Skip to main content
Log in

Oxidative Stress in Phenylketonuria: What is the Evidence?

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Phenylketonuria (PKU) is an inborn error of amino acid metabolism caused by severe deficiency of phenylalanine hydroxylase activity, leading to the accumulation of phenylalanine and its metabolites in blood and tissues of affected patients. Phenylketonuric patients present as the major clinical feature mental retardation, whose pathomechanisms are poorly understood. In recent years, mounting evidence has emerged indicating that oxidative stress is possibly involved in the pathology of PKU. This article addresses some of the recent developments obtained from animal studies and from phenylketonuric patients indicating that oxidative stress may represent an important element in the pathophysiology of PKU. Several studies have shown that enzymatic and non-enzymatic antioxidant defenses are decreased in plasma and erythrocytes of PKU patients, which may be due to an increased free radical generation or secondary to the deprivation of micronutrients which are essential for these defenses. Indeed, markers of lipid, protein, and DNA oxidative damage have been reported in PKU patients, implying that reactive species production is increased in this disorder. A considerable set of data from in vitro and in vivo animal studies have shown that phenylalanine and/or its metabolites elicit reactive species in brain rodent. These findings point to a disruption of pro-oxidant/antioxidant balance in PKU. Considering that the brain is particularly vulnerable to oxidative attack, it is presumed that the administration of appropriate antioxidants as adjuvant agents, in addition to the usual treatment based on restricted diets or supplementation of tetrahydrobiopterin, may represent another step in the prevention of the neurological damage in PKU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Acosta PB, Yannicelli S, Marriage B, Steiner R, Gaffield B, Arnold G, Lewis V, Cho S, Berstein L, Parton P, Leslie N, Korson M (1999) Protein status of infants with phenylketonuria undergoing nutrition management. J Am Coll Nutr 18:102–107

    PubMed  CAS  Google Scholar 

  • Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25

    Article  PubMed  Google Scholar 

  • Araujo GC, Christ SE, Steiner RD, Grange DK, Nardos B, McKinstry RC, White DA (2009) Response monitoring in children with phenylketonuria. Neuropsychology 23:130–134

    Article  PubMed  Google Scholar 

  • Artuch R, Vilaseca MA, Moreno J, Lambruschini N, Cambra FJ, Campistol J (1999) Decreased serum ubiquinone-10 concentrations in phenylketonuria. Am J Clin Nutr 70:892–895

    PubMed  CAS  Google Scholar 

  • Artuch R, Colomé C, Vilaseca MA, Sierra C, Cambra FJ, Lambruschini N, Campistol J (2001) Plasma phenylalanine is associated with decreased serum ubiquinone-10 concentrations in phenylketonuria. J Inherit Metab Dis 24:359–366

    Article  PubMed  CAS  Google Scholar 

  • Artuch R, Colomé C, Sierra C, Brandi N, Lambruschini N, Campistol J, Ugarte D, Vilaseca MA (2004) A longitudinal study of antioxidant status in phenylketonuric patients. Clin Biochem 37:198–203

    Article  PubMed  CAS  Google Scholar 

  • Barschak AG, Sitta A, Deon M, de Oliveira MH, Haeser A, Dutra-Filho CS, Wajner M, Vargas CR (2006) Evidence that oxidative stress is increased in plasma from patients with maple syrup urine disease. Metab Brain Dis 21:279–286

    Article  PubMed  CAS  Google Scholar 

  • Barschak AG, Sitta A, Deon M, Barden AT, Schmitt GO, Dutra-Filho CS, Wajner M, Vargas CR (2007) Erythrocyte glutathione peroxidase activity and plasma selenium concentration are reduced in maple syrup urine disease patients during treatment. Int J Dev Neurosci 25:335–338

    Article  PubMed  CAS  Google Scholar 

  • Barschak AG, Sitta A, Deon M, Barden AT, Dutra-Filho CS, Wajner M, Vargas CR (2008) Oxidative stress in plasma from maple syrup urine disease patients during treatment. Metab Brain Dis 23:71–80

