Skip to main content
Erschienen in: Clinical & Experimental Metastasis 1/2009

01.01.2009 | Review

Epigenetic contributions to cancer metastasis

verfasst von: David I. Rodenhiser

Erschienen in: Clinical & Experimental Metastasis | Ausgabe 1/2009

Einloggen, um Zugang zu erhalten

Abstract

The molecular basis of cancer encompasses both genetic and epigenetic alterations. These epigenetic changes primarily involve global DNA methylation changes in the form of widespread loss of methylation along with concurrent hypermethylation events in gene regulatory regions that can repress tissue-specific gene expression. Increasingly, the importance of these epigenetic changes to the metastatic process is being realized. Cells may acquire an epi-genotype that permits their dissemination from the primary tumour mass or the ability to survive and proliferate at a secondary tissue site. These epigenetic changes may be cancer-type specific, or in some cases may involve a common target gene providing a selective advantage to multiple metastatic cell types. In this review, I examine the growing volume of literature related to the epigenetic contributions to cancer metastasis. I discuss the functional importance of these epigenetic phenomena and how new epigenetic biomarkers may permit the identification of diagnostic signatures of metastasis and the development of new cancer therapies.
Literatur
2.
Zurück zum Zitat Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572PubMedCrossRef Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2:563–572PubMedCrossRef
3.
Zurück zum Zitat Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254PubMedCrossRef Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254PubMedCrossRef
4.
Zurück zum Zitat Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458PubMedCrossRef Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458PubMedCrossRef
5.
Zurück zum Zitat Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846PubMedCrossRef Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846PubMedCrossRef
6.
Zurück zum Zitat Allan AL, Vantyghem SA, Tuck AB et al (2006) Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 26:87–98PubMed Allan AL, Vantyghem SA, Tuck AB et al (2006) Tumor dormancy and cancer stem cells: implications for the biology and treatment of breast cancer metastasis. Breast Dis 26:87–98PubMed
7.
Zurück zum Zitat Welch DR (2004) Microarrays bring new insights into understanding of breast cancer metastasis to bone. Breast Cancer Res 6:61–64PubMedCrossRef Welch DR (2004) Microarrays bring new insights into understanding of breast cancer metastasis to bone. Breast Cancer Res 6:61–64PubMedCrossRef
8.
Zurück zum Zitat Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298PubMedCrossRef Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298PubMedCrossRef
9.
11.
12.
Zurück zum Zitat Rodenhiser D, Mann M (2006) Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 174:341–348PubMed Rodenhiser D, Mann M (2006) Epigenetics and human disease: translating basic biology into clinical applications. CMAJ 174:341–348PubMed
14.
Zurück zum Zitat Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719PubMedCrossRef Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719PubMedCrossRef
15.
Zurück zum Zitat Esteller M, Corn PG, Baylin SB et al (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229PubMed Esteller M, Corn PG, Baylin SB et al (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229PubMed
16.
Zurück zum Zitat Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83:296–321PubMedCrossRef Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83:296–321PubMedCrossRef
17.
Zurück zum Zitat Brena RM, Costello JF (2007) Genome-epigenome interactions in cancer. Hum Mol Genet 16(Spec No 1):R96–R105PubMedCrossRef Brena RM, Costello JF (2007) Genome-epigenome interactions in cancer. Hum Mol Genet 16(Spec No 1):R96–R105PubMedCrossRef
19.
Zurück zum Zitat Agrawal A, Murphy RF, Agrawal DK (2007) DNA methylation in breast and colorectal cancers. Mod Pathol 20:711–721PubMedCrossRef Agrawal A, Murphy RF, Agrawal DK (2007) DNA methylation in breast and colorectal cancers. Mod Pathol 20:711–721PubMedCrossRef
20.
Zurück zum Zitat Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775:138–162PubMed Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775:138–162PubMed
21.
