Skip to main content

Advertisement

Log in

The Retrovirus/Superantigen Hypothesis of Multiple Sclerosis

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The pathogenesis of multiple sclerosis (MS) is as yet unknown. Commonly, MS is assumed to be due to an autoimmune inflammation of the central nervous system (CNS). Neurodegeneration is regarded to be a secondary reaction. This concept is increasingly being challenged. Human endogenous retroviruses (HERV) that could be locally activated in the CNS have been proposed as an alternative concept. HERV-encoded envelope proteins (env) can act as strong immune stimulators (superantigens). Thus, slow disease progression following neurodegeneration might be induced by re-activation of HERV expression directly, while relapses in parallel to inflammation might be secondary to the expression of HERV-encoded superantigens. It has been shown previously that T-cell superantigens are capable to induce a cellular inflammatory reaction in the CNS of experimental animals similar to that in MS. Furthermore, B-cell superantigens have been shown to activate blood leucocytes in vitro to produce immunoglobulin in an oligoclonal manner. It remains to be established, whether the outlined hypothesis accords with all known features of MS. Furthermore, anti-HERV agents may be taken into consideration to enrich and improve MS therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anlar O, Kisli M, Tombul T, Ozbek H (2003) Visual evoked potentials in multiple sclerosis before and after two years of interferon therapy. Int J Neurosci 113:483–489

    PubMed  Google Scholar 

  • Antony JM, van Marle G, Opii W, Butterfield DA, Mallet F, Yong VW, Wallace JL, Deacon RM, Warren K, Power C (2004) Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 7:1088–1095

    PubMed  CAS  Google Scholar 

  • Assinger A, Yaiw KC, Göttesdorfer I, Leib-Mösch C, Söderberg-Nauclér C (2013) Human cytomegalovirus (HCMV) induces human endogenous retrovirus (HERV) transcription. Retrovirology 10:132. doi:10.1186/1742-4690-10-132

    PubMed  PubMed Central  Google Scholar 

  • Balada E, Ordi-Ros J, Vilardell-Tarrés M (2009) Molecular mechanisms mediated by human endogenous retroviruses (HERVs) in autoimmunity. Rev Med Virol 19:273–286

    PubMed  CAS  Google Scholar 

  • Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55:458–468

    PubMed  Google Scholar 

  • Beck J, Rondot P, Catinot L, Falcoff E, Kirchner H, Wietzerbin J (1988) Increased production of interferon gamma and tumor necrosis factor precedes clinical manifestation in multiple sclerosis: do cytokines trigger off exacerbations? Acta Neurol Scand 78:318–323

    PubMed  CAS  Google Scholar 

  • Bell JE (1998) The neuropathology of adult HIV infection. Rev Neurol (Paris) 154:816–829

    CAS  Google Scholar 

  • Brønnum-Hansen H, Stenager E, Hansen T, Koch-Henriksen H (2006) Survival and mortality rates among Danes with MS. Int MS J 13:66–71

    PubMed  Google Scholar 

  • Chastain EM, Miller SD (2012) Molecular mimicry as an inducing trigger for CNS autoimmune demyelinating disease. Immunol Rev 245:227–238

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cheriyan J, Kim S, Wolansky LJ, Cook SD, Cadavid D (2012) Impact of inflammation on brain volume in multiple sclerosis. Arch Neurol 69:82–88

    PubMed  Google Scholar 

  • Christensen T (2010) HERVs in neuropathogenesis. J Neuroimmune Pharmacol 5:326–335

    PubMed  Google Scholar 

  • Confavreux C, Vukusic S (2006a) Natural history of multiple sclerosis: a unifying concept. Brain 129:606–616

    PubMed  Google Scholar 

  • Confavreux C, Vukusic S (2006b) Accumulation of irreversible disability in multiple sclerosis: from epidemiology to treatment. Clin Neurol Neurosurg 108:327–332

    PubMed  Google Scholar 

  • Confavreux C, Vukusic S, Adelaine P (2003) Early clinical predictors and progression of irreversible disability in multiple sclerosis. Brain 126:770–782

    PubMed  Google Scholar 

  • Correale J, Fiol M, Gilmore W (2006) The risk of relapses in multiple sclerosis during systemic infections. Neurology 67:652–659

    PubMed  CAS  Google Scholar 

  • Coyle PK, Hartung HP (2002) Use of interferon beta in multiple sclerosis: rationale for early treatment and evidence for dose- and frequency-dependent effects on clinical response. Mult Scler 8:2–9

    PubMed  CAS  Google Scholar 

  • D’Agostino PM, Gottfried-Blackmore A, Anandasabapathy N, Bulloch K (2012) Brain dendritic cells: biology and pathology. Acta Neuropathol 124:599–614

