • Chiramel A, Brady N, Bartenschlager R. Divergent roles of autophagy in virus infection. Cells. 2013;2:83–104.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi J, Lee K, Zheng Y, Yamaga A, Lai M, Ou J-H. Reactive oxygen species suppress hepatitis C virus RNA replication in human hepatoma cells. Hepatology. 2004;39:81–9.

    Article  CAS  PubMed  Google Scholar 

  • Chu V, Bhattacharya S, Nomoto A, Lin J, Zaidi S, Oberley T, Weinman S, Azhar S, Huang T-T. Persistent expression of hepatitis C virus non-structural proteins leads to increased autophagy and mitochondrial injury in human hepatoma cells. PLoS One. 2011;6:e28551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chua C, Gan B, Tang B. Involvement of members of the Rab family and related small GTPases in autophagosome formation and maturation. Cell Mol Life Sci. 2011;68:3349–58.

    Article  CAS  PubMed  Google Scholar 

  • Chua C, Tang B. Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation. Cell Mol Life Sci. 2015;72:2289–304.

    Article  CAS  PubMed  Google Scholar 

  • Copple I, Lister A, Obeng A, Kitteringham N, Jenkins R, Layfield R, Foster B, Goldring C, Park B. Physical and functional interaction of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J Biol Chem. 2010;285:16782–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corless L, Crump CM, Griffin SD, Harris M. Vps4 and the ESCRT-III complex are required for the release of infectious hepatitis C virus particles. J. Gen. Virol. 2010;91:362–72.

    Article  CAS  PubMed  Google Scholar 

  • Cosset F-L, Dreux M. HCV transmission by hepatic exosomes establishes a productive infection. J Hepatol. 2014;60:674–5.

    Article  PubMed  Google Scholar 

  • Dash S, Chava S, Aydin Y, Chandra P, Ferraris P, Chen W, Balart L, Wu T, Garry R. Hepatitis C virus infection induces autophagy as a prosurvival mechanism to alleviate hepatic ER-stress response. Viruses. 2016;8:150.

    Article  PubMed Central  CAS  Google Scholar 

  • de Mochel NS, Seronello S, Wang S, Ito C, Zheng J, Liang T, Lambeth J, Choi J. Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection. Hepatology. 2010;52:47–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Delhem N, Sabile A, Gajardo R, Podevin P, Abadie A, Blaton M, Kremsdorf D, Beretta L, Brechot C. Activation of the interferon-inducible protein kinase PKR by hepatocellular carcinoma derived-hepatitis C virus core protein. Oncogene. 2001;20:5836–45.

    Article  CAS  PubMed  Google Scholar 

  • Diao J, Liu R, Rong Y, Zhao M, Zhang J, Lai Y, Zhou Q, Wilz L, Li J, Vivona S, Pfuetzner R, Brunger A, Zhong Q. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature. 2015;520:563–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz E, Schimmöller F, Pfeffer S. A novel Rab9 effector required for endosome-to-TGN transport. J Cell Biol. 1997;138:283–90.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dionisio N, Garcia-Mediavilla M, Sanchez-Campos S, Majano P, Benedicto I, Rosado J, Salido G, Gonzalez-Gallego J. Hepatitis C virus NS5A and core proteins induce oxidative stress-mediated calcium signalling alterations in hepatocytes. J Hepatol. 2009;50:872–82.

    Article  CAS  PubMed  Google Scholar 

  • Dreux M, Chisari F. Autophagy proteins promote hepatitis C virus replication. Autophagy. 2009a;5:1224–5.

    Article  PubMed  Google Scholar 

  • Dreux M, Chisari F. Impact of the autophagy machinery on hepatitis C virus infection. Viruses. 2011;3:1342–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dreux M, Garaigorta U, Boyd B, Décembre E, Chung J, Whitten-Bauer C, Wieland S, Chisari F. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe. 2012;12:558–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dreux M, Gastaminza P, Wieland S, Chisari F. The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci U S A. 2009b;106:14046–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egger D, Wolk B, Gosert R, Bianchi L, Blum H, Moradpour D, Bienz K, Egger D, Wölk B, Gosert R, Bianchi L, Blum H, Moradpour D, Bienz K. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol. 2002;76:5974–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elgner F, Donnerhak C, Ren H, Medvedev R, Schreiber A, Weber L, Heilmann M, Ploen D, Himmelsbach K, Finkernagel M, Klingel K, Hildt E. Characterization of α-taxilin as a novel factor controlling the release of hepatitis C virus. Biochem J. 2015.

  • Elgner F, Ren H, Medvedev R, Ploen D, Himmelsbach K, Boller K, Hildt E. The intra-cellular cholesterol transport inhibitor U18666A inhibits the exosome-dependent release of mature hepatitis C virus. J Virol. 2016.

  • Eskelinen E-L, Saftig P. Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim Biophys Acta. 2009;1793:664–73.

    Article  CAS  PubMed  Google Scholar 

  • Ezzikouri S, Nishimura T, Kohara M, Benjelloun S, Kino Y, Inoue K, Matsumori A, Tsukiyama-Kohara K. Inhibitory effects of Pycnogenol(R) on hepatitis C virus replication. Antivir Res. 2015;113:93–102.