Zurück zum Zitat Miremadi A, Oestergaard MZ, Pharoah PD et al (2007) Cancer genetics of epigenetic genes. Hum Mol Genet 16(Spec No 1):R28–R49PubMedCrossRef Miremadi A, Oestergaard MZ, Pharoah PD et al (2007) Cancer genetics of epigenetic genes. Hum Mol Genet 16(Spec No 1):R28–R49PubMedCrossRef
22.
Zurück zum Zitat Szyf M (2007) The dynamic epigenome and its implications in toxicology. Toxicol Sci 100:7–23PubMedCrossRef Szyf M (2007) The dynamic epigenome and its implications in toxicology. Toxicol Sci 100:7–23PubMedCrossRef
23.
Zurück zum Zitat Dolinoy DC, Jirtle RL (2008) Environmental epigenomics in human health and disease. Environ Mol Mutagen 49:4–8PubMedCrossRef Dolinoy DC, Jirtle RL (2008) Environmental epigenomics in human health and disease. Environ Mol Mutagen 49:4–8PubMedCrossRef
24.
Zurück zum Zitat Kim YI (2004) Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiol Biomarkers Prev 13:511–519PubMed Kim YI (2004) Folate and DNA methylation: a mechanistic link between folate deficiency and colorectal cancer? Cancer Epidemiol Biomarkers Prev 13:511–519PubMed
25.
Zurück zum Zitat Steeg PS, Ouatas T, Halverson D et al (2003) Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer 4:51–62PubMedCrossRef Steeg PS, Ouatas T, Halverson D et al (2003) Metastasis suppressor genes: basic biology and potential clinical use. Clin Breast Cancer 4:51–62PubMedCrossRef
26.
Zurück zum Zitat Palmieri D, Horak CE, Lee JH et al (2006) Translational approaches using metastasis suppressor genes. J Bioenerg Biomembr 38:151–161PubMedCrossRef Palmieri D, Horak CE, Lee JH et al (2006) Translational approaches using metastasis suppressor genes. J Bioenerg Biomembr 38:151–161PubMedCrossRef
27.
Zurück zum Zitat Stark AM, Tongers K, Maass N et al (2005) Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases. J Cancer Res Clin Oncol 131:191–198PubMedCrossRef Stark AM, Tongers K, Maass N et al (2005) Reduced metastasis-suppressor gene mRNA-expression in breast cancer brain metastases. J Cancer Res Clin Oncol 131:191–198PubMedCrossRef
28.
Zurück zum Zitat Shevde LA, Samant RS, Goldberg SF et al (2002) Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp Cell Res 273:229–239PubMedCrossRef Shevde LA, Samant RS, Goldberg SF et al (2002) Suppression of human melanoma metastasis by the metastasis suppressor gene, BRMS1. Exp Cell Res 273:229–239PubMedCrossRef
29.
Zurück zum Zitat Uzawa K, Ono K, Suzuki H et al (2002) High prevalence of decreased expression of KAI1 metastasis suppressor in human oral carcinogenesis. Clin Cancer Res 8:828–835PubMed Uzawa K, Ono K, Suzuki H et al (2002) High prevalence of decreased expression of KAI1 metastasis suppressor in human oral carcinogenesis. Clin Cancer Res 8:828–835PubMed
30.
Zurück zum Zitat Harms JF, Welch DR, Miele ME (2003) KISS1 metastasis suppression and emergent pathways. Clin Exp Metastasis 20:11–18PubMedCrossRef Harms JF, Welch DR, Miele ME (2003) KISS1 metastasis suppression and emergent pathways. Clin Exp Metastasis 20:11–18PubMedCrossRef
31.
Zurück zum Zitat Gildea JJ, Seraj MJ, Oxford G et al (2002) RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 62:6418–6423PubMed Gildea JJ, Seraj MJ, Oxford G et al (2002) RhoGDI2 is an invasion and metastasis suppressor gene in human cancer. Cancer Res 62:6418–6423PubMed
32.