    Article  PubMed  CAS  Google Scholar 

  • Bauman ML, Kemper TL (1982) Morphologic and histoanatomic observations of the brain in untreated human phenylketonuria. Acta Neuropathol 58:55–63

    Article  PubMed  CAS  Google Scholar 

  • Bertelli A, Conte A, Ronca G (1994) L-propionyl carnitine protects erythrocytes and low density lipoproteins against peroxidation. Drugs Exp Clin Res 20:191–197

    PubMed  CAS  Google Scholar 

  • Bindoli A, Rigobello MP, Deeble DJ (1992) Biochemical and toxicological properties of the oxidation products of catecholamines. Free Radic Biol Med 13:391–405

    Article  PubMed  CAS  Google Scholar 

  • Bird S, Miller NJ, Collins JE, Rice-Evans CA (1995) Plasma antioxidant capacity in two cases of tyrosinaemia type 1: one case treated with NTBC. J Inherit Metab Dis 18:123–126

    Article  PubMed  CAS  Google Scholar 

  • Boje KM, Arora PK (1992) Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 587:250–256

    Article  PubMed  CAS  Google Scholar 

  • Bridi R, Braun CA, Zorzi GK, Wannmacher CM, Wajner M, Lissi EG, Dutra-Filho CS (2005) Alpha-keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metab Brain Dis 20:155–167

    Article  PubMed  CAS  Google Scholar 

  • Brigelius-Flohé R (1999) Tissue-specific functions of individual glutathione peroxidases. Free Radic Biol Med 27:951–965

    Article  PubMed  Google Scholar 

  • Burri R, Steffen C, Stieger S, Brodbeck U, Colombo JP, Herschkowitz N (1990) Reduced myelinogenesis and recovery in hyperphenylalaninemic rats. Correlation between brain phenylalanine levels, characteristic brain enzymes for myelination, and brain development. Mol Chem Neuropathol 13:57–69

    Article  PubMed  CAS  Google Scholar 

  • Cadenas E (1997) Basic mechanisms of antioxidant activity. Biofactors 6:391–397

    Article  PubMed  CAS  Google Scholar 

  • Cadenas E, Sies H (1998) The lag phase. Free Radic Res 28:601–609

    Article  PubMed  CAS  Google Scholar 

  • Castaño A, Ayala A, Rodríguez-Gómez JA, Herrera AJ, Cano J, Machado A (1997) Low selenium diet increases the dopamine turnover in prefrontal cortex of the rat. Neurochem Int 30:549–555

    Article  PubMed  Google Scholar 

  • Castillo M, Zafra MF, Garcia-Peregrin E (1988) Inhibition of brain and liver 3-hydroxy-3-methylglutaryl-CoA reductase and mevalonate-5-pyrophosphate decarboxylase in experimental hyperphenylalaninemia. Neurochem Res 13:551–555

    Article  PubMed  CAS  Google Scholar 

  • Chinopoulos C, Adam-Vizi V (2001) Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson’s disease. J Neurochem 76:302–306

    Article  PubMed  CAS  Google Scholar 

  • Colomé C, Sierra C, Antònia Vilaseca M (2000) Congenital errors of metabolism: cause of oxidative stress? Med Clin (Barc) 115:111–117

    Google Scholar 

  • Colomé C, Artuch R, Vilaseca MA, Sierra C, Brandi N, Lambruschini N, Cambra FJ, Campistol J (2003) Lipophilic antioxidants in patients with phenylketonuria. Am J Clin Nutr 77:185–188

    PubMed  Google Scholar 

  • Colton C, Wilt S, Gilbert D, Chernyshev O, Snell J, Dubois-Dalcq M (1996) Species differences in the generation of reactive oxygen species by microglia. Mol Chem Neuropathol 28:15–20

    Article  PubMed  CAS  Google Scholar 

  • Costabeber E, Kessler A, Severo Dutra-Filho C, de Souza Wyse AT, Wajner M, Wannmacher CM (2003) Hyperphenylalaninemia reduces creatine kinase activity in the cerebral cortex of rats. Int J Dev Neurosci 21:111–116

