Skip to main content
Log in

Protective Effects of Paeoniflorin Against Glutamate-Induced Neurotoxicity in PC12 Cells via Antioxidant Mechanisms and Ca2+ Antagonism

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Preclinical and clinical investigations have shown hippocampal neuronal atrophy and destruction were observed in patients with depression, which could be ameliorated by the treatment with antidepressants. Therefore, neuroprotection has been proposed to be one of the acting mechanisms of antidepressant. Paeoniflorin, a monoterpene glycoside, has been reported to display antidepressant-like effects in animal models of behavioral despair. The present study aimed to examine the protective effect of paeoniflorin on glutamate-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. The results showed that pretreatment with paeoniflorin elevated cell viability, inhibited apoptosis, decreased levels of intracellular reactive oxygen species and malondialdehyde, and enhanced activity of superoxide dismutase in glutamate-treated PC12 cells. Pretreatment with paeoniflorin also reversed the increased intracellular Ca2+ concentration and the reduced Calbindin-D28K mRNA level caused by glutamate in PC12 cells. The results suggest that paeoniflorin exerts a neuroprotective effect on glutamate-induced neurotoxicity in PC12 cells, at least in part, via inhibiting oxidative stress and Ca2+ overload. This neuroprotective effect may be one of the action pathways accounting for the in vivo antidepressant activity of paeoniflorin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arantes-Gonçalves F, Coelho R (2006) Depression and treatment. Apoptosis, neuroplasticity and antidepressants. Acta Med Port 1:9–20

    Google Scholar 

  • Bouvier N, Trenque T, Millart H (2003) Development of antidepressant drugs. Experience and prospects. Presse Med 32:519–522

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bremner JD, Narayan M, Anderson ER, Staib LH, Miller HL, Charney DS (2000) Hippocampal volume reduction in major depression. Am J Psychiatry 157:115–118

    Article  PubMed  CAS  Google Scholar 

  • Carter DS, Harrison AJ, Falenski KW, Blair RE, DeLorenzo RJ (2008) Long-term decrease in calbindin-D28K expression in the hippocampus of epileptic rats following pilocarpine-induced status epilepticus. Epilepsy Res 79:213–223

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Liu J, Gu X, Ding F (2008) Salidroside attenuates glutamate-induced apoptotic cell death in primary cultured hippocampal neurons of rats. Brain Res 1238:189–198

    Article  PubMed  CAS  Google Scholar 

  • Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    Article  PubMed  CAS  Google Scholar 

  • Cui GZ (2009) Study on the antidepressant-like effect of paeoniflorin. Mod Pharm Clin 24:231–233

    Google Scholar 

  • Fuchs E, Czéh B, Kole MH, Michaelis T, Lucassen PJ (2004) Alterations of neuroplasticity in depression: the hippocampus and beyond. Eur Neuropsychopharmacol 5:S481–S490

    Article  CAS  Google Scholar 

  • Gao M, Zhou H, Li X (2009) Curcumin protects PC12 cells from corticosterone-induced cytotoxicity: possible involvement of the ERK1/2 pathway. Basic Clin Pharmacol Toxicol 104:236–240

    Article  PubMed  CAS  Google Scholar 

  • Gasic GP, Hollmann M (1992) Molecular neurobiology of glutamate receptors. Annu Rev Physiol 54:507–536

    Article  PubMed  CAS  Google Scholar 

  • Hankin BL (2006) Adolescent depression: description, causes, and interventions. Epilepsy Behav 8:102–114

    Article  PubMed  Google Scholar 

  • Ho YS, Yu MS, Yik SY, So KF, Yuen WH, Chang RC (2009) Polysaccharides from wolfberry antagonizes glutamate excitotoxicity in rat cortical neurons. Cell Mol Neurobiol 29:1233–1244

    Article  PubMed  CAS  Google Scholar 

  • Hu SY, Zhang CH, Cao MQ, Peng GJ, Huang CY (2006) Anti-depressive effect of Baisong tablets on the chronic mild unpredicted stress depression in rats. J Cen South Univ 31:676–681