Zurück zum Zitat Goncharuk VN, del-Rosario A, Kren L et al (2004) Co-downregulation of PTEN, KAI-1, and nm23-H1 tumor/metastasis suppressor proteins in non-small cell lung cancer. Ann Diagn Pathol 8:6–16PubMedCrossRef Goncharuk VN, del-Rosario A, Kren L et al (2004) Co-downregulation of PTEN, KAI-1, and nm23-H1 tumor/metastasis suppressor proteins in non-small cell lung cancer. Ann Diagn Pathol 8:6–16PubMedCrossRef
33.
Zurück zum Zitat van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536PubMedCrossRef van’t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536PubMedCrossRef
34.
Zurück zum Zitat Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMed Wang Y, Klijn JG, Zhang Y et al (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365:671–679PubMed
35.
Zurück zum Zitat Weigelt B, Hu Z, He X et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65:9155–9158PubMedCrossRef Weigelt B, Hu Z, He X et al (2005) Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer. Cancer Res 65:9155–9158PubMedCrossRef
36.
Zurück zum Zitat Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192PubMed Buyse M, Loi S, van’t Veer L et al (2006) Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer. J Natl Cancer Inst 98:1183–1192PubMed
37.
Zurück zum Zitat Eccles S, Paon L, Sleeman J (2007) Lymphatic metastasis in breast cancer: importance and new insights into cellular and molecular mechanisms. Clin Exp Metastasis 24:619–636PubMedCrossRef Eccles S, Paon L, Sleeman J (2007) Lymphatic metastasis in breast cancer: importance and new insights into cellular and molecular mechanisms. Clin Exp Metastasis 24:619–636PubMedCrossRef
38.
Zurück zum Zitat Steeg PS (2005) New insights into the tumor metastatic process revealed by gene expression profiling. Am J Pathol 166:1291–1294PubMed Steeg PS (2005) New insights into the tumor metastatic process revealed by gene expression profiling. Am J Pathol 166:1291–1294PubMed
39.
Zurück zum Zitat Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524PubMedCrossRef Minn AJ, Gupta GP, Siegel PM et al (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524PubMedCrossRef
40.
Zurück zum Zitat Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549PubMedCrossRef Kang Y, Siegel PM, Shu W et al (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3:537–549PubMedCrossRef
41.
Zurück zum Zitat Woelfle U, Cloos J, Sauter G et al (2003) Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 63:5679–5684PubMed Woelfle U, Cloos J, Sauter G et al (2003) Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer Res 63:5679–5684PubMed
42.
Zurück zum Zitat Hao X, Sun B, Hu L et al (2004) Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. Cancer 100:1110–1122PubMedCrossRef Hao X, Sun B, Hu L et al (2004) Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. Cancer 100:1110–1122PubMedCrossRef
43.
Zurück zum Zitat Kwon HC, Kim SH, Roh MS et al (2004) Gene expression profiling in lymph node-positive and lymph node-negative colorectal cancer. Dis Colon Rectum 47:141–152PubMedCrossRef Kwon HC, Kim SH, Roh MS et al (2004) Gene expression profiling in lymph node-positive and lymph node-negative colorectal cancer. Dis Colon Rectum 47:141–152PubMedCrossRef
44.
Zurück zum Zitat Bandyopadhyay A, Elkahloun A, Baysa SJ et al (2005) Development and gene expression profiling of a metastatic variant of the human breast cancer MDA-MB-435 cells. Cancer Biol Ther 4:168–174PubMedCrossRef Bandyopadhyay A, Elkahloun A, Baysa SJ et al (2005) Development and gene expression profiling of a metastatic variant of the human breast cancer MDA-MB-435 cells. Cancer Biol Ther 4:168–174PubMedCrossRef
45.
Zurück zum Zitat Van den Eynden GG, Van Laere SJ, Van der Auwera I et al (2007) Differential expression of hypoxia and (lymph)angiogenesis-related genes at different metastatic sites in breast cancer. Clin Exp Metastasis 24:13–23PubMedCrossRef Van den Eynden GG, Van Laere SJ, Van der Auwera I et al (2007) Differential expression of hypoxia and (lymph)angiogenesis-related genes at different metastatic sites in breast cancer. Clin Exp Metastasis 24:13–23PubMedCrossRef
46.