    PubMed  PubMed Central  Google Scholar 

  • De Stefano N, Narayanan S, Francis SJ, Smith S, Mortilla M, Tartaglia MC, Bartolozzi ML, Guidi L, Federico A, Arnold DL (2002) Diffuse axonal and tissue injury in patients with multiple sclerosis with low lesion load and no disability. Arch Neurol 59:1565–1571

    PubMed  Google Scholar 

  • Dick T, Staege MS, Reichmann G, Reske-Kunz AB (1993) Manifestation of the MHC-unrestricted killing potential of a cytotoxic T cell clone requires activation in response to MHC-restricted self-presentation of antigen. J Immunol 150:2575–2583

    PubMed  CAS  Google Scholar 

  • Dolei A (2006) Endogenous retroviruses and human disease. Expert Rev Clin Immunol 2:149–167

    PubMed  CAS  Google Scholar 

  • Dreyfus DH (2011) Autoimmune disease: a role for new anti-viral therapies? Autoimmun Rev 11:88–97

    PubMed  CAS  Google Scholar 

  • Dupressoir A, Lavialle C, Heidmann T (2012) From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33:663–671

    PubMed  CAS  Google Scholar 

  • Emmer A, Gerlach K, Staege MS, Kornhuber ME (2008) Cerebral gene expression of superantigen encephalitis in the lewis rat induced by staphylococcal enterotoxin a. Scand J Immunol 67:464–472

    PubMed  CAS  Google Scholar 

  • Emmer A, Gerlach K, Staege MS, Kornhuber ME (2010) T-cell subsets of the encephalitis induced by the superantigen Staphylococcal Enterotoxin A (SEA) in the Lewis rat: an immunohistochemical investigation. Cell Immunol 264:93–96

    PubMed  CAS  Google Scholar 

  • Emmer A, Gerlach K, Staege MS, Kornhuber ME (2011) Superantigen-mediated encephalitis. In: Hayasaka D (ed) Pathogenesis of encephalitis. InTech, Rijeka, pp 213–234

    Google Scholar 

  • Everett RD (1984) Trans-activation of transcription by herpes virus products: requirement for two HSV-1 immediate-early polypeptides for maximum activity. EMBO J 3:3135–3141

    PubMed  CAS  PubMed Central  Google Scholar 

  • Filippi M, Rocca MA, Martino G, Horsfield MA, Comi G (1998) Magnetization transfer changes in the normal appearing white matter precede the appearance of enhancing lesions in patients with multiple sclerosis. Ann Neurol 43:809–814

    PubMed  CAS  Google Scholar 

  • Filippi M, Bozzali M, Rovaris M, Gonen O, Kesavadas C, Ghezzi A, Martinelli V, Grossman RI, Scotti G, Comi G, Falini A (2003) Evidence for widespread axonal damage at the earliest clinic stage of multiple sclerosis. Brain 126:433–437

    PubMed  CAS  Google Scholar 

  • Firouzi R, Rolland A, Michel M, Jouvin-Marche E, Hauw JJ, Malcus-Vocanson C, Lazarini F, Gebuhrer L, Seigneurin JM, Touraine JL, Sanhadji K, Marche PN, Perron H (2003) Multiple sclerosis-associated retrovirus particles cause T-lymphocyte-dependent death with brain hemorrhage in humanized SCID mice model. J Neurovirol 9:79–93

    PubMed  CAS  Google Scholar 

  • Fleming SD, Iandolo JJ, Chapes SK (1991) Murine macrophage activation by staphylococcal exotoxins. Infect Immun 59:4049–4055

    PubMed  CAS  PubMed Central  Google Scholar 

  • Francis DA, Batchelor JR, McDonald WI, Hing SN, Dodi IA, Fielder AH, Hern JE, Downie AW (1987) Multiple sclerosis in north-east Scotland: an association with HLA DQw1. Brain 110:181–196

    PubMed  Google Scholar 

  • Frank O, Jones-Brando L, Leib-Mosch C, Yolken R, Seifarth W (2006) Altered transcriptional activity of human endogenous retroviruses in neuroepithelial cells after infection with Toxoplasma gondii. J Infect Dis 194:1447–1449

    PubMed  CAS  Google Scholar 

  • Friese MA, Fugger L (2009) Pathogenic CD8(+) T cells in multiple sclerosis. Ann Neurol 66:132–141

    PubMed  CAS  Google Scholar 

  • Ganem MB, De Marzi MC, Fernández-Lynch MJ, Jancic C, Vermeulen M, Geffner J, Mariuzza RA, Fernández MM, Malchiodi EL (2013) Uptake and intracellular trafficking of superantigens in dendritic cells. PLoS One 8:e66244