    Google Scholar 

  • Huang Z, Mao QQ, Zhong XM, Feng CR, Pan AJ, Li ZY (2009) Herbal formula SYJN protect PC12 cells from neurotoxicity induced by corticosterone. J Ethnopharmacol 125:456–460

    Article  PubMed  Google Scholar 

  • Lee CS, Park SY, Ko HH, Song JH, Shin YK, Han ES (2005) Inhibition of MPP+-induced mitochondrial damage and cell death by trifluoperazine and W-7 in PC12 cells. Neurochem Int 46:169–178

    Article  PubMed  CAS  Google Scholar 

  • Li YF, Zhang YZ, Liu YQ, Wang HL, Cao JB, Guan TT, Luo ZP (2006) Inhibition of N-methyl-d-aspartate receptor function appears to be one of the common actions for antidepressants. J Psychopharmacol 20:629–635

    Article  PubMed  CAS  Google Scholar 

  • Li N, Liu B, Dluzen DE, Jin Y (2007) Protective effects of ginsenoside Rg2 against glutamate-induced neurotoxicity in PC12 cells. J Ethnopharmacol 111:458–463

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorder. N Engl J Med 330:613–622

    Article  PubMed  CAS  Google Scholar 

  • Liu CS, Chen NH, Zhang JT (2007) Protection of PC12 cells from hydrogen peroxide-induced cytotoxicity by salvianolic acid B, a new compound isolated from Radix Salviae miltiorrhizae. Phytomedicine 14:492–497

    Article  PubMed  CAS  Google Scholar 

  • Lu H, Shi JX, Zhang DM, Shen J, Lin YX, Hang CH, Yin HX (2009) Hemolysate-induced expression of intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 expression in cultured brain microvascular endothelial cells via through ROS-dependent NF-kappaB pathways. Cell Mol Neurobiol 29:87–95

    Article  PubMed  CAS  Google Scholar 

  • Lucassen PJ, Müller MB, Holsboer F, Bauer J, Holtrop A, Wouda J, Hoogendijk WJ, De Kloet ER, Swaab DF (2001) Hippocampal apoptosis in major depression is a minor event and absent from subareas at risk for glucocorticoid overexposure. Am J Pathol 158:453–468

    PubMed  CAS  Google Scholar 

  • Lucassen PJ, Fuchs E, Czéh B (2004) Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 8:789–796. doi:10.1016/j.biopsych.2003.12.014

    Article  CAS  Google Scholar 

  • Lucassen PJ, Heine VM, Muller MB, van der Beek EM, Wiegant VM, De Kloet ER, Joels M, Fuchs E, Swaab DF, Czeh B (2006) Stress, depression and hippocampal apoptosis. CNS Neurol Disord Drug Targets 5:531–546

    Article  PubMed  Google Scholar 

  • MacQueen GM, Campbell S, McEwen BS, Macdonald K, Amano S, Joffe RT, Nahmias C, Young LT (2003) Course of illness, hippocampal function, and hippocampal volume in major depression. Proc Natl Acad Sci USA 100:1387–1392

    Article  PubMed  CAS  Google Scholar 

  • Magariños AM, Deslandes A, McEwen BS (1999) Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol 371:113–122

    Article  PubMed  Google Scholar 

  • Manji HK, Duman RS (2001) Impairments of neuroplasticity and cellular resilience in severe mood disorders: implications for the development of novel therapeutics. Psychopharmacol Bull 35:45–49

    Google Scholar 

  • Mao QQ, Huang Z, Ip SP, Che CT (2008a) Antidepressant-like effect of ethanol extract from Paeonia lactiflora in mice. Phytother Res 22:1496–1499

    Article  PubMed  Google Scholar 

  • Mao QQ, Tsai SH, Ip SP, Che CT (2008b) Antidepressant-like effects of peony glycosides in mice. J Ethnopharmacol 119:272–275

    Article  PubMed  CAS  Google Scholar 

  • Mao QQ, Ip SP, Ko KM, Tsai SH, Xian YF, Che CT (2009a) Effects of peony glycosides on mice exposed to chronic unpredictable stress: further evidence for antidepressant-like activity. J Ethnopharmacol 124:316–320