Zurück zum Zitat Roepman P, de Koning E, van Leenen D et al (2006) Dissection of a metastatic gene expression signature into distinct components. Genome Biol 7:R117PubMedCrossRef Roepman P, de Koning E, van Leenen D et al (2006) Dissection of a metastatic gene expression signature into distinct components. Genome Biol 7:R117PubMedCrossRef
47.
Zurück zum Zitat Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54PubMedCrossRef Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54PubMedCrossRef
48.
Zurück zum Zitat Clark SJ, Harrison J, Paul CL et al (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997PubMedCrossRef Clark SJ, Harrison J, Paul CL et al (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997PubMedCrossRef
49.
Zurück zum Zitat Nixdorf S, Grimm MO, Loberg R et al (2004) Expression and regulation of MIM (Missing In Metastasis), a novel putative metastasis suppressor gene, and MIM-B, in bladder cancer cell lines. Cancer Lett 215:209–220PubMedCrossRef Nixdorf S, Grimm MO, Loberg R et al (2004) Expression and regulation of MIM (Missing In Metastasis), a novel putative metastasis suppressor gene, and MIM-B, in bladder cancer cell lines. Cancer Lett 215:209–220PubMedCrossRef
50.
Zurück zum Zitat Guo H, Lin Y, Zhang H et al (2007) Tissue factor pathway inhibitor-2 was repressed by CpG hypermethylation through inhibition of KLF6 binding in highly invasive breast cancer cells. BMC Mol Biol 8:110PubMedCrossRef Guo H, Lin Y, Zhang H et al (2007) Tissue factor pathway inhibitor-2 was repressed by CpG hypermethylation through inhibition of KLF6 binding in highly invasive breast cancer cells. BMC Mol Biol 8:110PubMedCrossRef
51.
Zurück zum Zitat Wendt MK, Cooper AN, Dwinell MB (2008) Epigenetic silencing of CXCL12 increases the metastatic potential of mammary carcinoma cells. Oncogene 27:1461–1471PubMedCrossRef Wendt MK, Cooper AN, Dwinell MB (2008) Epigenetic silencing of CXCL12 increases the metastatic potential of mammary carcinoma cells. Oncogene 27:1461–1471PubMedCrossRef
52.
Zurück zum Zitat Shi B, Vinyals A, Alia P et al (2006) Differential expression of MHC class II molecules in highly metastatic breast cancer cells is mediated by the regulation of the CIITA transcription Implication of CIITA in tumor and metastasis development. Int J Biochem Cell Biol 38:544–562PubMedCrossRef Shi B, Vinyals A, Alia P et al (2006) Differential expression of MHC class II molecules in highly metastatic breast cancer cells is mediated by the regulation of the CIITA transcription Implication of CIITA in tumor and metastasis development. Int J Biochem Cell Biol 38:544–562PubMedCrossRef
53.
Zurück zum Zitat Pakneshan P, Szyf M, Farias-Eisner R et al (2004) Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. J Biol Chem 279:31735–31744PubMedCrossRef Pakneshan P, Szyf M, Farias-Eisner R et al (2004) Reversal of the hypomethylation status of urokinase (uPA) promoter blocks breast cancer growth and metastasis. J Biol Chem 279:31735–31744PubMedCrossRef
54.
Zurück zum Zitat Nam JS, Ino Y, Kanai Y et al (2004) 5-aza-2′-deoxycytidine restores the E-cadherin system in E-cadherin-silenced cancer cells and reduces cancer metastasis. Clin Exp Metastasis 21:49–56PubMedCrossRef Nam JS, Ino Y, Kanai Y et al (2004) 5-aza-2′-deoxycytidine restores the E-cadherin system in E-cadherin-silenced cancer cells and reduces cancer metastasis. Clin Exp Metastasis 21:49–56PubMedCrossRef
55.