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gelman IH, Silverstein S (1985) Identification of immediate early genes from herpes simplex virus that transactivate the virus thymidine kinase gene. Proc Natl Acad Sci USA 82:5265–5269

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gonzalez-Hernandez MJ, Swanson MD, Contreras-Galindo R, Cookinham S, King SR, Noel RJ Jr, Kaplan MH, Markovitz DM (2012) Expression of human endogenous retrovirus type K (HML-2) is activated by the Tat protein of HIV-1. J Virol 86:7790–7805

    PubMed  CAS  PubMed Central  Google Scholar 

  • Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hartung HP, Kieseier BC, Hemmer B (2005) Purely systemically active anti-inflammatory treatments are adequate to control multiple sclerosis. J Neurol 252:30–37

    Google Scholar 

  • Hassan-Zahraee M, Ladiwala U, Lavoie PM, McCrea E, Sekaly RP, Owens T, Antel JP (2000) Superantigen presenting capacity of human astrocytes. J Neuroimmunol 102:131–136

    PubMed  CAS  Google Scholar 

  • Hauser KF, Hahn YK, Adjan VV, Zou S, Buch SK, Nath A, Bruce-Keller AJ, Knapp PE (2009) HIV-1 Tat and morphine have interactive effects on oligodendrocyte survival and morphology. Glia 57:194–206

    PubMed  PubMed Central  Google Scholar 

  • Hemmer B, Kieseier B, Cepok S, Hartung HP (2003) New immunopathologic insights into multiple sclerosis. Curr Neurol Neurosci Rep 3:246–255

    PubMed  Google Scholar 

  • Hohenadl C, Germaier H, Walchner M, Hagenhofer M, Herrmann M, Stürzl M, Kind P, Hehlmann R, Erfle V, Leib-Mösch C (1999) Transcriptional activation of endogenous retroviral sequences in human epidermal keratinocytes by UVB irradiation. J Invest Dermatol 113:587–594

    PubMed  CAS  Google Scholar 

  • Hohlfeld R (2012) Multiple Sklerose: Verlangsamt Interferon-beta die Erkrankungsprogression? - Langzeiteffekt von IFN-ß auf Behinderungsprogression ist noch nicht belegt. Dtsch Med Wochenschr 137:2088

    PubMed  CAS  Google Scholar 

  • Hohlfeld R, Wekerle H (2004) Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci USA 101:14599–14606

    PubMed  CAS  PubMed Central  Google Scholar 

  • Holmøy T (2007) Immunopathogenesis of multiple sclerosis: concepts and controversies. Acta Neurol Scand Suppl 187:39–45

    PubMed  Google Scholar 

  • Hopkins PA, Fraser JD, Pridmore AC, Russell HH, Read RC, Sriskandan S (2005) Superantigen recognition by HLA class II on monocytes up-regulates toll-like receptor 4 and enhances proinflammatory responses to endotoxin. Blood 105:3655–3662

    PubMed  CAS  Google Scholar 

  • Hopkins PA, Pridmore AC, Ellmerich S, Fraser JD, Russell HH, Read RC, Sriskandan S (2008) Increased surface toll-like receptor 2 expression in superantigen shock. Crit Care Med 36:1267–1276

    PubMed  CAS  Google Scholar 

  • Hsiao FC, Lin M, Tai A, Chen G, Huber BT (2006) Cutting edge: Epstein-Barr virus transactivates the HERV-K18 superantigen by docking to the human complement receptor 2 (CD21) on primary B cells. J Immunol 177:2056–2060

    PubMed  CAS  Google Scholar 

  • Hsiao FC, Tai AK, Deglon A, Sutkowski N, Longnecker R, Huber BT (2009) EBV LMP-2A employs a novel mechanism to transactivate the HERV-K18 superantigen through its ITAM. Virology 385:261–266

    PubMed  CAS  Google Scholar 

  • Ikejima T, Dinarello CA, Gill DM, Wolff SM (1984) Induction of human interleukin-1 by a product of Staphylococcus aureus associated with toxic shock syndrome. J Clin Invest 73:1312–1320

    PubMed  CAS  PubMed Central  Google Scholar 

  • Junker A, Ivanidze J, Malotka J, Eiglmeier I, Lassmann H, Wekerle H, Meinl E, Hohlfeld R, Dornmair K (2007) Multiple sclerosis: T-cell receptor expression in distinct brain regions. Brain 130:2789–2799

    PubMed  Google Scholar 

  • Kaiser R, Obert M, Kaufmann R, Czygan M (1997) IgG-antibodies to CNS proteins in patients with multiple sclerosis. Eur J Med Res 2:169–172

