Skip to main content
Log in

The Changes in Endogenous Antioxidant Enzyme Activity After Postconditioning

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

1. The aim of this work was to study potential mechanisms participating in postischemic protection of selectively vulnerable CA1 neurons in the hippocampus. Experiments were focused on measuring changes in endogenous antioxidant enzyme activity.

2. Forebrain cerebral ischemia was induced in a rat by four-vessel occlusion. Ten minutes of ischemia induces so-called delayed neuronal death in selectively vulnerable CA1 region 3 days later. After 7 days of reperfusion, 71.6% of neurons succumb to neurodegeneration. When 5 min of ischemia was used as postconditioning, 2 days after 10 min of cerebral ischemia, delayed neuronal death in CA1 was almost completely (89.9%) prevented.

3. Searching for mechanisms of protection, we measured the activity of endogenous antioxidant enzymes. Activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were measured in the hippocampus, striatum and cortex by spectrophotometric methods after 10 min of ischemia used as the preconditioning. Two days after the preconditioning or the sham operation, second ischemia was induced for 5 min. We observed significant increase of total SOD activity in all studied regions of the brain 5 h after postconditioning (5 min of ischemia). SOD activity decreased to control values after 24 h.

4. In some experiments, we used intraperitoneal injections of norepinephrine (3.1 μM/kg) or 3-nitropropionic acid (20 mg/kg) as postconditioning, instead of ischemia. All three treatments resulted in significant increase of SOD activity, but norepinephrine was the most effective. The same effect as was seen for total SOD activity could be observed for CuZn-SOD as well as Mn-SOD activity. Similarly, considerable increase in the activity of catalase was detected 5 h after postconditioning (5 min of ischemia). It is interesting that the greatest changes were established in selectively vulnerable hippocampus and striatum. As in the case of SOD, the highest levels of CAT activity were induced by norepinephrine, while lower but significant increase in CAT activity was induced by 3-nitropropionic acid.

5. Our results suggest that endogenous antioxidants SOD and CAT could play considerable neuroprotective role after postconditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  • Aoki, M., Abe, K., Kawagoe, J., Nakamura, S., and Kogure, K. (1993). Acceleration of HSP70 and HSC70 heat shock gene expression following transient ischemia in the preconditioned gerbil hippocampus. J. Cereb. Blood Flow Metab. 13:781–788.

    CAS  PubMed  Google Scholar 

  • Aouffen, M., Paquin, J., De Grandpre, E., Nadeau, R., and Mateescu, M. A. (2001). Deglycosylated ceruloplasmin maintains its enzymatic, antioxidant, cardio protective, and neuroprotective properties. Biochem. Cell Biol. 79:489–497.

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp, C., and Fridovich, I. (1971). Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44:276–287.

    Article  CAS  PubMed  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.

    Article  CAS  PubMed  Google Scholar 

  • Burda, J., Hrehorovská, M., Bonilla, L. G., Danielisová, V., Čížková, D., Burda, R., Némethová, M., Fando, J. L., and Salinas, M. (2003). Role of protein synthesis in the ischemic tolerance acquisition induced by transient forebrain ischemia in the rat. Neurochem. Res. 28:1213–1219.

    Article  CAS  PubMed  Google Scholar 

  • Burda, J., Hrehorovská, M., Gottlieb, M., Danielisová, V., Némethová, M., Garcia, L., -Salinas, M., and Burda, R. (2005). Second pathophysiologic stress as a possible tool in the prevention of delayed neuronal death in the hippocampal CA1 region. Neurochem. Res. 30:1–9.

    Article  Google Scholar 

  • Chan, P. H. (2001). Reactive oxygen radicals in signaling and damage in the ischemic brain. J. Cereb. Blood Flow Metab. 21:2–14.

    Article  CAS  PubMed  Google Scholar 

  • Chan, P. H. (2004). Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia. Neurochem. Res. 29:1943–1949.

    Article  CAS  PubMed  Google Scholar 

  • Chan, P. H., Kawase, M., Murakami, K., Chen, S. F., and Li, Y. (1998). Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J. Neurosci. 18:8292–8299.

    CAS  PubMed  Google Scholar 

  • Corbett, D., and Nurse, S. (1998). The problem of assessing effective neuroprotection in experimental cerebral ischemia. Prog. Neurobiol. 54:531–548.

