Skip to main content
Log in

Zonisamide Attenuates MPP(+)-Induced Oxidative Toxicity Through Modulation of Ca2+ Signaling and Caspase-3 Activity in Neuronal PC12 Cells

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease is an incurable progressive neurological condition caused by a degeneration of dopamine-producing cells characterized by motor and non-motor symptoms. The major mechanisms of the antiepileptic actions of ZNS are inhibition of voltage-gated Na+ channel, T-type voltage-sensitive Ca2+ channel, Ca2+-induced Ca2+ releasing system, and neuronal depolarization-induced glutamate release; and enhancement of release of inhibitory neurotransmitters; however, the detailed mechanism of antiparkinsonian effects of ZNS remains to be clarified. We aimed to investigate to the effect of ZNS on the oxidative stress, cell viability, Ca2+ signaling, and caspase activity that induced by the MPP+ model of Parkinson’s in neuronal PC12 cells. Neuronal PC12 cells were divided into four groups namely, control, ZNS, MPP+, and ZNS+MPP+ groups. The dose and duration of ZNS and MPP+ were determined according to cell viability (MTT) analysis which used to assess the cell viability. The cells in ZNS, MPP+, and ZNS+MPP+ groups were incubated for 5 h with 100 μM ZNS, 10 h with 100 μM MPP+, and 10 h with ZNS and MPP+, respectively. Lipid peroxidation and cytosolic free Ca2+ concentrations were higher in the MPP+ group than in control although their levels were lower in ZNS and the ZNS+MPP+ groups than in control. Reduced glutathione and glutathione peroxidase values were lower in the MPP+ group although they were higher in the ZNS and the ZNS+MPP+ groups than in control. Caspase-3 activity was lower in the ZNS group than in the MPP+ group. In conclusion, ZNS induced modulator effects on the oxidative stress, intracellular Ca2+, and the caspase-3 values in an experimental model of Parkinson disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GSH:

Reduced glutathione

GSH-Px:

Glutathione peroxidase

LP:

Lipid peroxidation

MPP+ :

1-Methyl-4-phenylpyridinium ion

NGF:

Nerve growth factor

PC12:

Rat pheochromocytoma-derived cell line

ROS:

Reactive oxygen species

ZNS:

Zonisamide

References

  • Altinkiliç S, Naziroğlu M, Uğuz AC, Ozcankaya R (2010) Fish oil and antipsychotic drug risperidone modulate oxidative stress in PC12 cell membranes through regulation of cytosolic calcium ion release and antioxidant system. J Membr Biol 235:211–218

    Article  PubMed  Google Scholar 

  • Asanuma M, Miyazaki I, Diaz-Corrales FJ, Kimoto N, Kikkawa Y, Takeshima M, Miyoshi K, Murata M (2010) Neuroprotective effects of zonisamide target astrocyte. Ann Neurol 67:239–249

    Article  PubMed  CAS  Google Scholar 

  • Baillet A, Chanteperdrix V, Trocmé C, Casez P, Garrel C, Besson G (2010) The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem Res 35:1530–1537

    Article  PubMed  CAS  Google Scholar 

  • Binda C, Aldeco M, Mattevi A, Edmondson DE (2011) Interactions of monoamine oxidases with the antiepileptic drug zonisamide: specificity of inhibition and structure of the human monoamine oxidase B complex. J Med Chem 54:909–912

    Article  PubMed  CAS  Google Scholar 

  • Danielson SR, Held JM, Oo M, Riley R, Gibson BW, Andersen JK (2011) Quantitative mapping of reversible mitochondrial complex I cysteine oxidation in a Parkinson disease mouse model. J Biol Chem 286:7601–7608

    Article  PubMed  CAS  Google Scholar 

  • Dexter DT, Sian J, Rose S, Hindmarsh JG, Mann VM, Cooper JM, Wells FR, Daniel SE, Lees AJ, Schapira AH et al (1994) Indices of oxidative stress and mitochondrial function in individuals with incidental Lewy body disease. Ann Neurol 35:38–44