    Article  PubMed  CAS  Google Scholar 

  • Curtius HC, Niederwieser A, Viscontini M, Leimbacher W, Wegmann H, Blehova B, Rey F, Schaub J, Schmidt H (1981) Serotonin and dopamine synthesis in phenylketonuria. Adv Exp Med Biol 133:277–291

    PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    Article  PubMed  CAS  Google Scholar 

  • Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A (2006) Biomarkers of oxidative damage in human disease. Clin Chem 52:601–623

    Article  PubMed  CAS  Google Scholar 

  • Darling G, Mathias P, O’Regan M, Naughten E (1992) Serum selenium levels in individuals on PKU diets. J Inherit Metab Dis 15:769–773

    Article  PubMed  CAS  Google Scholar 

  • de Freitas MS, de Mattos AG, Camargo MM, Wannmacher CM, Pessoa-Pureur R (1995) Effect of phenylalanine and alpha-methylphenylalanine on in vitro incorporation of 32P into cytoskeletal cerebral proteins. Neurochem Int 26:381–385

    Article  PubMed  Google Scholar 

  • de Oliveira Marques F, Hagen ME, Pederzolli CD, Sgaravatti AM, Durigon K, Testa CG, Wannmacher CM, de Souza Wyse AT, Wajner M, Dutra-Filho CS (2003) Glutaric acid induces oxidative stress in brain of young rats. Brain Res 964:153–158

    Article  PubMed  CAS  Google Scholar 

  • Di Lisa F, Bernardi P (1998) Mitochondrial function as a determinant of recovery or death in cell response to injury. Mol Cell Biochem 184:379–391

    Article  PubMed  CAS  Google Scholar 

  • Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H (2002) Free radical-induced damage to DNA: mechanisms and measurement. Free Radic Biol Med 32:1102–1115

    Article  PubMed  CAS  Google Scholar 

  • Draper HH, Hadley M (1990) A review of recent studies on the metabolism of exogenous and endogenous malondialdehyde. Xenobiotica 20:901–907

    Article  PubMed  CAS  Google Scholar 

  • Duez P, Helson M, Some TI, Dubois J, Hanocq M (2000) Chromatographic determination of 8-oxo-7, 8-dihydro-20-deoxyguanosine in cellular DNA: a validation study. Free Radic Res 33:243–260

    Article  PubMed  CAS  Google Scholar 

  • El Kossi MM, Zakhary MM (2000) Oxidative stress in the context of acute cerebrovascular stroke. Stroke 31:1889–1892

    PubMed  CAS  Google Scholar 

  • Ellis EM (2007) Reactive carbonyls and oxidative stress: potential for therapeutic intervention. Pharmacol Ther 115:13–24

    Article  PubMed  CAS  Google Scholar 

  • Ercal N, Aykin-Burns N, Gurer-Orhan H, McDonald JD (2002) Oxidative stress in a phenylketonuria animal model. Free Radic Biol Med 32:906–911

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  • Evans P, Halliwell B (2001) Micronutrients: oxidant/antioxidant status. Br J Nutr 85(suppl 2):S67

    Article  PubMed  CAS  Google Scholar 

  • Fairbairn DW, Olive PL, O’Neill KL (1995) The comet assay: a comprehensive review. Mutat Res 339:35–59

    Google Scholar 

  • Fang YZ, Yang S, Wu G (2002) Free radicals, antioxidants, and nutrition. Nutrition 18:872–879

    Article  PubMed  CAS  Google Scholar 

  • Feksa LR, Cornelio AR, Rech VC, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2002) Alanine prevents the reduction of pyruvate kinase activity in brain cortex of rats subjected to chemically induced hyperphenylalaninemia. Neurochem Res 27:947–952

    Article  PubMed  CAS  Google Scholar 

  • Fernandes CG, Leipnitz G, Seminotti B, Amaral AU, Zanatta A, Vargas CR, Dutra Filho CS, Wajner M (2010) Experimental evidence that phenylalanine provokes oxidative stress in hippocampus and cerebral cortex of developing rats. Cell Mol Neurobiol 30:317–326

