Skip to main content
Log in

Influence of genetic background on tumor karyotypes: Evidence for breed-associated cytogenetic aberrations in canine appendicular osteosarcoma

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Recurrent chromosomal aberrations in solid tumors can reveal the genetic pathways involved in the evolution of a malignancy and in some cases predict biological behavior. However, the role of individual genetic backgrounds in shaping karyotypes of sporadic tumors is unknown. The genetic structure of purebred dog breeds, coupled with their susceptibility to spontaneous cancers, provides a robust model with which to address this question. We tested the hypothesis that there is an association between breed and the distribution of genomic copy number imbalances in naturally occurring canine tumors through assessment of a cohort of Golden Retrievers and Rottweilers diagnosed with spontaneous appendicular osteosarcoma. Our findings reveal significant correlations between breed and tumor karyotypes that are independent of gender, age at diagnosis, and histological classification. These data indicate for the first time that individual genetic backgrounds, as defined by breed in dogs, influence tumor karyotypes in a cancer with extensive genomic instability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

aCGH:

array comparative genomic hybridization

BAC:

bacterial artificial chromosome

CFA:

Canis familiaris

CNA:

copy number aberration

DAPI:

4′,6-diamidino-2-phenylindole

FISH:

fluorescence in-situ hybridization

HSA:

Homo sapiens

OSA:

osteosarcoma

References

  • Atiye J, Wolf M, Kaur S et al (2005) Gene amplifications in osteosarcoma-CGH microarray analysis. Genes Chromosomes Cancer 42:158–163

    Article  PubMed  CAS  Google Scholar 

  • Bergmann L, Miething C, Maurer U et al (1997) High levels of Wilms’ tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood 90:1217–1225

    PubMed  CAS  Google Scholar 

  • Boehm A, Neff J, Squire J et al (2000) Cytogenetic findings in 36 osteosarcoma specimens and a review of the literature. Pediatr Pathol Mol Med 19:359–376

    Article  Google Scholar 

  • Boggs RM, Wright ZM, Stickney MJ, Porter WW, Murphy KE (2008) MicroRNA expression in canine mammary cancer. Mamm Genome 19:561–569

    Article  PubMed  CAS  Google Scholar 

  • Breen M (2008) Canine cytogenetics-from band to basepair. Cytogenet Genome Res 120:50–60

    Article  PubMed  CAS  Google Scholar 

  • Breen M, Modiano JF (2008) Evolutionarily conserved cytogenetic changes in hematological malignancies of dogs and humans-man and his best friend share more than companionship. Chromosome Res 16:145–154

    Article  PubMed  CAS  Google Scholar 

  • Breen M, Bullerdiek J, Langford CF (1999) The DAPI banded karyotype of the domestic dog (Canis familiaris) generated using chromosome-specific paint probes. Chromosome Res 7:401–406

    Article  PubMed  CAS  Google Scholar 

  • Breen M, Hitte C, Lorentzen TD et al (2004) An integrated 4249 marker FISH/RH map of the canine genome. BMC Genomics 5:65–75

    Article  PubMed  CAS  Google Scholar 

  • Bridge JA, Nelson M, McComb E et al (1997) Cytogenetic findings in 73 osteosarcoma specimens and a review of the literature. Cancer Genet Cytogenet 95:74–87

    Article  PubMed  CAS  Google Scholar 

  • Cooley DM, Beranek BC, Schlittler DL et al (2002) Endogenous gonadal hormone exposure and bone sarcoma risk. Cancer Epidemiol Biomarkers Prev 11:1434–1440

    PubMed  CAS  Google Scholar 

  • Dunn KA, Thomas R, Binns MM, Breen M (2000) Comparative genomic hybridization (CGH) in dogs-application to the study of a canine glial tumour cell line. Vet J 160:77–82

    Article  PubMed  CAS  Google Scholar 

  • Entz-Werle N, Marcellin L, Gaub MP et al (2005) Prognostic significance of allelic imbalance at the c-kit gene locus and c-kit overexpression by immunohistochemistry in pediatric osteosarcomas. J Clin Oncol 23:2248–2255

    Article  PubMed  CAS  Google Scholar 

  • Entz-Werle N, Marie-Pierre G, Thomas L et al (2007) KIT gene in pediatric osteosarcomas: Could it be a new therapeutic target? Int J Cancer 120:2510–2516

    Article  PubMed  CAS  Google Scholar 

  • Freeman SS, Allen SW, Ganti R et al (2008) Copy number gains in EGFR and copy number losses in PTEN are common events in osteosarcoma tumors. Cancer 113:1453–1461