    Article  PubMed  CAS  Google Scholar 

  • Espino J, Mediero M, Bejarano I, Lozano GM, Ortiz A, García JF, Rodríguez AB, Pariente JA (2009) Reduced levels of intracellular calcium releasing in spermatozoa from asthenozoospermic patients. Rep Biol Endocrinol 7:11

    Article  Google Scholar 

  • Fonck C, Baudry M (2001) Toxic effects of MPP(+) and MPTP in PC12 cells independent of reactive oxygen species formation. Brain Res 905:199–206

    Article  PubMed  CAS  Google Scholar 

  • Grynkiewicz C, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450

    PubMed  CAS  Google Scholar 

  • Hasegawa E, Takeshige K, Oishi T, Murai Y, Minakami S (1990) 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem Biophys Res Commun 170:1049–1055

    Article  PubMed  CAS  Google Scholar 

  • Heemskerk JW, Feijge MA, Henneman L, Rosing J, Hemker HC (1997) The Ca2+-mobilizing potency of alpha-thrombin and thrombin receptor-activating peptide on human platelets concentration and time effects of thrombin-induced Ca2+ signalling. Eur J Biochem 249:547–555

    Article  PubMed  CAS  Google Scholar 

  • Kadota T, Yamaai T, Saito Y, Akita Y, Kawashima S, Moroi K, Inagaki N, Kadota K (1996) Expression of dopamine transporter at the tips of growing neurites of PC12 cells. J Histochem Cytochem 44:989–996

    Article  PubMed  CAS  Google Scholar 

  • Kawata Y, Okada M, Murakami T, Mizuno K, Wada K, Kondo T, Kaneko S (1999) Effects of zonisamide on K+ and Ca2+ evoked release of monoamine as well as K+ evoked intracellular Ca2+ mobilization in rat hippocampus. Epilepsy Res 35:173–182

    Article  PubMed  CAS  Google Scholar 

  • Komatsu M, Hiramatsu M, Willmore LJ (2000) Zonisamide reduces the increase in 8-hydroxy-2′-deoxyguanosine levels formed during iron-induced epileptogenesis in the brains of rats. Epilepsia 41:1091–1094

    Article  PubMed  CAS  Google Scholar 

  • Korff A, Pfeiffer B, Smeyne M, Kocak M, Pfeiffer RF, Smeyne RJ (2011) Alterations in glutathione S-transferase pi expression following exposure to MPP+-induced oxidative stress in the blood of Parkinson’s disease patients. Parkinsonism Relat Disord 17:765–768

    Article  PubMed  Google Scholar 

  • Kutluhan S, Naziroğlu M, Celik O, Yilmaz M (2009) Effects of selenium and topiramate on lipid peroxidation and antioxidant vitamin levels in blood of pentylentetrazol-induced epileptic rats. Biol Trace Elem Res 129:181–189

    Article  PubMed  CAS  Google Scholar 

  • Lawrence RA, Burk RF (1976) Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 71:952–958

    Article  PubMed  CAS  Google Scholar 

  • Lee KW, Zhao X, Im JY, Grosso H, Jang WH, Chan TW, Sonsalla PK, German DC, Ichijo H, Junn E, Mouradian MM (2012) Apoptosis signal-regulating kinase 1 mediates MPTP toxicity and regulates glial activation. PLoS One 7:e29935

    Article  PubMed  CAS  Google Scholar 

  • Lew M (2007) Overview of Parkinson’s disease. Pharmacotherapy 27(12 Pt 2):155S–160S

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Martin HL, Teismann P (2009) Glutathione—a review on its role and significance in Parkinson’s disease. FASEB J 23:3263–3272

    Article  PubMed  CAS  Google Scholar 

  • Matar N, Jin W, Wrubel H, Hescheler J, Schneider T, Weiergräber M (2009) Zonisamide block of cloned human T-type voltage-gated calcium channels. Epilepsy Res 83:224–234

    Article  PubMed  CAS  Google Scholar 

  • Mohammadianinejad SE, Abbasi V, Sajedi SA, Majdinasab N, Abdollahi F, Hajmanouchehri R, Faraji A (2011) Zonisamide versus topiramate in migraine prophylaxis: a double-blind randomized clinical trial. Clin Neuropharmacol 34:174–177