    Article  CAS  PubMed  Google Scholar 

  • Fader C, Aguilera M, Colombo M. ATP is released from autophagic vesicles to the extracellular space in a VAMP7-dependent manner. Autophagy. 2012;8:1741–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fader C, Colombo M. Multivesicular bodies and autophagy in erythrocyte maturation. Autophagy. 2006;2:122–5.

    Article  PubMed  Google Scholar 

  • Fader C, Colombo M. Autophagy and multivesicular bodies: two closely related partners. Cell Death Differ. 2009a;16:70–8.

    Article  CAS  PubMed  Google Scholar 

  • Fader C, Sanchez D, Furlan M, Colombo M. Induction of autophagy promotes fusion of multivesicular bodies with autophagic vacuoles in k562 cells. Traffic. 2008;9:230–50.

    Article  CAS  PubMed  Google Scholar 

  • Fader C, Sanchez D, Mestre M, Colombo M. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim Biophys Acta. 2009b;1793:1901–16.

    Article  CAS  PubMed  Google Scholar 

  • Fasshauer D, Sutton R, Brunger A, Jahn R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc Natl Acad Sci U S A. 1998;95:15781–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferraris P, Blanchard E, Roingeard P. Ultrastructural and biochemical analyses of hepatitis C virus-associated host cell membranes. J Gen Virol. 2010;91:2230–7.

    Article  CAS  PubMed  Google Scholar 

  • Filimonenko M, Stuffers S, Raiborg C, Yamamoto A, Malerød L, Fisher EMC, Isaacs A, Brech A, Stenmark H, Simonsen A. Functional multivesicular bodies are required for autophagic clearance of protein aggregates associated with neurodegenerative disease. J Cell Biol. 2007;179:485–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fruhbeis C, Frohlich D, Kuo W, Amphornrat J, Thilemann S, Saab A, Kirchhoff F, Mobius W, Goebbels S, Nave K-A, Schneider A, Simons M, Klugmann M, Trotter J, Kramer-Albers E-M. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11:e1001604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell. 2008;19:2092–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furuta N, Fujita N, Noda T, Yoshimori T, Amano A. Combinational soluble N-ethylmaleimide-sensitive factor attachment protein receptor proteins VAMP8 and Vti1b mediate fusion of antimicrobial and canonical autophagosomes with lysosomes. Mol Biol Cell. 2010;21:1001–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gastaminza P, Dryden K, Boyd B, Wood M, Law M, Yeager M, Chisari F. Ultrastructural and biophysical characterization of hepatitis C virus particles produced in cell culture. J Virol. 2010;84:10999–1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould S, Booth A, Hildreth J. The Trojan exosome hypothesis. Proc Natl Acad Sci U S A. 2003;100:10592–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Govea-Salas M, Rivas-Estilla A, Rodriguez-Herrera R, Lozano-Sepulveda S, Aguilar-Gonzalez C, Zugasti-Cruz A, Salas-Villalobos T, Morlett-Chavez J. Gallic acid decreases hepatitis C virus expression through its antioxidant capacity. Exp Ther Med. 2016;11:619–24.

    CAS  PubMed  Google Scholar 

  • Grégoire I, Rabourdin-Combe C, Faure M. Autophagy and RNA virus interactomes reveal IRGM as a common target. Autophagy. 2012;8:1136–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guerra F, Bucci C. Multiple roles of the small GTPase Rab7. Cells. 2016;5.

  • Gutierrez M, Munafo D, Beron W, Colombo M. Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. J Cell Sci. 2004;117:2687–97.

    Article  CAS  PubMed  Google Scholar 

  • Harder B, Jiang T, Wu T, Tao S, de la Vega Rojo M, Tian W, Chapman E, Zhang D. Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans. 2015;43:680–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higdon A, Diers A, Oh J, Landar A, Darley-Usmar V. Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem J. 2012;442:453–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hino K, Hara Y, Nishina S. Mitochondrial reactive oxygen species as a mystery voice in hepatitis C. Hepatol Res. 2014;44:123–32.

    Article  CAS  PubMed  Google Scholar 

  • Hirota Y, Tanaka Y. A small GTPase, human Rab32, is required for the formation of autophagic vacuoles under basal conditions. Cell Mol Life Sci. 2009;66:2913–32.

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Sekhar K, Freeman M, Liebler D. Specific patterns of electrophile adduction trigger Keap1 ubiquitination and Nrf2 activation. J Biol Chem. 2005;280:31768–75.

    Article  CAS  PubMed  Google Scholar 

  • Horner S, Liu H, Park H, Briley J, Gale MJR. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc Natl Acad Sci U S A. 2011;108:14590–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Chen Y, Ye J. Inhibition of hepatitis C virus replication by peroxidation of arachidonate and restoration by vitamin E. Proc Natl Acad Sci U S A. 2007a;104:18666–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, Sun F, Owen D, Li W, Chen Y, Gale M, Ye J. Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Natl Acad Sci U S A. 2007b;104:5848–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubert V, Peschel A, Langer B, Groger M, Rees A, Kain R. LAMP-2 is required for incorporating syntaxin-17 into autophagosomes and for their fusion with lysosomes. Biol Open. 2016;5:1516–29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30:3481–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutagalung A, Novick P. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev. 2011;91:119–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyttinen J, Niittykoski M, Salminen A, Kaarniranta K. Maturation of autophagosomes and endosomes: a key role for Rab7. Biochim Biophys Acta. 2013;1833:503–10.