    Article  PubMed  CAS  Google Scholar 

  • Glickman L, Glickman N, Thorpe R (2000) Golden Retriever Club of America www.grca.org/healthsurvey.pdf

  • Hahn KA, Richardson RC, Hahn EA, Chrisman CL (1994) Diagnostic and prognostic importance of chromosomal aberrations identified in 61 dogs with lymphosarcoma. Vet Pathol 31:528–540

    PubMed  CAS  Google Scholar 

  • Hemminki A, Kanerva A, Kremer EJ et al (2003) A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model. Mol Ther 7:163–173

    Article  PubMed  CAS  Google Scholar 

  • Jemal A, Siegel R, Ward E et al (2008) Cancer statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  • Kansara M, Thomas DM (2007) Molecular pathogenesis of osteosarcoma. DNA Cell Biol 26:1–18

    Article  PubMed  CAS  Google Scholar 

  • Karlsson EK, Baranowska I, Wade CM et al (2007) Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet 39:1321–1328

    Article  PubMed  CAS  Google Scholar 

  • Kent WJ (2002) BLAT-the BLAST-like alignment tool. Genome Res 12:656–664

    PubMed  CAS  Google Scholar 

  • Khanna C, Prehn J, Hayden D et al (2002) A randomized controlled trial of octreotide pamoate long-acting release and carboplatin versus carboplatin alone in dogs with naturally occurring osteosarcoma: evaluation of insulin-like growth factor suppression and chemotherapy. Clin Cancer Res 8:2406–2412

    PubMed  CAS  Google Scholar 

  • Khanna C, Wan X, Bose S et al (2004) The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 10:182–186

    Article  PubMed  CAS  Google Scholar 

  • Khanna C, Lindblad-Toh K, Vail D et al (2006) The dog as a cancer model. Nat Biotechnol 24:1065–1066

    Article  PubMed  CAS  Google Scholar 

  • Kirpensteijn J, Kik M, Rutteman GR, Teske E (2002) Prognostic significance of a new histologic grading system for canine osteosarcoma. Vet Pathol 39:240–246

    Article  PubMed  CAS  Google Scholar 

  • Kisseberth WC, Nadella MV, Breen M et al (2007) A novel canine lymphoma cell line: A translational and comparative model for lymphoma research. Leuk Res 31:1709–1720

    Article  PubMed  CAS  Google Scholar 

  • Levine RA (2002) Overexpression of the sis oncogene in a canine osteosarcoma cell line. Vet Pathol 39:411–412

    Article  PubMed  CAS  Google Scholar 

  • Levine RA, Fleischli MA (2000) Inactivation of p53 and retinoblastoma family pathways in canine osteosarcoma cell lines. Vet Pathol 37:54–61

    Article  PubMed  CAS  Google Scholar 

  • Levine RA, Forest T, Smith C (2002) Tumor suppressor PTEN is mutated in canine osteosarcoma cell lines and tumors. Vet Pathol 39:372–378

    Article  PubMed  CAS  Google Scholar 

  • Lindblad-Toh K Wade CM Mikkelsen TS et al (2005) Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803–819

    Article  CAS  Google Scholar 

  • Lopez-Guerrero JA, Lopez-Gines C, Pellin A, Carda C, Llombart-Bosch A (2004) Deregulation of the G1 to S-phase cell cycle checkpoint is involved in the pathogenesis of human osteosarcoma. Diagn Mol Pathol 13:81–91

    Article  PubMed  Google Scholar 

  • Lord LK, Yaissle JE, Marin L, Couto CG (2007) Results of a web-based health survey of retired racing Greyhounds. J Vet Intern Med 21:1243–1250

    Article  PubMed  Google Scholar 

  • Loukopoulos P, Thornton JR, Robinson WF (2003) Clinical and pathologic relevance of p53 index in canine osseous tumors. Vet Pathol 40:237–248

    Article  PubMed  CAS  Google Scholar 

  • MacEwen EG (1990) Spontaneous tumors in dogs and cats: models for the study of cancer biology and treatment. Cancer Metastasis Rev 9:125–136

    Article  PubMed  CAS  Google Scholar 

  • Mansky PJ, Liewehr DJ, Steinberg SM et al (2002) Treatment of metastatic osteosarcoma with the somatostatin analog OncoLar: significant reduction of insulin-like growth factor-1 serum levels. J Pediatr Hematol Oncol 24:440–446

    Article  PubMed  Google Scholar 

  • McNeill CJ, Overley B, Shofer FS et al (2007) Characterization of the biological behaviour of appendicular osteosarcoma in Rottweilers and a comparison with other breeds: a review of 258 dogs. Vet Comp Oncol 5:90–98