    Article  PubMed  CAS  Google Scholar 

  • Müller T, Muhlack S (2011) Cysteinyl-glycine reduction as marker for levodopa-induced oxidative stress in Parkinson’s disease patients. Mov Disord 26:543–546

    Article  PubMed  Google Scholar 

  • Nazıroğlu M (2007) Molecular mechanisms of vitamin E on intracellular signaling pathways in brain. In: Goth Laszlo (ed) Reactive oxygen species and diseases. Research Signpost, Trivandrum, pp 239–256

    Google Scholar 

  • Naziroğlu M, Kutluhan S, Uğuz AC, Celik O, Bal R, Butterworth PJ (2009) Topiramate and vitamin E modulate the electroencephalographic records, brain microsomal and blood antioxidant redox system in pentylentetrazol-induced seizure of rats. J Membr Biol 229:131–140

    Article  PubMed  Google Scholar 

  • Nazıroğlu M, Dikici DM, Dursun S (2012) Role of oxidative stress and Ca(2+) signaling on molecular pathways of neuropathic pain in diabetes: focus on TRP channels. Neurochem Res 37(10):2065–2075

    Article  PubMed  Google Scholar 

  • Okada M, Zhu G, Yoshida S, Kanai K, Hirose S, Kaneko S (2002) Exocytosis mechanism as a new targeting site for mechanisms of action of antiepileptic drugs. Life Sci 72:465–473

    Article  PubMed  CAS  Google Scholar 

  • Pileblad E, Magnusson T, Fornstedt B (1989) Reduction of brain glutathione by l-buthionine sulfoximine potentiates the dopamine-depleting action of 6-hydroxydopamine in rat striatum. J Neurochem 52:978–980

    Article  PubMed  CAS  Google Scholar 

  • Placer ZA, Cushman L, Johnson BC (1966) Estimation of products of lipid peroxidation (malonyl dialdehyde) in biological fluids. Anal Biochem 16:359–364

    Article  PubMed  CAS  Google Scholar 

  • Schapira AH (2011) Mitochondrial pathology in Parkinson’s disease. Mt Sinai J Med 78:872–881

    Article  PubMed  Google Scholar 

  • Sedlak J, Lindsay RHC (1968) Estimation of total, protein bound and non-protein sulfhydryl groups in tissue with Ellmann’s reagent. Anal Biochem 25:192–205

    Article  PubMed  CAS  Google Scholar 

  • Surmeier DJ, Guzman JN, Sanchez-Padilla J, Schumacker PT (2011) The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience 198:221–231

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Kawakami K, Nishimura S, Watanabe Y, Yagi K, Seino M, Miyamoto K (1992) Zonisamide blocks T-type calcium channel in cultured neurons of rat cerebral cortex. Epilepsy Res 12:21–27

    Article  PubMed  CAS  Google Scholar 

  • Uğuz AC, Nazıroğlu M, Espino J, Bejarano I, González D, Rodríguez AB, Pariente JA (2009) Selenium modulates oxidative stress-induced cell apoptosis in human myeloid HL-60 cells via regulation of caspase-3,-9 and calcium influx. J Membr Biol 232:15–23

    Article  PubMed  Google Scholar 

  • Zhu G, Okada M, Murakami T, Kawata Y, Kamata A, Kaneko S (2002) Interaction between carbamazepine, zonisamide and voltage-sensitive Ca2+ channel on acetylcholine release in rat frontal cortex. Epilepsy Res 49:49–60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

MN and VAY formulated the present hypothesis and they were responsible for writing the report. SG and ACU were responsible for analyses of the data. HRK made critical revision for the manuscript. The study was partially supported by Scientific Research Unit of Suleyman Demirel University (Protocol Number: 1885-TU-09).

Conflict of interest

There is no conflict interest in the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Nazıroğlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yürekli, V.A., Gürler, S., Nazıroğlu, M. et al. Zonisamide Attenuates MPP(+)-Induced Oxidative Toxicity Through Modulation of Ca2+ Signaling and Caspase-3 Activity in Neuronal PC12 Cells. Cell Mol Neurobiol 33, 205–212 (2013). https://doi.org/10.1007/s10571-012-9886-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-012-9886-3

Keywords

Navigation