    Article  CAS  PubMed  Google Scholar 

  • Danielisová, V., Némethová, M., Gottlieb, M., and Burda, J. (2005). Changes of endogenous antioxidant enzymes during ischemic tolerance acquisition. Neurochem. Res. 30:559–565.

    Article  PubMed  Google Scholar 

  • Dooley, P., and Corbett, D. (1998). Competing processes of cell death and recovery of function following ischemic preconditioning. Brain Res. 794:119–126.

    Article  CAS  PubMed  Google Scholar 

  • Fugita, H., Sato, K., Wen, T. C., Peng, Y., and Sakanaka, M. (1999). Differential expression of glycine transporter 1 and three glutamate transporter mRNA in the hippocampus of gerbils with transient forebrain ischemia. J. Cereb. Blood Flow Metab. 19:604–615.

    Article  Google Scholar 

  • Fujimura, M., Morita-Fujimura, Y., Narasimhan, P., Copin, J. C., and Kawase, M. (1999). Copper-zinc superoxide dismutase prevents the early decrease of apurinic/apyrimidine endonuclease and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Stroke 30:2408–2415.

    CAS  PubMed  Google Scholar 

  • Fujimura, M., Morita-Fujimura, Y., Noshita, N., Sugawara, T., and Kawase, M. (2000). The cytosolic antioxidant copper/zinc-superoxide dismutase prevents the early release of mitochondrial cytochrome c in ischemic brain after transient focal cerebral ischemia in mice. J. Neurosci. 20:2817– 2824.

    CAS  PubMed  Google Scholar 

  • Goth, L. A. (1991). A simple method for determination of serum catalase activity, and revision of reference range. Clin. Chim. Acta 196:143–152.

    Article  CAS  PubMed  Google Scholar 

  • Greenwald, R. A. (1990). Superoxide dismutase and catalase as therapeutic agents for human diseases. A critical review. Free Radic. Biol. Med. 8:201–209.

    Article  CAS  PubMed  Google Scholar 

  • Halliwell, B. (1992). Reactive oxygen species and the central nervous system. J. Neurochem. 59:1609–1623.

    Article  CAS  PubMed  Google Scholar 

  • Imai, H., Graham, D. I., Masayasu, H., and Macrae, I. M. (2003). Antioxidant ebselen reduces oxidative damage in focal cerebral ischemia. Free Radic. Biol. Med. 34:56–63.

    Article  CAS  PubMed  Google Scholar 

  • Kirino, T., Tsujita, Y., and Tamura, A. (1991). Induced tolerance to ischemia in gerbil hippocampal neurons. J. Cereb. Blood Flow Metab. 2:299–307.

    Google Scholar 

  • Liu, D., Wen, J., Liu, J., and Li, L. (1999). The roles of free radicals in amyotrophic lateral sclerosis: Reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids. FASEB J. 13:2318–2328.

    CAS  PubMed  Google Scholar 

  • Liu, P. K. (2003). Ischemia-reperfusion-related repair deficit after oxidative stress: Implications of faulty transcripts in neuronal sensitivity after brain injury. J. Biomed. Sci. 10: 4–13.

    Article  CAS  PubMed  Google Scholar 

  • Liu, C., Chen, S., Kamme, F., and Hu, B. R. (2005). Ischemic preconditioning prevents protein aggregation after transient cerebral ischemia. Neuroscience 134:69–80.

    Article  CAS  PubMed  Google Scholar 

  • MacDonald, R. L., and Stoodley, M. (1998). Pathophysiology of cerebral ischemia. Neurol. Med. Chir. (Tokyo), 38:1–11.

    Google Scholar 

  • McIntosh, L. J., Hong, K. E., and Sopolsky, R. M. (1998). Glucocorticoids may alter antioxidant enzyme capacity in the brain: Baseline studies. Brain Res. 791:209–214.

    Article  CAS  PubMed  Google Scholar 

  • Michiels, C., Reas, M., Toussaint, O., and Remacle, J. (1994). Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic. Biol. Med. 17:235–248.

    Article  CAS  PubMed  Google Scholar 

  • Minatoguchi, S., Uno, Y., Kariya, T., Arai, M., Wang, N., Hashimoto, K., Nishida, Y., Maruyama, R., Takemura, G., Fujiwara, T., and Fujiwara, H. (2003). Cross-talk among noradrenaline, adenosine and protein kinase C in the mechanisms of ischemic preconditioning in rabbits. J. Cardiovasc. Pharmacol. 2003:S39–S47.