    Article  CAS  PubMed  Google Scholar 

  • Ichimura Y, Waguri S, Sou Y-S, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee M-S, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 2013;51:618–31.

    Article  CAS  PubMed  Google Scholar 

  • Ishida ME, Oguchi M, Fukuda M. Multiple types of guanine nucleotide exchange factors (GEFs) for Rab small GTPases. Cell Struct Funct. 2016;41:61–79.

    Article  PubMed  Google Scholar 

  • Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell. 2012;151:1256–69.

    Article  CAS  PubMed  Google Scholar 

  • Itakura E, Mizushima N. Syntaxin 17: the autophagosomal SNARE. Autophagy. 2013;9:917–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh T, Fujita N, Kanno E, Yamamoto A, Yoshimori T, Fukuda M. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell. 2008;19:2916–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov A, Smirnova O, Petrushanko I, Ivanova O, Karpenko I, Alekseeva E, Sominskaya I, Makarov A, Bartosch B, Kochetkov S, Isaguliants M. HCV core protein uses multiple mechanisms to induce oxidative stress in human hepatoma huh7 cells. Viruses. 2015;7:2745–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahn R, Scheller R. SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol. 2006;7:631–43.

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Lamark T, Sjøttem E, Larsen K, Awuh J, Øvervatn A, McMahon M, Hayes J, Johansen T. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010;285:22576–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jheng J-R, Ho J-Y, Horng J-T. ER stress, autophagy, and RNA viruses. Front Microbiol. 2014;5:388.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang B, Himmelsbach K, Ren H, Boller K, Hildt E. Subviral hepatitis B virus filaments are released like infectious viral particles via multivesicular bodies. J Virol. 2015a;90:3330–41.

    Article  PubMed  CAS  Google Scholar 

  • Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, Mizushima N. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell. 2014;25:1327–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang T, Harder B, de la Rojo VM, Wong P, Chapman E, Zhang D. p62 links autophagy and Nrf2 signaling. Free Radic Biol Med. 2015b;88:199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins. Autophagy. 2011;7:279–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone R, Mathew A, Mason A, Teng K. Exosome formation during maturation of mammalian and avian reticulocytes: evidence that exosome release is a major route for externalization of obsolete membrane proteins. J Cell Physiol. 1991;147:27–36.

    Article  CAS  PubMed  Google Scholar 

  • Kansanen E, Kuosmanen S, Leinonen H, Levonen A-L. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1:45–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kao C, Yi G, Huang H-C. The core of hepatitis C virus pathogenesis. Curr Opin Virol. 2016;17:66–73.

    Article  CAS  PubMed  Google Scholar 

  • Kasprzak A, Seidel J, Biczysko W, Wysocki J, Spachacz R, Zabel M. Intracellular localization of NS3 and C proteins in chronic hepatitis C. Liver Int. 2005;25:896–903.

    Article  CAS  PubMed  Google Scholar 

  • Katsuragi Y, Ichimura Y, Komatsu M. p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J. 2015;282:4672–8.

    Article  CAS  PubMed  Google Scholar 

  • Ke P-Y, Chen S. Autophagy: a novel guardian of HCV against innate immune response. Autophagy. 2011;7:533–5.

    Article  PubMed  Google Scholar 

  • Ke P-Y, Chen S. Hepatitis C virus and cellular stress response: implications to molecular pathogenesis of liver diseases. Viruses. 2012;4:2251–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ke P-Y, Chen S. Autophagy in hepatitis C virus-host interactions: potential roles and therapeutic targets for liver-associated diseases. World J Gastroenterol. 2014;20:5773–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kensler T, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 2007a;47:89–116.

    Article  CAS  PubMed  Google Scholar 

  • Korenaga M, Wang T, Li Y, Showalter L, Chan T, Sun J, Weinman S. Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem. 2005;280:37481–8.

    Article  CAS  PubMed  Google Scholar 

  • Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R, Gherbesi N, Budnik V. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell. 2009;139:393–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucera A, Bakke O, Progida C. The multiple roles of Rab9 in the endolysosomal system. Commun Integr Biol. 2016;9:e1204498.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwofie S, Schaefer U, Sundararajan V, Bajic V, Christoffels A. HCVpro: hepatitis C virus protein interaction database. Infect Genet Evol. 2011;11:1971–7.