    Article  PubMed  CAS  Google Scholar 

  • Ferrari R, Ciampalini G, Agnoletti G, Cargnoni A, Ceconi C, Visioli O (1988) Effect of L-carnitine derivatives on heart mitochondrial damage induced by lipid peroxidation. Pharmacol Res Commun 20:125–132

    Article  PubMed  CAS  Google Scholar 

  • Fontella FU, Pulrolnik V, Gassen E, Wannmacher CM, Klein AB, Wajner M, Dutra-Filho CS (2000) Propionic and L-methylmalonic acids induce oxidative stress in brain of young rats. Neuroreport 11:541–544

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1999) Fundamental aspects of reactive oxygen species, or what’s the matter with oxygen? Ann N Y Acad Sci 893:13–18

    Article  PubMed  CAS  Google Scholar 

  • Gassió R, Artuch R, Vilaseca MA, Fusté E, Colome R, Campistol J (2008) Cognitive functions and the antioxidant system in phenylketonuric patients. Neuropsychology 22:426–431

    Article  PubMed  Google Scholar 

  • Giovannini M, Verduci E, Salvatici E, Fiori L, Riva E (2007) Phenylketonuria: dietary and therapeutic challenges. J Inherit Metab Dis 30:145–152

    Article  PubMed  CAS  Google Scholar 

  • Gülçin I (2006) Antioxidant and antiradical activities of L-carnitine. Life Sci 78:803–811

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2001) Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18:685–716

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1999) Oxidative stress: adaptation, damage, repair and death. In: Halliwell B, Gutteridge JMC (eds) Free radicals in biology and medicine. Oxford University Press, Oxford, pp 246–350

    Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine. Clarendon Press, Oxford

    Google Scholar 

  • Hanley WB, Lee AW, Hanley AJ, Lehotay DC, Austin VJ, Schoonheyt WE, Platt BA, Clarke JT (2000) “Hypotyrosinemia” in phenylketonuria. Mol Genet Metab 69:286–294

    Article  PubMed  CAS  Google Scholar 

  • Hasselbalch S, Knudsen GM, Toft PB, Hogh P, Tedeschi E, Holm S, Videbaek C, Henriksen O, Lou HC, Paulson OB (1996) Cerebral glucose metabolism is decreased in white matter changes in patients with phenylketonuria. Pediatr Res 40:21–24

    Article  PubMed  CAS  Google Scholar 

  • Hawkins CL, Morgan PE, Davies MJ (2009) Quantification of protein modification by oxidants. Free Radic Biol Med 46:965–988

    Article  PubMed  CAS  Google Scholar 

  • Heales SJ, Bolaños JP, Brand MP, Clark JB, Land JM (1996) Mitochondrial damage: an important feature in a number of inborn errors of metabolism? J Inherit Metab Dis 19:140–142

    Article  PubMed  CAS  Google Scholar 

  • Himwich HE (1951) Thought processes as related to brain metabolism in certain abnormal conditions. J Nerv Ment Dis 114:450–458

    PubMed  CAS  Google Scholar 

  • Ischiropoulos H (2003) Biological selectivity and functional aspects of protein tyrosine nitration. Biochem Biophys Res Commun 305:776–783

    Article  PubMed  CAS  Google Scholar 

  • Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47:S161–S170

    PubMed  CAS  Google Scholar 

  • Kaneko T, Tahara S, Matsuo M (1996) Non-linear accumulation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidized DNA damage, during aging. Mutat Res 316:277–285

    PubMed  CAS  Google Scholar 

  • Kienzle Hagen ME, Pederzolli CD, Sgaravatti AM, Bridi R, Wajner M, Wannmacher CM, Wyse AT, Dutra-Filho CS (2002) Experimental hyperphenylalaninemia provokes oxidative stress in rat brain. Biochim Biophys Acta 1586:344–352

    PubMed  CAS  Google Scholar 

  • Kovacic P, Pozos RS, Somanathan R, Shangari N, O’Brien PJ (2005) Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem 12:2601–2623