    PubMed  CAS  Google Scholar 

  • Katoh I, Mírová A, Kurata S, Murakami Y, Horikawa K, Nakakuki N, Sakai T, Hashimoto K, Maruyama A, Yonaga T, Fukunishi N, Moriishi K, Hirai H (2011) Activation of the long terminal repeat of human endogenous retrovirus K by melanoma-specific transcription factor MITF-M. Neoplasia 13:1081–1092

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kewitz S, Staege MS (2013) Expression and regulation of the endogenous retrovirus 3 in Hodgkin’s lymphoma cells. Front Oncol 3:179

    PubMed  PubMed Central  Google Scholar 

  • Kornhuber ME (2006) Nichtentzündliche Pathogenese von Herden bei Multipler Sklerose. Nervenarzt 77:989–990

    PubMed  CAS  Google Scholar 

  • Kornhuber ME, Ganz C, Lang R, Brill T, Schmahl W (2002) Focal encephalitis in the Lewis rat induced by intracerebral enterotoxin superantigen and amplified by activated intravenous splenocytes. Neurosci Lett 324:93–96

    PubMed  CAS  Google Scholar 

  • Kornhuber ME, Presek P, Zierz S (2005) Unterschiedliche Wirkung der Immuntherapie auf Schübe und schleichende Progression bei Multipler Sklerose: Deutung und Konsequenzen für die Therapie. Fortschr Neurol Psychiatr 73:143–149

    PubMed  CAS  Google Scholar 

  • Kremer D, Schichel T, Förster M, Tzekova N, Bernard C, van der Valk P, van Horssen J, Hartung HP, Perron H, Küry P (2013) Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation. Ann Neurol 74:721–732

    PubMed  CAS  Google Scholar 

  • Kwun HJ, Han HJ, Lee WJ, Kim HS, Jang KL (2002) Transactivation of the human endogenous retrovirus K long terminal repeat by herpes simplex virus type 1 immediate early protein 0. Virus Res 86:93–100

    PubMed  CAS  Google Scholar 

  • La Mantia L, Vacchi L, Di Pietrantonj C, Ebers G, Rovaris M, Fredrikson S, Filippini G (2012) Interferon beta for secondary progressive multiple sclerosis. Cochrane Database Syst Rev 1:CD005181

    PubMed  Google Scholar 

  • Lassmann H (2013) Multiple sclerosis: lessons from molecular neuropathology. Exp Neurol. doi:10.1016/j.expneurol.2013.12.003

    PubMed  Google Scholar 

  • Lee JR, Ahn K, Kim YJ, Jung YD, Kim HS (2012) Radiation-induced human endogenous retrovirus (HERV)-R env gene expression by epigenetic control. Radiat Res 178:379–384

    PubMed  CAS  Google Scholar 

  • Levin LI, Munger KL, O’Reilly EJ, Falk KI, Ascherio A (2010) Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Ann Neurol 67:824–830

    PubMed  PubMed Central  Google Scholar 

  • Li S, Liu ZC, Yin SJ, Chen YT, Yu HL, Zeng J, Zhang Q, Zhu F (2013) Human endogenous retrovirus W family envelope gene activates the small conductance Ca2+-activated K+ channel in human neuroblastoma cells through CREB. Neuroscience 247:164–174

    PubMed  CAS  Google Scholar 

  • Li F, Nellåker C, Sabunciyan S, Yolken RH, Jones-Brando L, Johansson AS, Owe-Larsson B, Karlsson H (2014) Transcriptional derepression of the ERVWE1 locus following influenza A virus infection. J Virol 88:4328–4337

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu C, Chen Y, Li S, Yu H, Zeng J, Wang X, Zhu F (2013) Activation of elements in HERV-W family by caffeine and aspirin. Virus Genes 47:219–227

    PubMed  CAS  Google Scholar 

  • Llorca J, Guerrero-Alonso P, Prieto-Salceda D (2005) Mortality trends of multiple sclerosis in Spain, 1951–1997: an age-period-cohort analysis. Neuroepidemiology 24:129–134

    PubMed  Google Scholar 

  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    PubMed  CAS  Google Scholar 

  • MacDonald HR, Schneider R, Lees RK, Howe RC, Acha-Orbea H, Festenstein H, Zinkernagel RM, Hengartner H (1988) T-cell receptor V beta use predicts reactivity and tolerance to Mlsa-encoded antigens. Nature 332:40–45

    PubMed  CAS  Google Scholar 

  • Madigand M, Oger JJ-F, Fauchert R, Sabouraud O, Genetet B (1982) HLA profiles in multiple sclerosis suggest two forms of disease and the existence of protective haplotypes. J Neurol Sci 53:519–529

    PubMed  CAS  Google Scholar 

  • Mameli G, Astone V, Khalili K, Serra C, Sawaya BE, Dolei A (2007) Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines. Virology 362:120–130

