Skip to main content
Log in

Remote Limb Ischemic Preconditioning Protects Rats Against Cerebral Ischemia via HIF-1α/AMPK/HSP70 Pathway

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Remote limb ischemic preconditioning (RIPC) is a clinically feasible strategy to protect against ischemia/reperfusion injury, but the knowledge concerning the mechanism underlying RIPC is scarce. This study was performed to examine the effect of RIPC on brain tissue suffering from ischemia challenge and explore its underlying mechanism in a rat model. The animals were divided into four groups: Sham, middle cerebral artery occlusion (MCAO), RIPC, and MCAO+RIPC. We found that previous exposure to RIPC significantly attenuated neurological dysfunction and lessened brain edema in MCAO+RIPC group. Moreover, other important events were observed in MCAO+RIPC group, including substantial decrements in the concentrations of oxidative response indicators [malondialdehyde (MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), and protein carbonyl], significant reductions in levels of inflammation mediators [myeloperoxidase (MPO), tumor necrosis factor-a (TNF-a), interleukin-1β (IL-1β), and IL-6], and significant decline in neuronal apoptosis revealed by a smaller number of TUNEL-positive cells. Interestingly, both MCAO and RIPC groups exhibited meaningful elevations in the levels of HIF-1a, HSP70, and AMP-activated protein kinase (AMPK) compared to Sham group, and previous exposure to RIPC further elevated the levels of HIF-1a, HSP70, and AMPK in MCAO+RIPC group. Furthermore, the administration of YC-1 (HIF-1 inhibitor), 8-bAMP (AMPK inhibitor), and Quercetin (HSP70 inhibitor) to MCAO+RIPC rats demonstrated that HIF-1α/AMPK/HSP70 was involved in RIPC-mediated protection against cerebral ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, Leak RK, Gao Y, Sun BL, Zheng P (2013) Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair. Prog Neurobiol 115:460–465

    Google Scholar 

  • Baird NA, Turnbull DW, Johnson EA (2006) Induction of the heat shock pathway during hypoxia requires regulation of heat shock factor by hypoxia-inducible factor-1. J Biol Chem 281:38675–38681

    Article  CAS  PubMed  Google Scholar 

  • Baranova O, Miranda LF, Pichiule P, Dragatsis I, Johnson RS, Chavez JC (2007) Neuron-specific inactivation of the hypoxia inducible factor 1 alpha increases brain injury in a mouse model of transient focal cerebral ischemia. J Neurosci 27:6320–6332

    Article  CAS  PubMed  Google Scholar 

  • Bashir SO, Mostafa OA, Rizk MS, Al-Ridi MR, Morsy MD (2012) Intestinal ischemic preconditioning modulates oxidative stress in rat’s spinal cord ischemic reperfusion injury. Am J Biomed Sci 4:220–232

    Article  CAS  Google Scholar 

  • Bergeron M, Yu AY, Solway KE, Semenza GL, Sharp FR (2000) Induction of hypoxia-inducible factor-1 (HIF-1) and its target genes following focal ischaemia in rat brain. Eur J Neurosci 11:4159–4170

    Article  Google Scholar 

  • Bernaudin M, Nedelec AS, Divoux D, Mackenzie ET, Petit E, Schumann-Bard P (2002a) Normobaric hypoxia induces tolerance to focal permanent cerebral ischemia in association with an increased expression of hypoxia-inducible factor-1 and its target genes, erythropoietin and VEGF, in the adult mouse brain. J Cereb Blood Flow Metab 22:393–403

    Article  CAS  PubMed  Google Scholar 

  • Bernaudin M, Yang T, Reilly M, Petit E, Sharp FR (2002b) Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. J Biol Chem 277:39728–39738

    Article  CAS  PubMed  Google Scholar 

  • Bonita R (1992) Epidemiology of stroke. Lancet 339:342–344

    Article  CAS  PubMed  Google Scholar 

  • Bromley-Brits K, Deng Y, Song W (2011) Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp 53:e2920