    Article  PubMed  CAS  Google Scholar 

  • Krause W, Halminski M, McDonald L, Dembure P, Salvo R, Freides D, Elsas L (1985) Biochemical and neuropsychological effects of elevated plasma phenylalanine in patients with treated phenylketonuria. A model for the study of phenylalanine and brain function in man. J Clin Invest 75:40–48

    Article  PubMed  CAS  Google Scholar 

  • Lambruschini N, Pérez-Dueñas B, Vilaseca MA, Mas A, Artuch R, Gassió R, Gómez L, Gutiérrez A, Campistol J (2005) Clinical and nutritional evaluation of phenylketonuric patients on tetrahydrobiopterin monotherapy. Mol Genet Metab 86(Suppl 1):S54–S60

    Article  PubMed  CAS  Google Scholar 

  • Latini A, Borba Rosa R, Scussiato K, Llesuy S, Bello-Klein A, Wajner M (2002) 3-Hydroxyglutaric acid induces oxidative stress and decreases the antioxidant defences in cerebral cortex of young rats. Brain Res 956:367–373

    Article  PubMed  CAS  Google Scholar 

  • Leipnitz G, Seminotti B, Amaral AU, de Bortoli G, Solano A, Schuck PF, Wyse AT, Wannmacher CM, Latini A, Wajner M (2008) Induction of oxidative stress by the metabolites accumulating in 3-methylglutaconic aciduria in cerebral cortex of young rats. Life Sci 82:652–662

    Article  PubMed  CAS  Google Scholar 

  • Levine RL (2001) Carbonyl modified proteins in cellular regulation, aging, and disease. Free Radic Biol Med 32:790–796

    Article  Google Scholar 

  • Lissi E, Salim-Hanna M, Pascual C, del Castillo MD (1995) Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurements. Free Radic Biol Med 18:153–158

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Wen J, Liu J, Li L (1999) The roles of free radicals in amyotrophic lateral sclerosis: reactive oxygen species and elevated oxidation of protein, DNA, and membrane phospholipids. FASEB J 13:2318–2328

    PubMed  CAS  Google Scholar 

  • Lütz Mda G, Feksa LR, Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CM (2003) Alanine prevents the in vitro inhibition of glycolysis caused by phenylalanine in brain cortex of rats. Metab Brain Dis 18:87–94

    Article  PubMed  Google Scholar 

  • Martinez-Cruz F, Pozo D, Osuna C, Espinar A, Marchante C, Guerrero JM (2002) Oxidative stress induced by phenylketonuria in the rat: prevention by melatonin, vitamin E, and vitamin C. J Neurosci Res 69:550–558

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Cruz F, Osuna C, Guerrero JM (2006) Mitochondrial damage induced by fetal hyperphenylalaninemia in the rat brain and liver: its prevention by melatonin, Vitamin E, and Vitamin C. Neurosci Lett 392:1–4

    Article  PubMed  CAS  Google Scholar 

  • Masella R, Di Benedetto R, Varì R, Filesi C, Giovannini C (2005) Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem 16:577–586

    Article  PubMed  CAS  Google Scholar 

  • McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659

    Article  PubMed  CAS  Google Scholar 

  • Miller DM, Buettner GR, Aust SD (1990) Transition metals as catalysts of “autoxidation” reactions. Free Radic Biol Med 8:95–108

    Article  PubMed  CAS  Google Scholar 

  • Moncada S, Higgs A (1993) The l-arginine-nitric oxide pathway. N Engl J Med 329:2002–2012

    Article  PubMed  CAS  Google Scholar 

  • Moraes TB, Zanin F, da Rosa A, de Oliveira A, Coelho J, Petrillo F, Wajner M, Dutra-Filho CS (2010) Lipoic acid prevents oxidative stress in vitro and in vivo by an acute hyperphenylalaninemia chemically-induced in rat brain. J Neurol Sci 292:89–95

    Article  PubMed  CAS  Google Scholar 

  • Moyano D, Vilaseca MA, Pineda M, Campistol J, Vernet A, Póo P, Artuch R, Sierra C (1997) Tocopherol in inborn errors of intermediary metabolism. Clin Chim Acta 263:147–155