    PubMed  CAS  Google Scholar 

  • Masterman T, Ligers A, Olsson T, Andersson M, Olerup O, Hillert J (2000) HLA-DR15 is associated with lower age at onset in multiple sclerosis. Ann Neurol 48:211–219

    PubMed  CAS  Google Scholar 

  • Mattson DH, Roos RP, Arnason BG (1980) Isoelectric focusing of IgG eluted from multiple sclerosis and subacute sclerosing panencephalitis brains. Nature 287:335–337

    PubMed  CAS  Google Scholar 

  • Merabova N, Kaniowska D, Kaminski R, Deshmane SL, White MK, Amini S, Darbinyan A, Khalili K (2008) JC virus agnoprotein inhibits in vitro differentiation of oligodendrocytes and promotes apoptosis. J Virol 82:1558–1569

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nellåker C, Yao Y, Jones-Brando L, Mallet F, Yolken RH, Karlsson H (2006) Transactivation of elements in the human endogenous retrovirus W family by viral infection. Retrovirology 3:44

    PubMed  PubMed Central  Google Scholar 

  • Nexø BA, Christensen T, Frederiksen J, Møller-Larsen A, Oturai AB, Villesen P, Hansen B, Nissen KK, Laska MJ, Petersen TS, Bonnesen S, Hedemand A, Wu T, Wang X, Zhang X, Brudek T, Maric R, Søndergaard HB, Sellebjerg F, Brusgaard K, Kjeldbjerg AL, Rasmussen HB, Nielsen AL, Nyegaard M, Petersen T, Børglum AD, Pedersen FS (2011) The etiology of multiple sclerosis: genetic evidence for the involvement of the human endogenous retrovirus HERV-Fc1. PLoS One 6:e16652

    PubMed  PubMed Central  Google Scholar 

  • O’Hare P, Hayward GS (1985) Evidence for a direct role for both the 175,000- and 110,000-molecular-weight immediateearly proteins of herpes simplex virus in the transactivation of delayed-early promoters. J Virol 53:751–760

    PubMed  PubMed Central  Google Scholar 

  • Olerup O, Hillert J, Fredrikson S, Olsson T, Kam-Hansen S, Möller E, Carlsson B, Wallin J (1989) Primarily chronic progressive and relapsing/remitting multiple sclerosis: two immunogenetically distinct disease entities. Proc Natl Acad Sci USA 86:7113–7117

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ono M, Kawakami M, Ushikubo H (1987) Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. J Virol 61:2059–2062

    PubMed  CAS  PubMed Central  Google Scholar 

  • Owens GP, Bennett JL, Lassmann H, O’Connor KC, Ritchie AM, Shearer A, Lam C, Yu X, Birlea M, DuPree C, Williamson RA, Hafler DA, Burgoon MP, Gilden D (2009) Antibodies produced by clonally expanded plasma cells in multiple sclerosis cerebrospinal fluid. Ann Neurol 65:639–649

    PubMed  CAS  PubMed Central  Google Scholar 

  • Parry A, Corkill R, Blamire AM, Palace J, Narayanan S, Arnold D, Styles P, Matthews PM (2003) Beta-Interferon treatment does not always slow the progression of axonal injury in multiple sclerosis. J Neurol 250:171–178

    PubMed  CAS  Google Scholar 

  • Parsonnet J, Gillis ZA, Pier GB (1986) Induction of interleukin-1 by strains of Staphylococcus aureus from patients with nonmenstrual toxic shock syndrome. J Infect Dis 154:55–63

    PubMed  CAS  Google Scholar 

  • Pender MP, Greer JM (2007) Immunology of multiple sclerosis. Curr Allergy Asthma Rep 7:285–292

    PubMed  CAS  Google Scholar 

  • Perron H, Lang A (2010) The human endogenous retrovirus link between genes and environment in multiple sclerosis and in multifactorial diseases associating neuroinflammation. Clin Rev Allergy Immunol 39:51–61

    PubMed  CAS  Google Scholar 

  • Perron H, Geny C, Laurent A, Mouriquand C, Pellat J, Perret J, Seigneurin JM (1989) Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles. Res Virol 140:551–561

    PubMed  CAS  Google Scholar 

  • Perron H, Suh M, Lalande B, Gratacap B, Laurent A, Stoebner P, Seigneurin JM (1993) Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis. J Gen Virol 74:65–72

    PubMed  CAS  Google Scholar 

  • Perron H, Garson JA, Bedin F, Beseme F, Paranhos-Baccala G, Komurian-Pradel F, Mallet F, Tuke PW, Voisset C, Blond JL, Lalande B, Seigneurin JM, Mandrand B (1997) Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc Natl Acad Sci USA 94:7583–7588