    Google Scholar 

  • Broughton BRS, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331–e339

    Article  PubMed  Google Scholar 

  • Cadenas E, Davies KJA (2000) Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 29:222–230

    Article  CAS  PubMed  Google Scholar 

  • Cao XL, Du J, Zhang Y, Yan JT, Hu XM (2015) Hyperlipidemia exacerbates cerebral injury through oxidative stress, inflammation and neuronal apoptosis in MCAO/reperfusion rats. Exp Brain Res 233:1–13

    Article  Google Scholar 

  • Ceprnja M, Derek L, Unić A, Blazev M, Fistonić M, Kozarićkovacić D, Franić M, Romić Z (2011) Oxidative stress markers in patients with post-traumatic stress disorder. Coll Antropol 35:1155–1160

    CAS  PubMed  Google Scholar 

  • Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011

    Article  CAS  PubMed  Google Scholar 

  • Chen SD, Lee JM, Yang DI, Nassief A, Hsu CY (2002) Combination therapy for ischemic stroke: potential of neuroprotectants plus thrombolytics. Am J Cardiovasc Drugs 2:303–313

    Article  CAS  PubMed  Google Scholar 

  • Chen SD, Yang DI, Lin TK, Shaw FZ, Liou CW, Chuang YC (2011) Roles of oxidative stress, apoptosis, PGC-1α and mitochondrial biogenesis in cerebral ischemia. Int J Mol Sci 12:7199–7215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Yan M, Lei W, Hong-Xia W, Cui T, Guo-Dong P, Hui-Hua L, Jie D (2014) Ubiquitin-activating enzyme E1 inhibitor PYR41 attenuates angiotensin II-induced activation of dendritic cells via the IκBa/NF-κB and MKP1/ERK/STAT1 pathways. Immunology 142:307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Yin C, Lao T, Liang D, He D, Wang C, Sang N (2015) AMPK-HDAC5 pathway facilitates nuclear accumulation of HIF-1α and functional activation of HIF-1 by deacetylating Hsp70 in the cytosol. Cell Cycle 14:2520–2536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coles JP, Fryer TD, Piotr S, Chatfield DA, Steiner LA, Johnston AJ, Downey SPMJ, Williams GB, Franklin A, Hutchinson PJ (2004) Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab 24:202–211

    Article  PubMed  Google Scholar 

  • Freret T, Valable S, Chazalviel L, Saulnier R, Mackenzie ET, Petit E, Bernaudin M, Boulouard M, Schumann-Bard P (2006) Delayed administration of deferoxamine reduces brain damage and promotes functional recovery after transient focal cerebral ischemia in the rat. Eur J Neurosci 23:1757–1765

    Article  PubMed  Google Scholar 

  • Gourdin MJ, Bree B, De KM (2009) The impact of ischaemia-reperfusion on the blood vessel. Eur J Anaesthesiol 26:537–547

    Article  CAS  PubMed  Google Scholar 

  • Gu JH, Ge JB, Li M, Wu F, Zhang W, Qin ZH (2012) Inhibition of NF-κB activation is associated with anti-inflammatory and anti-apoptotic effects of Ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury. Eur J Pharm Sci 47:652–660

    Article  CAS  PubMed  Google Scholar 

  • Halterman MW, Federoff HJ (1999) HIF-1α and p53 promote hypoxia-induced delayed neuronal death in models of CNS ischemia. Exp Neurol 159:65–72

    Article  CAS  PubMed  Google Scholar 

  • Helton R, Cui J, Scheel JR, Ellison JA, Ames C, Gibson C, Blouw B, Ouyang L, Dragatsis I, Zeitlin S (2005) Brain-specific knock-out of hypoxia-inducible factor-1 alpha reduces rather than increases hypoxic-ischemic damage. J Neurosci 25:4099–4107