    Article  PubMed  CAS  Google Scholar 

  • Nigam MP, Labar DR (1979) The effect of hyperphenylalaninemia on size and density of synapses in rat neocortex. Brain Res 179:195–198

    Article  PubMed  CAS  Google Scholar 

  • Niki E (2009) Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 47:469–484

    Article  PubMed  CAS  Google Scholar 

  • Perry G, Taddeo MA, Petersen RB, Castellani RJ, Harris PL, Siedlak SL, Cash AD, Liu Q, Nunomura A, Atwood CS, Smith MA (2003) Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease. Biometals 16:77–81

    Article  PubMed  CAS  Google Scholar 

  • Pietz J (1998) Neurological aspects of adult phenylketonuria. Curr Opin Neurol 11:679–688

    Article  PubMed  CAS  Google Scholar 

  • Poustie VJ, Wildgoose J (2010) Dietary interventions for phenylketonuria. Cochrane Database Syst Rev 20:CD001304

    Google Scholar 

  • Przyrembel H, Bremer HJ (2000) Nutrition, physical growth, and bone density in treated phenylketonuria. Eur J Pediatr 159(Suppl 2):S129–S135

    Article  PubMed  CAS  Google Scholar 

  • Rech VC, Feksa LR, Dutra-Filho CS, Wyse AT, Wajner M, Wannmacher CM (2002) Inhibition of the mitochondrial respiratory chain by phenylalanine in rat cerebral cortex. Neurochem Res 27:353–357

    Article  PubMed  CAS  Google Scholar 

  • Reilly C, Barrett JE, Patterson CM, Tinggi U, Latham SL, Marrinan A (1990) Trace element nutrition status and dietary intake of children with phenylketonuria. Am J Clin Nutr 52:159–165

    PubMed  CAS  Google Scholar 

  • Reynolds A, Laurie C, Mosley RL, Gendelman HE (2007) Oxidative stress and the pathogenesis of neurodegenerative disorders. Int Rev Neurobiol 82:297–325

    Article  PubMed  CAS  Google Scholar 

  • Reznick AZ, Packer L (1993) Free radicals and antioxidants in muscular neurological diseases and disorders. In: Poli G, Albano E, Dianzani MU (eds) Free radicals: from basic science to medicine. Birkhäuser Verlag, Basel, pp 425–437

    Google Scholar 

  • Ribas GS, Manfredini V, de Mari JF, Wayhs CY, Vanzin CS, Biancini GB, Sitta A, Deon M, Wajner M, Vargas CR (2010) Reduction of lipid and protein damage in patients with disorders of propionate metabolism under treatment: a possible protective role of L-carnitine supplementation. Int J Dev Neurosci 28:127–132

    Article  PubMed  CAS  Google Scholar 

  • Richard E, Alvarez-Barrientos A, Pérez B, Desviat LR, Ugarte M (2007) Methylmalonic acidaemia leads to increased production of reactive oxygen species and induction of apoptosis through the mitochondrial/caspase pathway. J Pathol 213:453–461

    Article  PubMed  CAS  Google Scholar 

  • Richter C (1987) Biophysical consequences of lipid peroxidation in membranes. Chem Phys Lipids 44:175–189

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues NR, Wannmacher CM, Dutra-Filho CS, Pires RF, Fagan PR, Wajner M (1990) Effect of phenylalanine, p-chlorophenylalanine and alpha-methylphenylalanine on glucose uptake in vitro by the brain of young rats. Biochem Soc Trans 18:419

    PubMed  CAS  Google Scholar 

  • Rottoli A, Lista G, Zecchini G, Butté C, Longhi R (1985) Plasma selenium levels in treated phenylketonuric patients. J Inherit Metab Dis Suppl 2:127–128

    Article  Google Scholar 

  • Schulpis KH, Nounopoulos C, Scarpalezou A, Bouloukos A, Missiou-Tsagarakis S (1990) Serum carnitine level in phenylketonuric children under dietary control in Greece. Acta Paediatr Scand 79:930–934