    PubMed  CAS  PubMed Central  Google Scholar 

  • Perron H, Jouvin-Marche E, Michel M, Ounanian-Paraz A, Camelo S, Dumon A, Jolivet-Reynaud C, Marcel F, Souillet Y, Borel E, Gebuhrer L, Santoro L, Marcel S, Seigneurin JM, Marche PN, Lafon M (2001) Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation. Virology 287:321–332

    PubMed  CAS  Google Scholar 

  • Perron H, Dougier-Reynaud HL, Lomparski C, Popa I, Firouzi R, Bertrand JB, Marusic S, Portoukalian J, Jouvin-Marche E, Villiers CL, Touraine JL, Marche PN (2013) Human endogenous retrovirus protein activates innate immunity and promotes experimental allergic encephalomyelitis in mice. PLoS One 8:e80128

    PubMed  PubMed Central  Google Scholar 

  • Pette M, Fujita K, Kitze B, Whitaker JN, Albert E, Kappos L, Wekerle H (1990) Myelin basic protein-specific T lymphocyte lines from MS patients and healthy individuals. Neurology 40:1770–1776

    PubMed  CAS  Google Scholar 

  • Pickard S, Shankar G, Burnham K (1994) Langerhans’ cell depletion by staphylococcal superantigens. Immunology 83:568–572

    PubMed  CAS  PubMed Central  Google Scholar 

  • Prineas JW, Parratt JD (2012) Oligodendrocytes and the early multiple sclerosis lesion. Ann Neurol 72:18–31

    PubMed  Google Scholar 

  • Ramagopalan SV, Knight JC, Ebers GC (2009) Multiple sclerosis and the major histocompatibility complex. Curr Opin Neurol 22:219–225

    PubMed  CAS  Google Scholar 

  • Rott O, Wekerle H, Fleischer B (1992) Protection from experimental allergic encephalomyelitis by application of a bacterial superantigen. Int Immunol 4:347–353

    PubMed  CAS  Google Scholar 

  • Rott O, Tontsch U, Fleischer B (1993) Dissociation of antigen-presenting capacity of astrocytes for peptide-antigens versus superantigens. J Immunol 150:87–95

    PubMed  CAS  Google Scholar 

  • Ruebner M, Langbein M, Strissel PL, Henke C, Schmidt D, Goecke TW, Faschingbauer F, Schild RL, Beckmann MW, Strick R (2012) Regulation of the human endogenous retroviral Syncytin-1 and cell-cell fusion by the nuclear hormone receptors PPARγ/RXRα in placentogenesis. J Cell Biochem 113:2383–2396

    PubMed  CAS  Google Scholar 

  • Ruprecht K, Obojes K, Wengel V, Gronen F, Kim KS, Perron H, Schneider-Schaulies J, Rieckmann P (2006) Regulation of human endogenous retrovirus W protein expression by herpes simplex virus type 1: implications for multiple sclerosis. J Neurovirol 12:65–71