    Article  CAS  PubMed  Google Scholar 

  • Lai C-K, Jeng K-S, Machida K, Lai MM. Hepatitis C virus egress and release depend on endosomal trafficking of core protein. J Virol. 2010a;84:11590–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai C-K, Saxena V, Tseng C-H, Jeng K-S, Kohara M, Lai M. Nonstructural protein 5A is incorporated into hepatitis C virus low-density particle through interaction with core protein and microtubules during intracellular transport. PLoS One. 2014;9:e99022.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lai R, Arslan F, Lee M, Sze N, Choo A, Chen T, Salto-Tellez M, Timmers L, Lee C, El Oakley R, Pasterkamp G, de Kleijn DPV, Lim S. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 2010b;4:214–22.

    Article  CAS  PubMed  Google Scholar 

  • Lajoie P, Guay G, Dennis J, Nabi I. The lipid composition of autophagic vacuoles regulates expression of multilamellar bodies. J Cell Sci. 2005;118:1991–2003.

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dooley H, Tooze S. Endocytosis and autophagy: shared machinery for degradation. BioEssays. 2013a;35:34–45.

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Longatti A, Tooze S. Rabs and GAPs in starvation-induced autophagy. Small GTPases. 2016;7:265–9.

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Yoshimori T, Tooze S. The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 2013b;14:759–74.

    Article  CAS  PubMed  Google Scholar 

  • Lanini S, Easterbrook P, Zumla A, Ippolito G. Hepatitis C: global epidemiology and strategies for control. Clin Microbiol Infect. 2016.

  • Lebrand C, Corti M, Goodson H, Cosson P, Cavalli V, Mayran N, Faure J, Gruenberg J. Late endosome motility depends on lipids via the small GTPase Rab7. EMBO J. 2002;21:1289–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132:27–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levonen A-L, Hill B, Kansanen E, Zhang J, Darley-Usmar V. Redox regulation of antioxidants, autophagy, and the response to stress: implications for electrophile therapeutics. Free Radic Biol Med. 2014;71:196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Kim E, Yuan H, Inoki K, Goraksha-Hicks P, Schiesher R, Neufeld T, Guan K-L. Regulation of mTORC1 by the Rab and Arf GTPases. J Biol Chem. 2010;285:19705–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X-D, Sun L, Seth R, Pineda G, Chen Z. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc Natl Acad Sci U S A. 2005;102:17717–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Boehning D, Qian T, Popov V, Weinman S. Hepatitis C virus core protein increases mitochondrial ROS production by stimulation of Ca2+ uniporter activity. FASEB J. 2007;21:2474–85.

    Article  CAS  PubMed  Google Scholar 

  • Lindenbach B. Virion assembly and release. Curr Top Microbiol Immunol. 2013;369:199–218.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindenbach B, Rice C. The ins and outs of hepatitis C virus entry and assembly. Nat Rev Micro. 2013;11:688–700.

    Article  CAS  Google Scholar 

  • Linhart K, Bartsch H, Seitz H. The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts. Redox Biol. 2014;3:56–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Zhang X, Yu Q, He J. Exosome-associated hepatitis C virus in cell cultures and patient plasma. Biochem Biophys Res Commun. 2014;455:218–22.

    Article  CAS  PubMed  Google Scholar 

  • Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73:3221–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi D. S. Rab9 functions in transport between late endosomes and the trans Golgi network. 1993.

  • Longatti A. The dual role of exosomes in hepatitis a and C virus transmission and viral immune activation. Viruses. 2015;7:6707–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longatti A, Boyd B, Chisari F. Virion-independent transfer of replication-competent hepatitis C virus RNA between permissive cells. J Virol. 2015;89:2956–61.

    Article  PubMed  CAS  Google Scholar 

  • Longatti A, Lamb C, Razi M. Yoshimura S-i, Barr F, Tooze S. TBC1D14 regulates autophagosome formation via Rab11- and ULK1-positive recycling endosomes. J Cell Biol. 2012;197:659–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Q. Transcriptional responses to oxidative stress: pathological and toxicological implications. Pharmacol Ther. 2010;125:376–93.

    Article  CAS  PubMed  Google Scholar 

  • Malhi H, Kaufman R. Endoplasmic reticulum stress in liver disease. J Hepatol. 2011;54:795–809.

    Article  CAS  PubMed  Google Scholar 

  • Mankouri J, Walter C, Stewart H, Bentham M, Park W, Heo W, Fukuda M, Griffin S, Harris M. Release of infectious hepatitis C virus from Huh7 cells occurs via a trans-Golgi network to endosome pathway independent of VLDL. J Virol. 2016.

  • Masciopinto F, Giovani C, Campagnoli S, Galli-Stampino L, Colombatto P, Brunetto M, Yen T, Houghton M, Pileri P, Abrignani S. Association of hepatitis C virus envelope proteins with exosomes. Eur J Immunol. 2004;34:2834–42.

    Article  CAS  PubMed  Google Scholar 

  • Mathivanan S, Ji H, Simpson R. Exosomes: extracellular organelles important in intercellular communication. J Proteome. 2010;73:1907–20.

    Article  CAS  Google Scholar 

  • Meckes DJR, Raab-Traub N. Microvesicles and viral infection. J Virol. 2011;85:12844–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Medvedev R, Ploen D, Hildt E. HCV and oxidative stress: implications for HCV life cycle and HCV-associated pathogenesis. Oxidative Med Cell Longev. 2016;2016:9012580.