    Article  CAS  PubMed  Google Scholar 

  • Hu S, Dong H, Zhang H, Wang S, Hou L, Chen S, Zhang J, Xiong L (2012) Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine A1 receptor and redox status after transient focal cerebral ischemia in rats. Brain Res 1459:81–90

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Upadhyay UM, Tamargo RJ (2006) Inflammation in stroke and focal cerebral ischemia. Surg Neurol 66:232–245

    Article  PubMed  Google Scholar 

  • Isaacs JS, Yun-Jin J, Mimnaugh EG, Alfredo M, Frank C, Neckers LM (2002) Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem 277:29936–29944

    Article  CAS  PubMed  Google Scholar 

  • Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87:779–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstantinov IE, Arab S, Kharbanda RK, Li J, Cheung MM, Cherepanov V, Downey GP, Liu PP, Cukerman E, Coles JG, Redington AN (2004) The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genom 19:143–150

    Article  CAS  Google Scholar 

  • Lakhan SE, Kirchgessner A, Hofer M (2009) Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 7:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Powers C, Jiang N, Chopp M (1998) Intact, injured, necrotic and apoptotic cells after focal cerebral ischemia in the rat. J Neurol Sci 156:119–132

    Article  CAS  PubMed  Google Scholar 

  • Li S, Ma C, Guo S, Esmail F, Yang H, Jia L, Jian Q, Ren C, Luo Y, Ding Y (2014) Safety and feasibility of remote limb ischemic preconditioning in patients with unilateral middle cerebral artery stenosis and healthy volunteers. Cell Transplant 24:1901–1911

    Article  PubMed  Google Scholar 

  • Maddahi A, Edvinsson L (2010) Cerebral ischemia induces microvascular pro-inflammatory cytokine expression via the MEK/ERK pathway. J Neuroinflammation 8:18

    Article  Google Scholar 

  • Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J, Michiels C (1999) Hypoxia-induced activation of HIF-1: role of HIF-1α-Hsp90 interaction. FEBS Lett 460:251–256

    Article  CAS  PubMed  Google Scholar 

  • Monson NL, Ortega SB, Ireland SJ, Meeuwissen AJ, Ding C, Plautz EJ, Shubel E, Kong X, Min KL, Freriks LH (2014) Repetitive hypoxic preconditioning induces an immunosuppressed B cell phenotype during endogenous protection from stroke. J Neuroinflammation 11:1–18

    Article  Google Scholar 

  • Niizuma K, Endo H, Chan PH (2009) Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J Neurochem 109:133–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishi S (1993) Induction of HSP70 and neuronal damage following transient cerebral ischemia in rats. Nihon Geka Hokan 62:71–81

    CAS  PubMed  Google Scholar 

  • Pirinccioglu AG, Gökalp D, Pirinccioglu M, Kizil G, Kizil M (2010) Malondialdehyde (MDA) and protein carbonyl (PCO) levels as biomarkers of oxidative stress in subjects with familial hypercholesterolemia. Clin Biochem 43:1220–1224

    Article  CAS  PubMed  Google Scholar 

  • Ren CH, Mingqing G, David D, Yuchuan D, Xianwei Z, Yumin L, Xunming J (2011) Remote ischemic post-conditioning reduced brain damage in experimental ischemia/reperfusion injury. Neurol Res 33:514–519

    Article  PubMed  Google Scholar 

  • Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Matamala JM, Carrasco R, Miranda-Merchak A, Feuerhake W (2013) Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord 12:698–714

    Article  CAS  Google Scholar 

  • Saito A, Maier CM, Narasimhan P, Nishi T, Yun SS, Yu F, Jing L, Lee YS, Nito C, Kamada H (2005) Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 31:105–116

    Article  CAS  PubMed  Google Scholar 

  • Semenza G (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148:399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu M, Saxena P, Konstantinov IE, Cherepanov V, Cheung MMH, Wearden P, Hua Z, Schmidt M, Downey GP, Redington AN (2010) Remote ischemic preconditioning decreases adhesion and selectively modifies functional responses of human neutrophils. J Surg Res 158:155–161