    Article  CAS  PubMed  Google Scholar 

  • Mendoza S, Konishi T, Dernell WS, Withrow SJ, Miller CW (1998) Status of the p53, Rb and MDM2 genes in canine osteosarcoma. Anticancer Res 18:4449–4453

    PubMed  CAS  Google Scholar 

  • Mitelman F, Johansson B, Mertens F (2008) Mitelman Database of Chromosome Aberrations in Cancer (2008) http://cgap.nci.nih.gov/Chromosomes/Mitelman

  • Modiano JF, Breen M, Burnett RC et al (2005) Distinct B-cell and T-cell lymphoproliferative disease prevalence among dog breeds indicates heritable risk. Cancer Res 65:5654–5661

    Article  PubMed  CAS  Google Scholar 

  • Modiano J, Breen M, Lana S et al (2006) Naturally occurring translational models for development of cancer gene therapy. Gene Ther Mol Biol 10:31–40

    Google Scholar 

  • Mueller F, Fuchs B, Kaser-Hotz B (2007) Comparative biology of human and canine osteosarcoma. Anticancer Res 27:155–164

    PubMed  CAS  Google Scholar 

  • Nielsen GP, Burns KL, Rosenberg AE, Louis DN (1998) CDKN2A gene deletions and loss of p16 expression occur in osteosarcomas that lack RB alterations. Am J Pathol 153:159–163

    PubMed  CAS  Google Scholar 

  • Ostrander EA, Wayne RK (2005) The canine genome. Genome Res 15:1706–1716

    Article  PubMed  CAS  Google Scholar 

  • Ozaki T, Schaefer KL, Wai D et al (2002) Genetic imbalances revealed by comparative genomic hybridization in osteosarcomas. Int J Cancer 102:355–365

    Article  PubMed  CAS  Google Scholar 

  • Parker HG, Kim LV, Sutter NB et al (2004) Genetic structure of the purebred domestic dog. Science 304:1160–1164

    Article  PubMed  CAS  Google Scholar 

  • Phillips JC, Stephenson B, Hauck M, Dillberger J (2007) Heritability and segregation analysis of osteosarcoma in the Scottish deerhound. Genomics 90:354–363

    Article  PubMed  CAS  Google Scholar 

  • Ragland BD, Bell WC, Lopez RR, Siegal GP (2002) Cytogenetics and molecular biology of osteosarcoma. Lab Invest 82:365–373

    PubMed  Google Scholar 

  • Rosenberger JA, Pablo NV, Crawford PC (2007) Prevalence of and intrinsic risk factors for appendicular osteosarcoma in dogs: 179 cases (1996–2005). J Am Vet Med Assoc 231:1076–1080

    Article  PubMed  Google Scholar 

  • Sagartz JE, Bodley WL, Gamblin RM et al (1996) p53 tumor suppressor protein overexpression in osteogenic tumors of dogs. Vet Pathol 33:213–221

    Article  PubMed  CAS  Google Scholar 

  • Sandberg AA, Bridge JA (2003) Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: osteosarcoma and related tumors. Cancer Genet Cytogenet 145:1–30

    Article  PubMed  CAS  Google Scholar 

  • Sotobori T, Ueda T, Oji Y et al (2006) Prognostic significance of Wilms tumor gene (WT1) mRNA expression in soft tissue sarcoma. Cancer 106:2233–2240

    Article  PubMed  CAS  Google Scholar 

  • Srivastava A, Fuchs B, Zhang K et al (2006) High WT1 expression is associated with very poor survival of patients with osteogenic sarcoma metastasis. Clin Cancer Res 12:4237–4243

    Article  PubMed  CAS  Google Scholar 

  • Stock C, Kager L, Fink FM, Gadner H, Ambros PF (2000) Chromosomal regions involved in the pathogenesis of osteosarcomas. Genes Chromosomes Cancer 28:329–336

    Article  PubMed  CAS  Google Scholar 

  • Tarkkanen M, Elomaa I, Blomqvist C et al (1999) DNA sequence copy number increase at 8q: a potential new prognostic marker in high-grade osteosarcoma. Int J Cancer 84:114–121

    Article  PubMed  CAS  Google Scholar 

  • Thomas R, Bridge W, Benke K, Breen M (2003) Isolation and chromosomal assignment of canine genomic BAC clones representing 25 cancer-related genes. Cytogenet Genome Res 102:249–253

    Article  PubMed  CAS  Google Scholar 

  • Thomas R, Scott A, Langford CF et al (2005) Construction of a 2-Mb resolution BAC microarray for CGH analysis of canine tumors. Genome Res 15:1831–1837

    Article  PubMed  CAS  Google Scholar 

  • Thomas R, Duke SE, Bloom SK et al (2007) A cytogenetically characterized, genome-anchored 10-Mb BAC set and CGH array for the domestic dog. J Hered 98:474–484