    PubMed  CAS  Google Scholar 

  • Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, Edkins S, Gray E, Booth DR, Potter SC, Goris A, Band G, Oturai AB, Strange A, Saarela J, Bellenguez C, Fontaine B, Gillman M, Hemmer B, Gwilliam R, Zipp F, Jayakumar A, Martin R, Leslie S, Hawkins S, Giannoulatou E, D’alfonso S, Blackburn H, Martinelli Boneschi F, Liddle J, Harbo HF, Perez ML, Spurkland A, Waller MJ, Mycko MP, Ricketts M, Comabella M, Hammond N, Kockum I, McCann OT, Ban M, Whittaker P, Kemppinen A, Weston P, Hawkins C, Widaa S, Zajicek J, Dronov S, Robertson N, Bumpstead SJ, Barcellos LF, Ravindrarajah R, Abraham R, Alfredsson L, Ardlie K, Aubin C, Baker A, Baker K, Baranzini SE, Bergamaschi L, Bergamaschi R, Bernstein A, Berthele A, Boggild M, Bradfield JP, Brassat D, Broadley SA, Buck D, Butzkueven H, Capra R, Carroll WM, Cavalla P, Celius EG, Cepok S, Chiavacci R, Clerget-Darpoux F, Clysters K, Comi G, Cossburn M, Cournu-Rebeix I, Cox MB, Cozen W, Cree BA, Cross AH, Cusi D, Daly MJ, Davis E, de Bakker PI, Debouverie M, D’hooghe MB, Dixon K, Dobosi R, Dubois B, Ellinghaus D, Elovaara I, Esposito F, Fontenille C, Foote S, Franke A, Galimberti D, Ghezzi A, Glessner J, Gomez R, Gout O, Graham C, Grant SF, Guerini FR, Hakonarson H, Hall P, Hamsten A, Hartung HP, Heard RN, Heath S, Hobart J, Hoshi M, Infante-Duarte C, Ingram G, Ingram W, Islam T, Jagodic M, Kabesch M, Kermode AG, Kilpatrick TJ, Kim C, Klopp N, Koivisto K, Larsson M, Lathrop M, Lechner-Scott JS, Leone MA, Leppä V, Liljedahl U, Bomfim IL, Lincoln RR, Link J, Liu J, Lorentzen AR, Lupoli S, Macciardi F, Mack T, Marriott M, Martinelli V, Mason D, McCauley JL, Mentch F, Mero IL, Mihalova T, Montalban X, Mottershead J, Myhr KM, Naldi P, Ollier W, Page A, Palotie A, Pelletier J, Piccio L, Pickersgill T, Piehl F, Pobywajlo S, Quach HL, Ramsay PP, Reunanen M, Reynolds R, Rioux JD, Rodegher M, Roesner S, Rubio JP, Rückert IM, Salvetti M, Salvi E, Santaniello A, Schaefer CA, Schreiber S, Schulze C, Scott RJ, Sellebjerg F, Selmaj KW, Sexton D, Shen L, Simms-Acuna B, Skidmore S, Sleiman PM, Smestad C, Sørensen PS, Søndergaard HB, Stankovich J, Strange RC, Sulonen AM, Sundqvist E, Syvänen AC, Taddeo F, Taylor B, Blackwell JM, Tienari P, Bramon E, Tourbah A, Brown MA, Tronczynska E, Casas JP, Tubridy N, Corvin A, Vickery J, Jankowski J, Villoslada P, Markus HS, Wang K, Mathew CG, Wason J, Palmer CN, Wichmann HE, Plomin R, Willoughby E, Rautanen A, Winkelmann J, Wittig M, Trembath RC, Yaouanq J, Viswanathan AC, Zhang H, Wood NW, Zuvich R, Deloukas P, Langford C, Duncanson A, Oksenberg JR, Pericak-Vance MA, Haines JL, Olsson T, Hillert J, Ivinson AJ, De Jager PL, Peltonen L, Stewart GJ, Hafler DA, Hauser SL, McVean G, Donnelly P, Compston A (2011) Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 476:214–219

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schanab O, Humer J, Gleiss A, Mikula M, Sturlan S, Grunt S, Okamoto I, Muster T, Pehamberger H, Waltenberger A (2011) Expression of human endogenous retrovirus K is stimulated by ultraviolet radiation in melanoma. Pigment Cell Melanoma Res 24:656–665

    PubMed  CAS  Google Scholar 

  • Schmidt S, Wessels L, Augustin A, Klockgether T (2001) Patients with Multiple Sclerosis and concomitant uveitis/periphlebitis retinae are not distinct from those without intraocular inflammation. J Neurol Sci 187:49–53

    PubMed  CAS  Google Scholar 

  • Scholl PR, Trede N, Chatila TA, Geha RS (1992) Role of protein tyrosine phosphorylation in monokine induction by the staphylococcal superantigen toxic shock syndrome toxin-1. J Immunol 148:2237–2241

    PubMed  CAS  Google Scholar 

  • Seo KS, Park JY, Davis WC, Fox LK, McGuire MA, Park YH, Bohach GA (2009) Superantigen-mediated differentiation of bovine monocytes into dendritic cells. J Leukoc Biol 85:606–616

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shirani A, Zhao Y, Karim ME, Evans C, Kingwell E, van der Kop ML, Oger J, Gustafson P, Petkau J, Tremlett H (2012) Association between use of interferon beta and progression of disability in patients with relapsing-remitting multiple sclerosis. JAMA 308:247–256

    PubMed  CAS  Google Scholar 

  • Smith ME, Stone LA, Albert PS, Frank JA, Martin R, Armstrong M, Maloni H, McFarlin DE, McFarland HF (1993) Clinical worsening in multiple sclerosis is associated with increased frequency and area of gadopentetate dimeglumine-enhancing magnetic resonance imaging lesions. Ann Neurol 33:480–489

    PubMed  CAS  Google Scholar 

  • Staege MS, Dick T, Reske-Kunz AB (1996) Functionally active T cell receptor/CD3 complexes are present at the surface of cloned cytotoxic T cells without fluorescence-immunological detectability. Cell Immunol 171:62–67

    PubMed  CAS  Google Scholar 

  • Staege MS, Holtappels R, Thomas D, Reddehase MJ, Reske-Kunz AB (1998) Proliferation and MHC-unrestricted bystander lysis of cytotoxic T cells following antigen self-presentation. Med Microbiol Immunol 187:17–21

    PubMed  CAS  Google Scholar 

  • Staege MS, Schneider J, Eulitz M, Scholz S, Bornkamm GW, Wölfel T, Reske-Kunz AB (2000) Consequences of antigen self-presentation by tumour-specific cytotoxic T cells. Immunobiology 201:332–346