    Article  PubMed  CAS  Google Scholar 

  • Mao QQ, Ip SP, Ko KM, Tsai SH, Zhao M, Che CT (2009b) Peony glycosides protect against corticosterone-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 29:643–647

    Article  PubMed  CAS  Google Scholar 

  • Mauri MC, Ferrara A, Boscati L, Bravin S, Zamberlan F, Alecci M, Invernizzi G (1998) Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology 37:124–129

    Article  PubMed  CAS  Google Scholar 

  • Meng H, Li C, Feng L, Cheng B, Wu F, Wang X, Li Z, Liu S (2007) Effects of Ginkgolide B on 6-OHDA-induced apoptosis and calcium over load in cultured PC12. Int J Dev Neurosci 25:509–514

    Article  PubMed  CAS  Google Scholar 

  • Mitani H, Shirayama Y, Yamada T, Maeda K, Ashby CR Jr, Kawahara R (2006) Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Prog Neuropsychopharmacol Biol Psychiatry 30:1155–1158

    Article  PubMed  CAS  Google Scholar 

  • Molina-Hernández M, Tellez-Alcántara NP, Pérez-García J, Olivera-Lopez JI, Jaramillo-Jaimes MT (2008) Antidepressant-like actions of minocycline combined with several glutamate antagonists. Prog Neuropsychopharmacol Biol Psychiatry 32:380–386

    Article  PubMed  CAS  Google Scholar 

  • Niebrój-Dobosz I, Dziewulska D, Kwieciński H (2004) Oxidative damage to proteins in the spinal cord in amyotrophic lateral sclerosis (ALS). Folia Neuropathol 42:151–156

    PubMed  Google Scholar 

  • Palucha A, Pilc A (2002) On the role of metabotropic glutamate receptors in the mechanisms of action of antidepressants. Pol J Pharmacol 54:581–586

    PubMed  CAS  Google Scholar 

  • Penugonda S, Mare S, Goldstein G, Banks WA, Ercal N (2005) Effects of N-acetylcysteine amide (NACA), a novel thiol antioxidant against glutamate-induced cytotoxicity in neuronal cell line PC12. Brain Res 1056:132–138

    Article  PubMed  CAS  Google Scholar 

  • Penugonda S, Mare S, Lutz P, Banks WA, Ercal N (2006) Potentiation of lead-induced cell death in PC12 cells by glutamate: protection by N-acetylcysteine amide (NACA), a novel thiol antioxidant. Toxicol Appl Pharmacol 216:197–205

    Article  PubMed  CAS  Google Scholar 

  • Perahia DG, Quail D, Desaiah D, Montejo AL, Schatzberg AF (2009) Switching to duloxetine in selective serotonin reuptake inhibitor non- and partial responders: effects on painful physical symptoms of depression. J Psychiatr Res 43:512–518

    Article  PubMed  Google Scholar 

  • Rada P, Moreno A, Tucci S, Gonzalez LE, Harrison T, Chau T, Hoebel BG, Hernandez L (2003) Glutamate release in the nucleus accumbens is involved in behavioral depression during the Porsolt swim test. Neuroscience 119:557–565

    Article  PubMed  CAS  Google Scholar 

  • Satpute RM, Kashyap RS, Deopujari JY, Purohit HJ, Taori GM, Daginawala HF (2009) Protection of PC12 cells from chemical ischemia induced oxidative stress by Fagonia arabica. Food Chem Toxicol 47:2689–2695

    Article  PubMed  CAS  Google Scholar 

  • Saylam C, Ucerler H, Kitis O, Ozand E, Gonul AS (2006) Reduced hippocampal volume in drug-free depressed patients. Surg Radiol Anat 28:82–87

    Article  PubMed  Google Scholar 

  • Stockmeier CA, Mahajan GJ, Konick LC, Overholser JC, Jurjus GJ, Meltzer HY, Uylings HB, Friedman L, Rajkowska G (2004) Cellular changes in the postmortem hippocampus in major depression. Biol Psychiatry 56:640–650