    Article  PubMed  CAS  Google Scholar 

  • Thomas R, Duke S, Karlsson K et al (2008) Development of a 1 Mb resolution, cytogenetically-validated genomic microarray for canine CGH analysis. Cytogenet Genome Res 122:110–121

    Article  PubMed  CAS  Google Scholar 

  • Ueda T, Oji Y, Naka N et al (2003) Overexpression of the Wilms’ tumor gene WT1 in human bone and soft-tissue sarcomas. Cancer Sci 94:271–276

    Article  PubMed  CAS  Google Scholar 

  • Vail DM, MacEwen EG (2000) Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest 18:781–792

    Article  PubMed  CAS  Google Scholar 

  • Wadayama B, Toguchida J, Shimizu T et al (1994) Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res 54:3042–3048

    PubMed  CAS  Google Scholar 

  • Walkley CR, Qudsi R, Sankaran VG et al (2008) Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev 22:1662–1676

    Article  PubMed  CAS  Google Scholar 

  • Wang LL (2005) Biology of osteogenic sarcoma. Cancer J 11:294–305

    Article  PubMed  CAS  Google Scholar 

  • Wei G, Lonardo F, Ueda T et al (1999) CDK4 gene amplification in osteosarcoma: reciprocal relationship with INK4A gene alterations and mapping of 12q13 amplicons. Int J Cancer 80:199–204

    Article  PubMed  CAS  Google Scholar 

  • Winkler S, Reimann-Berg N, Escobar HM et al (2006) Polysomy 13 in a canine prostate carcinoma underlining its significance in the development of prostate cancer. Cancer Genet Cytogenet 169:154–158

    Article  PubMed  CAS  Google Scholar 

  • Withrow S (2003) Limb sparing trials and canine osteosarcoma. In: Modiano J (ed) Genes, dogs and cancer: 3rd Annual Canine Cancer Conference. International Veterinary Information Service, Ithaca NY, Seattle, WA

    Google Scholar 

  • Witlox MA, Lamfers ML, Wuisman PI, Curiel DT, Siegal GP (2007) Evolving gene therapy approaches for osteosarcoma using viral vectors: review. Bone 40:797–812

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the American Kennel Club Canine Health Foundation awarded to M.B./J.M. (CHF 2254), and by charitable donations from individuals, the Starlight Fund, and the Kate Koogler Canine Cancer Research Fund. We thank Eric Seiser for assistance with statistical analysis. We thank all the owners, breeders and veterinarians who contributed samples and data to this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jaime F. Modiano or Matthew Breen.

Additional information

Responsible Editor: Fengtang Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

Microarray-based comparative genomic hybridization (aCGH) analysis of 38 cases of canine appendicular osteosarcoma. Each case was evaluated using a genomic microarray comprising a panel of cytogenetically validated dog bacterial artificial chromosome (BAC) clones. The BAC address of each clone is listed in column one. The chromosome to which each clone maps is provided in column two and column three indicates the nucleotide position of the midpoint of the clone on the corresponding chromosome within the canine genome sequence assembly (CanFam v2.0). A subset of BAC clones are known to contain cancer-associated genes of specific interest (Thomas et al. 2003; for these clones the gene symbol is indicated in parentheses after the corresponding clone address).

Signalment data for the 38 dog osteosarcoma cases analyzed in this study are shown in the first four rows, indicating the patient ID (row 1), gender (M = male, F = female; row 2) and breed (Rott= Rottweiler, GR= Golden retriever; row 3), and the histological subtype of the tumor (OST = osteoblastic, CHO = chondroblastic, FIB = fibroblastic; row 4). aCGH-derived genomic copy number data for each locus are then provided below the corresponding case, and represent the log2 ratio of tumor:reference DNA. Loci with a log2 ratio ≤ −0.234 indicate genomic loss in the tumor, and are shaded red. Loci with a log2 ratio ≥ 0.201 indicate genomic gain in the tumor, and are shaded green. Values between these limits indicate balanced copy number status in the tumor, and are shaded yellow.

Thomas R, Bridge W, Benke K, Breen M (2003) Isolation and chromosomal assignment of canine genomic BAC clones representing 25 cancer-related genes. Cytogenet Genome Res 102:249–253 (XLS 155 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, R., Wang, H.J., Tsai, PC. et al. Influence of genetic background on tumor karyotypes: Evidence for breed-associated cytogenetic aberrations in canine appendicular osteosarcoma. Chromosome Res 17, 365–377 (2009). https://doi.org/10.1007/s10577-009-9028-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-009-9028-z

Keywords

Navigation