    Google Scholar 

  • Mori, T., Muramatsu, H., Matsui, T., McKee, A., and Asano, T. (2000). Possible role of the superoxide anion in the development of neuronal tolerance following ischaemic preconditioning in rats. Neuropathol. Appl. Neurobiol. 26:31–40.

    Article  CAS  PubMed  Google Scholar 

  • Noshita, N., Sugawara, T., Fujimura, M., Morita-Fujimura, Y., and Chan, P. H. (2001). Manganese superoxide dismutase affects cytochrome c release and caspase-9 activation after transient focal cerebral ischemia in mice. J. Cereb. Blood Flow Metab. 21:557–567.

    Article  CAS  PubMed  Google Scholar 

  • Numagami, Y., Sato, S., and Ohnishi, S. T. (1996). Attenuation of ischemic brain damage by aged garlic extracts: A possible protecting mechanism as antioxidants. Neurochem. Int. 29:135–143.

    Article  CAS  PubMed  Google Scholar 

  • Petito, C. K., Feldmann, E., Pulsinelli, W. A., and Plum, F. (1987). Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37:1281–1286.

    CAS  PubMed  Google Scholar 

  • Pulsinelli, W. A., and Brierley, J. B. (1979). A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272.

    CAS  PubMed  Google Scholar 

  • Pulsinelli, W. A., Levy, D. E., and Duffy, T. E. (1982). Regional cerebral blood flow and glucose metabolism following transient forebrain ischemia. Ann. Neurol. 11:499–509.

    Article  CAS  PubMed  Google Scholar 

  • Ravingerova, T., Pancza, D., Ziegelhoffer, A., and Styk, J. (2002). Preconditioning modulates susceptibility to ischemia-induced arrhythmias in the rat heart: The role of alpha-adrenergic stimulation and K(ATP) channels. Physiol. Res. 51:109–119.

    CAS  PubMed  Google Scholar 

  • Riksen, N. P., Smits, P., and Rongen, G. A. (2004). Ischaemic preconditioning: From molecular characterisation to clinical application—Part I. Neth. J. Med. 62:353–363.

    CAS  PubMed  Google Scholar 

  • Schmidt-Kastner, R., Paschen, W., Ophoff, B. G., and Hossmann, K. A. (1989). A modified four-vessel occlusion model for inducing incomplete forebrain ischemia in rats. Stroke 20:938–946.

    CAS  PubMed  Google Scholar 

  • Schmued, L. C., and Hopkins, K. J. (2000). Fluoro-Jade B: A high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 874:123–130.

    Article  CAS  PubMed  Google Scholar 

  • Sugawara, T., Noshita, N., Lewen, A., Gasche, Y., and Ferrand-Drake, M. (2002). Overexpression of copper/zinc superoxide dismutase in transient rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J. Neurosci. 22:209–217.

    CAS  PubMed  Google Scholar 

  • Sun, Y., Oberley, L. W., and Li, Y. A. (1988). A simple method for clinical assay of superoxide dismutase. Clin. Chem. 34:497–500.

    CAS  PubMed  Google Scholar 

  • Takagi, Z., Tokime, T., Nizaki, K., Gon, Y., and Kikuchi, H. (1998). Redox control of neuronal damage during brain ischemia after middle cerebral artery occlusion in the rat: Immunohistochemical and hybridization studies of thioredoxin. J. Cereb. Blood Flow Metab. 18:206–214.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, H., Nagai, N., and Urano, T. (2005). Role of tissue plasminogen activator/plasmin cascade in delayed neuronal death after transient forebrain ischemia. Neurosci. Lett. 381:189–193.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the excellent technical assistance of Viera Ujháziová and Dana Jurušová. This study was supported by the VEGA 2/3219/23 and the APVT 51-021904 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viera Danielisová.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danielisová, V., Némethová, M., Gottlieb, M. et al. The Changes in Endogenous Antioxidant Enzyme Activity After Postconditioning. Cell Mol Neurobiol 26, 1179–1189 (2006). https://doi.org/10.1007/s10571-006-9034-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9034-z

KEY WORDS:

Navigation