    Article  PubMed  CAS  Google Scholar 

  • Schulpis KH, Tsakiris S, Karikas GA, Moukas M, Behrakis P (2003) Effect of diet on plasma total antioxidant status in phenylketonuric patients. Eur J Clin Nutr 57:383–387

    Article  PubMed  CAS  Google Scholar 

  • Schulpis KH, Tsakiris S, Traeger-Synodinos J, Papassotiriou I (2005) Low total antioxidant status is implicated with high 8-hydroxy-2-deoxyguanosine serum concentrations in phenylketonuria. Clin Biochem 38:239–242

    Article  PubMed  CAS  Google Scholar 

  • Scriver CR, Kaufmann S (2001) The hyperphenylalaninemias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease. McGraw-Hill, New York, pp 1667–1724

    Google Scholar 

  • Shah SN, Peterson NA, McKean CM (1972) Lipid composition of human cerebral white matter and myelin in phenylketonuria. J Neurochem 19:2369–2376

    Article  PubMed  CAS  Google Scholar 

  • Sierra C, Vilaseca MA, Moyano D, Brandi N, Campistol J, Lambruschini N, Cambra FJ, Deulofeu R, Mira A (1998) Antioxidant status in hyperphenylalaninemia. Clin Chim Acta 276:1–9

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1985) Oxidative stress: introductory remarks. In: Sies H (ed) Oxidative stress. Academic Press, London, pp 1–7

    Google Scholar 

  • Sirtori LR, Dutra-Filho CS, Fitarelli D, Sitta A, Haeser A, Barschak AG, Wajner M, Coelho DM, Llesuy S, Belló-Klein A, Giugliani R, Deon M, Vargas CR (2005) Oxidative stress in patients with phenylketonuria. Biochim Biophys Acta 1740:68–73

    PubMed  CAS  Google Scholar 

  • Sitta A, Barschak AG, Deon M, Terroso T, Pires R, Giugliani R, Dutra-Filho CS, Wajner M, Vargas CR (2006) Investigation of oxidative stress parameters in treated phenylketonuric patients. Metab Brain Dis 21:287–296

    Article  PubMed  CAS  Google Scholar 

  • Sitta A, Manfredini V, Biasi L, Treméa R, Schwartz IV, Wajner M, Vargas CR (2009a) Evidence that DNA damage is associated to phenylalanine blood levels in leukocytes from phenylketonuric patients. Mutat Res 679:13–16

    PubMed  CAS  Google Scholar 

  • Sitta A, Barschak AG, Deon M, de Mari JF, Barden AT, Vanzin CS, Biancini GB, Schwartz IV, Wajner M, Vargas CR (2009b) L-carnitine blood levels and oxidative stress in treated phenylketonuric patients. Cell Mol Neurobiol 29:211–218

    Article  PubMed  CAS  Google Scholar 

  • Sitta A, Barschak AG, Deon M, Barden AT, Biancini GB, Vargas PR, de Souza CF, Netto C, Wajner M, Vargas CR (2009c) Effect of short- and long-term exposition to high phenylalanine blood levels on oxidative damage in phenylketonuric patients. Int J Dev Neurosci 27:243–247

    Article  PubMed  CAS  Google Scholar 

  • Smith I, Knowles J (2000) Behaviour in early treated phenylketonuria: a systematic review. Eur J Pediatr 159(Suppl 2):S89–S93

    Article  PubMed  Google Scholar 

  • Solano AF, Leipnitz G, De Bortoli GM, Seminotti B, Amaral AU, Fernandes CG, Latini AS, Dutra-Filho CS, Wajner M (2008) Induction of oxidative stress by the metabolites accumulating in isovaleric acidemia in brain cortex of young rats. Free Radic Res 42:707–715

    Article  PubMed  CAS  Google Scholar 

  • Steiner G, Menzel H, Lombeck I, Ohnesorge FK, Bremer HJ (1982) Plasma glutathione peroxidase after selenium supplementation in patients with reduced selenium state. Eur J Pediatr 138:138–140