    Article  CAS  PubMed  Google Scholar 

  • Shu L, Wang C, Wang J, Zhang Y, Zhang X, Yang Y, Zhuo J, Liu J (2015) The neuroprotection of hypoxic preconditioning on rat brain against traumatic brain injury by up-regulated transcription factor Nrf2 and HO-1 expression. Neurosci Lett 611:74–80

    Article  PubMed  Google Scholar 

  • Shuai Z, Yan Q, Youwei X, Xu H, Jinyong P, Kexin L, Sun CK (2013) Protective effect of flavonoid-rich extract from Rosa laevigata Michx on cerebral ischemia-reperfusion injury through suppression of apoptosis and inflammation. Neurochem Int 63:522–532

    Article  Google Scholar 

  • Sugawara T, Fujimura M, Noshita N, Kim GW, Saito A, Hayashi T, Narasimhan P, Maier CM, Chan PH (2004) Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 1:17–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Trushina E, Mcmurray CT (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145:1233–1248

    Article  CAS  PubMed  Google Scholar 

  • Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  CAS  PubMed  Google Scholar 

  • Yago T, Petrich BG, Zhang N, Liu Z, Shao B, Ginsberg MH, Mcever RP (2015) Blocking neutrophil integrin activation prevents ischemia-reperfusion injury. J Exp Med 210:1267–1281

    Article  Google Scholar 

  • Yao Y, Chen L, Xiao J, Wang C, Jiang W, Zhang R, Hao J (2014) Chrysin protects against focal cerebral ischemia/reperfusion injury in mice through attenuation of oxidative stress and inflammation. Int J Mol Sci 15:20913–20926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaman K, Ryu H, Hall D, O’Donovan K, Lin KI, Miller MP, Marquis JC, Baraban JM, Semenza GL, Ratan RR (1999) Protection from oxidative stress-induced apoptosis in cortical neuronal cultures by iron chelators is associated with enhanced DNA binding of hypoxia-inducible factor-1 and ATF-1/CREB and increased expression of glycolytic enzymes, p21(waf1/cip1), and erythropoietin. J Neurosci 19:9821–9830

    CAS  PubMed  Google Scholar 

  • Zhang Y, Liu XR, Yan F, Min LQ, Ji XM, Luo YM (2012) Protective effects of remote ischemic preconditioning in rat hindlimb on ischemia- reperfusion injury. Neural Regen Res 7:583–587

    PubMed  PubMed Central  Google Scholar 

  • Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK (2003) Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neurochem 85:1026–1036

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinggen Feng.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10571_2016_444_MOESM1_ESM.tif

Supplementary material 1 (TIFF 54 kb) Supplementary Fig. 1. Spontaneous general activity of rats, as recorded in an open field test, after treatment with RIPC. (A) peripheral locomotor activity; (B) grooming time; (C) immobility, were recorded every minute during 5-minute sessions. Each point represents mean value and bar indicates SEM N = 8 per group

10571_2016_444_MOESM2_ESM.tif

Supplementary material 2 (TIFF 439 kb) Supplementary Fig. 2. Infarction volume changes among four groups. Values are expressed as the mean ± SEM. MCAO vs. Sham (& P < 0.05; && P < 0.01; &&& P < 0.001); MCAO+RIPC vs. MCAO (# P < 0.05; ## P < 0.01; ### P < 0.001). N = 8 per group

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, M., Ding, Q., Zhang, Z. et al. Remote Limb Ischemic Preconditioning Protects Rats Against Cerebral Ischemia via HIF-1α/AMPK/HSP70 Pathway. Cell Mol Neurobiol 37, 1105–1114 (2017). https://doi.org/10.1007/s10571-016-0444-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-016-0444-2

Keywords

Navigation