    Article  Google Scholar 

  • Menzel N, Fischl W, Hueging K, Bankwitz D, Frentzen A, Haid S, Gentzsch J, Kaderali L, Bartenschlager R, Pietschmann T. MAP-kinase regulated cytosolic phospholipase A2 activity is essential for production of infectious hepatitis C virus particles. PLoS Pathog. 2012;8:e1002829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merquiol E, Uzi D, Mueller T, Goldenberg D, Nahmias Y, Xavier R, Tirosh B, Shibolet O. HCV causes chronic endoplasmic reticulum stress leading to adaptation and interference with the unfolded protein response. PLoS One. 2011;6:e24660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol. 2007;9:1089–97.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo A, Klionsky D. Autophagy fights disease through cellular self-digestion. Nature. 2008;451:1069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möbius W, Ohno-Iwashita Y, van Donselaar EG, Oorschot VM, Shimada Y, Fujimoto T, Heijnen HF, Geuze HJ, Slot JW. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J Histochem Cytochem. 2002;50:43–55.

    Article  PubMed  Google Scholar 

  • Mohl B-P, Bartlett C, Mankouri J, Harris M. Early events in the generation of autophagosomes are required for the formation of membrane structures involved in hepatitis C virus genome replication. J Gen Virol. 2016;97:680–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moradpour D, Gosert R, Egger D, Penin F, Blum H, Bienz K. Membrane association of hepatitis C virus nonstructural proteins and identification of the membrane alteration that harbors the viral replication complex. Antivir Res. 2003;60:103–9.

    Article  CAS  PubMed  Google Scholar 

  • Moradpour D, Penin F, Rice C. Replication of hepatitis C virus. Nat Rev Microbiol. 2007;5:453–63.

    Article  CAS  PubMed  Google Scholar 

  • Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein D. Autophagosome precursor maturation requires homotypic fusion. Cell. 2011;146:303–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller M, Schmidt O, Angelova M, Faserl K, Weys S, Kremser L, Pfaffenwimmer T, Dalik T, Kraft C, Trajanoski Z, Lindner H, Teis D. The coordinated action of the MVB pathway and autophagy ensures cell survival during starvation. eLife. 2015;4:e07736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nair U, Jotwani A, Geng J, Gammoh N, Richerson D, Yen W-L, Griffith J, Nag S, Wang K, Moss T, Baba M, McNew J, Jiang X, Reggiori F, Melia T, Klionsky D. SNARE proteins are required for macroautophagy. Cell. 2011;146:290–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai K, Tanaka H, Hanada K, Ogata H, Suzuki F, Kumada H, Miyajima A, Ishida S, Sunouchi M, Habano W, Kamikawa Y, Kubota K, Kita J, Ozawa S, Ohno Y. Decreased expression of cytochromes P450 1A2, 2E1, and 3A4 and drug transporters Na+-taurocholate-cotransporting polypeptide, organic cation transporter 1, and organic anion-transporting peptide-C correlates with the progression of liver fibrosis in chronic hepatitis C patients. Drug Metab Dispos. 2008;36:1786–93.

    Article  CAS  PubMed  Google Scholar 

  • Nakatogawa H, Ohsum Y. Autophagy: close contact keeps out the uninvited. Curr Biol. 2014;24:R557–60.

    Article  CAS  Google Scholar 

  • Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, Kanaseki T, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S. Discovery of Atg5/Atg7-independent alternative macroautophagy. Nature. 2009;461:654–8.

    Article  CAS  PubMed  Google Scholar 

  • Nogami S, Satoh S, Nakano M, Shimizu H, Fukushima H, Maruyama A, Terano A, Shirataki H. Taxilin; a novel syntaxin-binding protein that is involved in Ca2+-dependent exocytosis in neuroendocrine cells. Genes Cells. 2003a;8:17–28.

    Article  CAS  PubMed  Google Scholar 

  • Nogami S, Satoh S, Nakano M, Terano A, Shirataki H. Interaction of taxilin with syntaxin which does not form the SNARE complex. Biochem Biophys Res Commun. 2003b;311:797–802.

    Article  CAS  PubMed  Google Scholar 

  • Novick P. Regulation of membrane traffic by Rab GEF and GAP cascades. Small GTPases. 2016: 1–5.

  • O’Connell M, Hayes J. The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic. Biochem Soc Trans. 2015;43:687–9.

    Article  PubMed  CAS  Google Scholar 

  • Okuda M, Li K, Beard M, Showalter L, Scholle F, Lemon S, Weinman S. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology. 2002;122:366–75.

    Article  CAS  PubMed  Google Scholar 

  • Olsvik H, Lamark T, Takagi K, Larsen K, Evjen G, Overvatn A, Mizushima T, Johansen T. FYCO1 contains a C-terminally extended, LC3A/B-preferring LC3-interacting region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy. J Biol Chem. 2015;290:29361–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ostrowski M, Carmo N, Krumeich S, Fanget I, Raposo G, Savina A, Moita C, Schauer K, Hume A, Freitas R, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra M, Darchen F, Amigorena S, Moita L, Thery C. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12(19–30):1–13.