    PubMed  CAS  Google Scholar 

  • Staege MS, Gisch K, Reske-Kunz AB (2003) Cytotoxic T cells with reciprocal antigenic peptide presentation function are not generally resistant to mutual lysis. Immunol Cell Biol 81:266–274

    PubMed  CAS  Google Scholar 

  • Steinman L (2007) Antigen-specific therapy of multiple sclerosis: the long-sought magic bullet. Neurotherapeutics 4:661–665

    PubMed  CAS  Google Scholar 

  • Stengel S, Fiebig U, Kurth R, Denner J (2010) Regulation of human endogenous retrovirus-K expression in melanomas by CpG methylation. Genes Chromosomes Cancer 49:401–411

    PubMed  CAS  Google Scholar 

  • Sutkowski N, Conrad B, Thorley-Lawson DA, Huber BT (2001) Epstein-Barr virus transactivates the human endogenous retrovirus HERV-K18 that encodes a superantigen. Immunity 15:579–589

    PubMed  CAS  Google Scholar 

  • Sutkowski N, Chen G, Calderon G, Huber BT (2004) Epstein-Barr virus latent membrane protein LMP-2A is sufficient for transactivation of the human endogenous retrovirus HERV-K18 superantigen. J Virol 78:7852–7860

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tai AK, O’Reilly EJ, Alroy KA, Simon KC, Munger KL, Huber BT, Ascherio A (2008) Human endogenous retrovirus-K18 Env as a risk factor in multiple sclerosis. Mult Scler 14:1175–1180

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tai AK, Luka J, Ablashi D, Huber BT (2009) HHV-6A infection induces expression of HERV-K18-encoded superantigen. J Clin Virol 46:47–48

    PubMed  CAS  Google Scholar 

  • Takahashi M, Shinohara F, Takada H, Rikiishi H (2001) Effects of superantigen and lipopolysaccharide on induction of CD80 through apoptosis of human monocytes. Infect Immun 69:3652–3657

    PubMed  CAS  PubMed Central  Google Scholar 

  • Toufaily C, Landry S, Leib-Mosch C, Rassart E, Barbeau B (2011) Activation of LTRs from different human endogenous retrovirus (HERV) families by the HTLV-1 tax protein and T-cell activators. Viruses 3:2146–2159

    PubMed  CAS  PubMed Central  Google Scholar 

  • Trede NS, Geha RS, Chatila T (1991) Transcriptional activation of IL-1 beta and tumor necrosis factor-alpha genes by MHC class II ligands. J Immunol 146:2310–2315

    PubMed  CAS  Google Scholar 

  • Turcanova VL, Bundgaard B, Höllsberg P (2009) Human herpesvirus-6B induces expression of the human endogenous retrovirus K18-encoded superantigen. J Clin Virol 46:15–19

    PubMed  CAS  Google Scholar 

  • Van Lambalgen R, Sanders EACM, D’Amaro J (1986) Sex distribution, age of onset and HLA profiles in two types of multiple sclerosis. J Neurol Sci 76:13–21

    PubMed  Google Scholar 

  • Vidlak D, Mariani MM, Aldrich A, Liu S, Kielian T (2011) Roles of Toll-like receptor 2 (TLR2) and superantigens on adaptive immune responses during CNS staphylococcal infection. Brain Behav Immun 25:905–914

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vainchtein ID, Vinet J, Brouwer N, Brendecke S, Biagini G, Biber K, Boddeke HW, Eggen BJ (2014) In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed. In acute experimental autoimmune encephalomyelitis, infiltrating macrophages are immune activated, whereas microglia remain immune suppressed. Glia. doi:10.1002/glia.22711

  • Yoon S, Bae KL, Shin JY, Yoo HJ, Lee HW, Baek SY, Kim BS, Kim JB, Lee HD (2001) Analysis of the in vivo dendritic cell response to the bacterial superantigen staphylococcal enterotoxin B in the mouse spleen. Histol Histopathol 16:1149–1159

    PubMed  CAS  Google Scholar 

  • Yu C, Shen K, Lin M, Chen P, Lin C, Chang GD, Chen H (2002) GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem 277:50062–50068

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A. E. and M. S. S. are supported by the Wilhelm-Roux program (FKZ 21/22, FKZ 25/28, and FKZ 25/22) of the University of Halle-Wittenberg. Furthermore, we gratefully acknowledge generous support by Novartis Pharma GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Emmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emmer, A., Staege, M.S. & Kornhuber, M.E. The Retrovirus/Superantigen Hypothesis of Multiple Sclerosis. Cell Mol Neurobiol 34, 1087–1096 (2014). https://doi.org/10.1007/s10571-014-0100-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-014-0100-7

Keywords

Navigation