    Article  PubMed  CAS  Google Scholar 

  • Streck EL, Zugno AI, Tagliari B, Franzon R, Wannmacher CM, Wajner M, Wyse AT (2001) Inhibition of rat brain Na+, K+-ATPase activity induced by homocysteine is probably mediated by oxidative stress. Neurochem Res 26:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Streck EL, Vieira PS, Wannmacher CM, Dutra-Filho CS, Wajner M, Wyse AT (2003) In vitro effect of homocysteine on some parameters of oxidative stress in rat hippocampus. Metab Brain Dis 18:147–154

    Article  PubMed  CAS  Google Scholar 

  • Teunissen CE, de Vente J, Steinbusch HW, De Bruijn C (2002) Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging 23:485–508

    Article  PubMed  CAS  Google Scholar 

  • Uchida K (2003) 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res 42:318–343

    Article  PubMed  CAS  Google Scholar 

  • Ushakova GA, Gubkina HA, Kachur VA, Lepekhin EA (1997) Effect of experimental hyperphenylalaninemia on the postnatal rat brain. Int J Dev Neurosci 15:29–36

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Izakovic M, Mazur M, Rhodes CJ, Telser J (2004) Role of oxygen radicals in DNA damage and cancer incidence. Mol Cell Biochem 266:37–56

    Article  PubMed  CAS  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  • van Bakel MM, Printzen G, Wermuth B, Wiesmann UN (2000) Antioxidant and thyroid hormone status in selenium-deficient phenylketonuric and hyperphenylalaninemic patients. Am J Clin Nutr 72:976–981

    PubMed  Google Scholar 

  • Wajner M, Latini A, Wyse AT, Dutra-Filho CS (2004) The role of oxidative damage in the neuropathology of organic acidurias: insights from animal studies. J Inherit Metab Dis 27:427–448

    Article  PubMed  CAS  Google Scholar 

  • Weber C, Bysted A, Holmer G (1997) Coenzyme Q10 in the diet-daily intake and relative bioavailability. Mol Aspects Med 18(Suppl):S251–S254

    Article  PubMed  CAS  Google Scholar 

  • Weglage J, Pietsch M, Fünders B, Koch HG, Ullrich K (1995) Neurological findings in early treated phenylketonuria. Acta Paediatr 84:411–415

    Article  PubMed  CAS  Google Scholar 

  • Wilke BC, Vidailhet M, Favier A, Guillemin C, Ducros V, Arnaud J, Richard MJ (1992) Selenium, glutathione peroxidase (GSH-Px) and lipid peroxidation products before and after selenium supplementation. Clin Chim Acta 207:137–142

    Article  PubMed  CAS  Google Scholar 

  • Wyse AT, Wajner M, Brusque A, Wannmacher CM (1995) Alanine reverses the inhibitory effect of phenylalanine and its metabolites on Na+, K(+)-ATPase in synaptic plasma membranes from cerebral cortex of rats. Biochem Soc Trans 23:227S

    PubMed  CAS  Google Scholar 

  • Wyse AT, Noriler ME, Borges LF, Floriano PJ, Silva CG, Wajner M, Wannmacher CM (1999) Alanine prevents the decrease of Na+, K+-ATPase activity in experimental phenylketonuria. Metab Brain Dis 14:95–101

    Article  PubMed  CAS  Google Scholar 

  • Wyse AT, Zugno AI, Streck EL, Matté C, Calcagnotto T, Wannmacher CM, Wajner M (2002) Inhibition of Na(+), K(+)-ATPase activity in hippocampus of rats subjected to acute administration of homocysteine is prevented by vitamins E and C treatment. Neurochem Res 27:1685–1689

    Article  PubMed  CAS  Google Scholar 

  • Zheng M, Storz G (2000) Redox sensing by prokaryotic transcription factors. Biochem Pharmacol 59:1–6

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by CAPES, CNPq, and FIPE/HCPA-Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen R. Vargas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribas, G.S., Sitta, A., Wajner, M. et al. Oxidative Stress in Phenylketonuria: What is the Evidence?. Cell Mol Neurobiol 31, 653–662 (2011). https://doi.org/10.1007/s10571-011-9693-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-011-9693-2

Keywords

Navigation