    Google Scholar 

  • Paik Y-H, Kim J, Aoyama T, de Minicis S, Bataller R, Brenner D. Role of NADPH oxidases in liver fibrosis. Antioxid Redox Signal. 2014;20:2854–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pajares M, Jimenez-Moreno N, Garcia-Yague A, Escoll M, de Ceballos M, van Leuven F, Rabano A, Yamamoto M, Rojo A, Cuadrado A. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 2016;12:1902–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pankiv S, Alemu E, Brech A, Bruun J-A, Lamark T, Overvatn A, Bjørkøy G, Johansen T. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J Cell Biol. 2010;188:253–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park C-Y, Jun H-J, Wakita T, Cheong J, Hwang S. Hepatitis C virus nonstructural 4B protein modulates sterol regulatory element-binding protein signaling via the AKT pathway. J Biol Chem. 2009;284:9237–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul D, Hoppe S, Saher G, Krijnse-Locker J, Bartenschlager R. Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. J Virol. 2013;87:10612–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pazienza V, Clement S, Pugnale P, Conzelmann S, Pascarella S, Mangia A, Negro F. Gene expression profile of Huh-7 cells expressing hepatitis C virus genotype 1b or 3a core proteins. Liver Int. 2009;29:661–9.

    Article  CAS  PubMed  Google Scholar 

  • Penin F, Dubuisson J, Rey F, Moradpour D, Pawlotsky J-M. Structural biology of hepatitis C virus. Hepatology. 2004;39:5–19.

    Article  CAS  PubMed  Google Scholar 

  • Piccoli C, Scrima R, Quarato G, D’Aprile A, Ripoli M, Lecce L, Boffoli D, Moradpour D, Capitanio N. Hepatitis C virus protein expression causes calcium-mediated mitochondrial bioenergetic dysfunction and nitro-oxidative stress. Hepatology. 2007;46:58–65.

    Article  CAS  PubMed  Google Scholar 

  • Ploen D, Hafirassou M, Himmelsbach K, Sauter D, Biniossek M, Weiss T, Baumert T, Schuster C, Hildt E. TIP47 plays a crucial role in the life cycle of hepatitis C virus. J Hepatol. 2013a;58:1081–8.

    Article  CAS  PubMed  Google Scholar 

  • Ploen D, Hafirassou M, Himmelsbach K, Schille S, Biniossek M, Baumert T, Schuster C, Hildt E. TIP47 is associated with the hepatitis C virus and its interaction with Rab9 is required for release of viral particles. Eur J Cell Biol. 2013b;92:374–82.

    Article  CAS  PubMed  Google Scholar 

  • Ploen D, Hildt E. Hepatitis C virus comes for dinner: how the hepatitis C virus interferes with autophagy. World J Gastroenterol. 2015;21:8492–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poh M, Shui G, Xie X, Shi P-Y, Wenk M, Gu F. U18666A, an intra-cellular cholesterol transport inhibitor, inhibits dengue virus entry and replication. Antivir Res. 2012;93:191–8.

    Article  CAS  PubMed  Google Scholar 

  • Progida C, Nielsen M, Koster G, Bucci C, Bakke O. Dynamics of Rab7b-dependent transport of sorting receptors. Traffic. 2012;13:1273–85.

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnaiah V, Thumann C, Fofana I, Habersetzer F, Pan Q, de Ruiter PE, Willemsen R, Demmers JA, Stalin Raj V, Jenster G, Kwekkeboom J, Tilanus H, Haagmans B, Baumert T, van der Laan LJW. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci U S A. 2013;110:13109–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy J, Burguete A, Sridevi K, Ganley I, Nottingham R, Pfeffer S. A functional role for the GCC185 golgin in mannose 6-phosphate receptor recycling. Mol Biol Cell. 2006;17:4353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reggiori F, Shintani T, Nair U, Klionsky D. Atg9 cycles between mitochondria and the pre-autophagosomal structure in yeasts. Autophagy. 2005;1:101–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiss S, Rebhan I, Backes P, Romero-Brey I, Erfle H, Matula P, Kaderali L, Poenisch M, Blankenburg H, Hiet M-S, Longerich T, Diehl S, Ramirez F, Balla T, Rohr K, Kaul A, Bühler S, Pepperkok R, Lengauer T, Albrecht M, Eils R, Schirmacher P, Lohmann V, Bartenschlager R. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe. 2011;9:32–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren H, Elgner F, Jiang B, Himmelsbach K, Medvedev R, Ploen D, Hildt E. The autophagosomal SNARE protein syntaxin 17 is an essential factor for the hepatitis C virus life cycle. J Virol. 2016;90:5989–6000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riederer M, Soldati T, Shapiro A, Lin J, Pfeffer S. Lysosome biogenesis requires Rab9 function and receptor recycling from endosomes to the trans-Golgi network. J Cell Biol. 1994;125:573–82.