    Article  PubMed  Google Scholar 

  • Szewczyk B, Poleszak E, Sowa-Kućma M, Siwek M, Dudek D, Ryszewska-Pokraśniewicz B, Radziwoń-Zaleska M, Opoka W, Czekaj J, Pilc A, Nowak G (2008) Antidepressant activity of zinc and magnesium in view of the current hypotheses of antidepressant action. Pharmacol Rep 60:588–599

    PubMed  CAS  Google Scholar 

  • Wakamatsu TH, Dogru M, Tsubota K (2008) Tearful relations: oxidative stress, inflammation and eye diseases. Arq Bras Oftalmol 71:72–79

    Article  PubMed  Google Scholar 

  • Wang R, Li YB, Li YH, Xu Y, Wu HL, Li XJ (2008) Curcumin protects against glutamate excitotoxicity in rat cerebral cortical neurons by increasing brain-derived neurotrophic factor level and activating TrkB. Brain Res 1210:84–91

    Article  PubMed  CAS  Google Scholar 

  • Xiao L, Wang YZ, Liu J, Luo XT, Ye Y, Zhu XZ (2005) Effects of paeoniflorin on the cerebral infarction, behavioral and cognitive impairments at the chronic stage of transient middle cerebral artery occlusion in rats. Life Sci 78:413–420

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Liu J, Hu J, Zhu X, Yang H, Wang C, Zhang Y (2008) Protective effects of protopine on hydrogen peroxide-induced oxidative injury of PC12 cells via Ca(2+) antagonism and antioxidant mechanisms. Eur J Pharmacol 591:21–27

    Article  PubMed  CAS  Google Scholar 

  • Xie ZL, Wang XH (2005) Clinical study of Jiawei Sini Decoction in the treatment of 38 dysthymic patients. Chin J Inf TCM 12:8–9

    Google Scholar 

  • Yan C, Wu LL, Pan Y, Song Q, Ran CL, Liu SK (2009) The effect of Jiaweisinisan on cAMP response element binding protein and phosphorylation in PC12 cells injured by Corticosterone and Glutamate. Chin Pharmacol Bull 25:270–274

    Google Scholar 

  • Ye J, Duan H, Yang X, Yan W, Zheng X (2001) Anti-thrombosis effect of paeoniflorin: evaluated in a photochemical reaction thrombosis model in vivo. Planta Med 67:766–767

    Article  PubMed  CAS  Google Scholar 

  • Yu ZF, Kong LD, Chen Y (2006) Antidepressant activity of aqueous extracts of Curcuma longa in mice. J Ethnopharmacol 83:161–165

    Article  Google Scholar 

  • Zhang MZ, Zhang QY, Cui GB (1998) Clinical study of XiaoYao-San in the treatment of depressive neurosis. J Shangdong Univ TCM 22:34–37

    Google Scholar 

  • Zhong XM, Mao QQ, Huang Z, Liang ZH (2006) The effect of Suyu capsule on nerve cell apoptosis in hippocampus of the depression model rats. Chin J Mod Appl Pharm S2:733–737

    Google Scholar 

  • Zhong SZ, Ge QH, Li Q, Qu R, Ma SP (2009) Peoniflorin attentuates Abeta(1–42)-mediated neurotoxicity by regulating calcium homeostasis and ameliorating oxidative stress in hippocampus of rats. J Neurol Sci 280:71–78

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from the Zhejiang Provincial Program for the Cultivation of High-level Innovative Health talents (awarded to Professor Huang Zhen).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing-Qiu Mao or Zhen Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mao, QQ., Zhong, XM., Feng, CR. et al. Protective Effects of Paeoniflorin Against Glutamate-Induced Neurotoxicity in PC12 Cells via Antioxidant Mechanisms and Ca2+ Antagonism. Cell Mol Neurobiol 30, 1059–1066 (2010). https://doi.org/10.1007/s10571-010-9537-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-010-9537-5

Keywords

Navigation