    Article  CAS  PubMed  Google Scholar 

  • Robbins P, Morelli A. Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 2014;14:195–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha N, Kuijl C, van der Kant R, Janssen L, Houben D, Janssen H, Zwart W, Neefjes J. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 glued and late endosome positioning. J Cell Biol. 2009;185:1209–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romero-Brey I, Merz A, Chiramel A, Lee J-Y, Chlanda P, Haselman U, Santarella-Mellwig R, Habermann A, Hoppe S, Kallis S, Walther P, Antony C, Krijnse-Locker J, Bartenschlager R. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog. 2012;8:e1003056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggieri V, Mazzoccoli C, Pazienza V, Andriulli A, Capitanio N, Piccoli C. Hepatitis C virus, mitochondria and auto/mitophagy: exploiting a host defense mechanism. World J Gastroenterol. 2014;20:2624–33.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwer B, Ren S, Pietschmann T, Kartenbeck J, Kaehlcke K, Bartenschlager R, Yen T, Ott M. Targeting of hepatitis C virus core protein to mitochondria through a novel C-terminal localization motif. J Virol. 2004;78:7958–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapiro A, Riederer M, Pfeffer S. Biochemical analysis of rab9, a ras-like GTPase involved in protein transport from late endosomes to the trans Golgi network. J Biol Chem. 1993;268:6925–31.

    CAS  PubMed  Google Scholar 

  • Shrivastava S, Bhanja Chowdhury J, Steele R, Ray R, Ray R. Hepatitis C virus upregulates Beclin1 for induction of autophagy and activates mTOR signaling. J Virol. 2012;86:8705–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shrivastava S, Devhare P, Sujijantarat N, Steele R, Kwon Y-C, Ray R, Ray R. Knockdown of autophagy inhibits infectious hepatitis C virus release by the exosomal pathway. J Virol. 2016;90:1387–96.

    Article  CAS  PubMed Central  Google Scholar 

  • Silva L, Jung J. Modulation of the autophagy pathway by human tumor viruses. Semin Cancer Biol. 2013;23:323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonsen A, Tooze S. Coordination of membrane events during autophagy by multiple class III PI3-kinase complexes. J Cell Biol. 2009;186:773–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sir D, Chen W-L, Choi J, Wakita T, Yen TSB, J-h O. Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology. 2008;48:1054–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sir D, C-f K, Tian Y, Liu H, Huang E, Jung J, Machida K, J-h O. Replication of hepatitis C virus RNA on autophagosomal membranes. J Biol Chem. 2012;287:18036–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siu G, Zhou F, Yu M, Zhang L, Wang T, Liang Y, Chen Y, Chan H, Yu S. Hepatitis C virus NS5A protein cooperates with phosphatidylinositol 4-kinase IIIalpha to induce mitochondrial fragmentation. Sci Rep. 2016;6:23464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smirnova O, Ivanova O, Bartosch B, Valuev-Elliston V, Mukhtarov F, Kochetkov S, Ivanov A. Hepatitis C virus NS5A protein triggers oxidative stress by inducing NADPH oxidases 1 and 4 and cytochrome P450 2E1. Oxidative Med Cell Longev. 2016;2016:8341937.

    Article  Google Scholar 

  • Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513–25.

    Article  CAS  PubMed  Google Scholar 

  • Stone M, Jia S, Heo W, Meyer T, Konan K. Participation of rab5, an early endosome protein, in hepatitis C virus RNA replication machinery. J Virol. 2007;81:4551–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su W-C, Chao T-C, Huang Y-L, Weng S-C, Jeng K-S, Lai MM. Rab5 and class III phosphoinositide 3-kinase Vps34 are involved in hepatitis C virus NS4B-induced autophagy. J Virol. 2011;85:10561–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugii S, Lin S, Ohgami N, Ohashi M, Chang C, Chang T-Y. Roles of endogenously synthesized sterols in the endocytic pathway. J Biol Chem. 2006;281:23191–206.

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Desai M, Soong L, Ou JHJ. IFN-α/β and autophagy: tug-of-war between HCV and the host. Autophagy. 2011;7:1394–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki R, Sakamoto S, Tsutsumi T, Rikimaru A, Tanaka K, Shimoike T, Moriishi K, Iwasaki T, Mizumoto K, Matsuura Y, Miyamura T, Suzuki T. Molecular determinants for subcellular localization of hepatitis C virus core protein. J Virol. 2005;79:1271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai A, Salloum S. The role of the phosphatidylinositol 4-kinase PI4KA in hepatitis C virus-induced host membrane rearrangement. PLoS One. 2011;6:e26300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takats S, Pircs K, Nagy P, Varga A, Karpati M, Hegedus K, Kramer H, Kovacs A, Sass M, Juhasz G. Interaction of the HOPS complex with syntaxin 17 mediates autophagosome clearance in drosophila. Mol Biol Cell. 2014;25:1338–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamai K, Shiina M, Tanaka N, Nakano T, Yamamoto A, Kondo Y, Kakazu E, Inoue J, Fukushima K, Sano K, Ueno Y, Shimosegawa T, Sugamura K. Regulation of hepatitis C virus secretion by the Hrs-dependent exosomal pathway. Virology. 2012;422:377–85.

    Article  CAS  PubMed  Google Scholar 

  • Tang S, Buchkovich N, Henne W, Banjade S, Kim Y, Emr S. ESCRT-III activation by parallel action of ESCRT-I/II and ESCRT-0/Bro. Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells1 during MVB biogenesis. eLife. 2016; 5:

  • Taniguchi K, Yamachika S, He F, Karin M. p62/SQSTM1-Dr. Jekyll and Mr. Hyde that prevents oxidative stress but promotes liver cancer. FEBS Lett. 2016;590:2375–97.

    Article  CAS  PubMed  Google Scholar 

  • Tardif K, Waris G, Siddiqui A. Hepatitis C virus, ER stress, and oxidative stress. Trends Microbiol. 2005;13:159–63.

    Article  CAS  PubMed  Google Scholar 

  • Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2:569–79.

    CAS  PubMed  Google Scholar 

  • Tu B, Weissman J. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol. 2004;164:341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Meer G, Voelker D, Feigenson G. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vescovo T, Refolo G, Romagnoli A, Ciccosanti F, Corazzari M, Alonzi T, Fimia G. Autophagy in HCV infection: keeping fat and inflammation at bay. Biomed Res Int. 2014;2014:265353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vogt D, Camus G, Herker E, Webster B, Tsou C-L, Greene W, Yen T-S, Ott M. Lipid droplet-binding protein TIP47 regulates hepatitis C virus RNA replication through interaction with the viral NS5A protein. PLoS Pathog. 2013;9:e1003302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Campbell R, Yi M, Lemon S, Weinman S. Role of hepatitis C virus core protein in viral-induced mitochondrial dysfunction. J Viral Hepat. 2010;17:784–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Weinman S. Interactions between hepatitis C virus and mitochondria: impact on pathogenesis and innate immunity. Curr Pathobiol Rep. 2013;1:179–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Li L, Hou C, Lai Y, Long J, Liu J, Zhong Q, Diao J. SNARE-mediated membrane fusion in autophagy. Semin Cell Dev Biol. 2016.

  • Webster C, Smith E, Bauer C, Moller A, Hautbergue G, Ferraiuolo L, Myszczynska M, Higginbottom A, Walsh M, Whitworth A, Kaspar B, Meyer K, Shaw P, Grierson A, de Vos K. The C9orf72 protein interacts with Rab1a and the ULK1 complex to regulate initiation of autophagy. EMBO J. 2016;35:1656–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO. Guidelines for the screening, care and treatment of persons with chronic hepatitis C infection. Updated Version, April 2016. ISBN 978 92 4 154961 5.

  • Wijdeven R, Janssen H, Nahidiazar L, Janssen L, Jalink K, Berlin I, Neefjes J. Cholesterol and ORP1L-mediated ER contact sites control autophagosome transport and fusion with the endocytic pathway. Nat Commun. 2016;7:11808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams R, Urbe S. The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol. 2007;8:355–68.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto H, Kakuta S, Watanabe T, Kitamura A, Sekito T, Kondo-Kakuta C, Ichikawa R, Kinjo M, Ohsumi Y. Atg9 vesicles are an important membrane source during early steps of autophagosome formation. J Cell Biol. 2012;198:219–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao W, Cai H, Li X, Li T, Hu L, Peng T. Endoplasmic reticulum stress links hepatitis C virus RNA replication to wild-type PGC-1alpha/liver-specific PGC-1alpha upregulation. J Virol. 2014;88:8361–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yeganeh B, Rezaei Moghadam A, Alizadeh J, Wiechec E, Alavian S, Hashemi M, Geramizadeh B, Samali A, Bagheri Lankarani K, Post M, Peymani P, Coombs K, Ghavami S. Hepatitis B and C virus-induced hepatitis: apoptosis, autophagy, and unfolded protein response. World J Gastroenterol. 2015;21:13225–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen W-L, Shintani T, Nair U, Cao Y, Richardson B, Li Z, Hughson F, Baba M, Klionsky D. The conserved oligomeric Golgi complex is involved in double-membrane vesicle formation during autophagy. J Cell Biol. 2010;188:101–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yla-Anttila P, Mikkonen E, Happonen K, Holland P, Ueno T, Simonsen A, Eskelinen E-L. RAB24 facilitates clearance of autophagic compartments during basal conditions. Autophagy. 2015;11:1833–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerial M, McBride H. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol. 2001;2:107–17.

    Article  CAS  PubMed  Google Scholar 

  • Zhen Y, Stenmark H. Cellular functions of Rab GTPases at a glance. J Cell Sci. 2015;128:3171–6.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Gao B, Ye L, Kong L, Jing W, Yang X, Wu Z, Ye L. Hepatitis C virus non-structural protein NS4B can modulate an unfolded protein response. J Microbiol. 2005;43:529–36.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Ploen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedev, R., Hildt, E. & Ploen, D. Look who’s talking—the crosstalk between oxidative stress and autophagy supports exosomal-dependent release of HCV particles. Cell Biol Toxicol 33, 211–231 (2017). https://doi.org/10.1007/s10565-016-9376-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10565-016-9376-3

Keywords

Navigation