Zurück zum Zitat Skliris GP, Munot K, Bell SM et al (2003) Reduced expression of oestrogen receptor beta in invasive breast cancer and its re-expression using DNA methyl transferase inhibitors in a cell line model. J Pathol 201:213–220PubMedCrossRef Skliris GP, Munot K, Bell SM et al (2003) Reduced expression of oestrogen receptor beta in invasive breast cancer and its re-expression using DNA methyl transferase inhibitors in a cell line model. J Pathol 201:213–220PubMedCrossRef
56.
Zurück zum Zitat Rivenbark AG, Livasy CA, Boyd CE et al (2007) Methylation-dependent silencing of CST6 in primary human breast tumors and metastatic lesions. Exp Mol Pathol 83:188–197PubMedCrossRef Rivenbark AG, Livasy CA, Boyd CE et al (2007) Methylation-dependent silencing of CST6 in primary human breast tumors and metastatic lesions. Exp Mol Pathol 83:188–197PubMedCrossRef
57.
Zurück zum Zitat Fabianowska-Majewska K, Kordek R, Krawczyk B (2006) Studies on the methylation status of CpG sequences located in promoters of selected tumour suppressor genes in breast cancer cells. Nucleosides Nucleotides Nucleic Acids 25:1025–1028PubMedCrossRef Fabianowska-Majewska K, Kordek R, Krawczyk B (2006) Studies on the methylation status of CpG sequences located in promoters of selected tumour suppressor genes in breast cancer cells. Nucleosides Nucleotides Nucleic Acids 25:1025–1028PubMedCrossRef
58.
Zurück zum Zitat Nimmrich I, Sieuwerts AM, Meijer-van Gelder ME et al (2007) DNA hypermethylation of PITX2 is a marker of poor prognosis in untreated lymph node-negative hormone receptor-positive breast cancer patients. Breast Cancer Res Treat. doi:10.1007/s10549-007-9800-8 Nimmrich I, Sieuwerts AM, Meijer-van Gelder ME et al (2007) DNA hypermethylation of PITX2 is a marker of poor prognosis in untreated lymph node-negative hormone receptor-positive breast cancer patients. Breast Cancer Res Treat. doi:10.​1007/​s10549-007-9800-8
59.
Zurück zum Zitat Veeck J, Chorovicer M, Naami A et al (2008) The extracellular matrix protein ITIH5 is a novel prognostic marker in invasive node-negative breast cancer and its aberrant expression is caused by promoter hypermethylation. Oncogene 27:865–876PubMedCrossRef Veeck J, Chorovicer M, Naami A et al (2008) The extracellular matrix protein ITIH5 is a novel prognostic marker in invasive node-negative breast cancer and its aberrant expression is caused by promoter hypermethylation. Oncogene 27:865–876PubMedCrossRef
60.
Zurück zum Zitat Umetani N, Mori T, Koyanagi K et al (2005) Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene 24:4721–4727PubMedCrossRef Umetani N, Mori T, Koyanagi K et al (2005) Aberrant hypermethylation of ID4 gene promoter region increases risk of lymph node metastasis in T1 breast cancer. Oncogene 24:4721–4727PubMedCrossRef
61.
Zurück zum Zitat Murata H, Khattar NH, Gu L et al (2005) Roles of mismatch repair proteins hMSH2 and hMLH1 in the development of sporadic breast cancer. Cancer Lett 223:143–150PubMedCrossRef Murata H, Khattar NH, Gu L et al (2005) Roles of mismatch repair proteins hMSH2 and hMLH1 in the development of sporadic breast cancer. Cancer Lett 223:143–150PubMedCrossRef
62.
Zurück zum Zitat Takahashi Y, Miyoshi Y, Takahata C et al (2005) Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res 11:1380–1385PubMedCrossRef Takahashi Y, Miyoshi Y, Takahata C et al (2005) Down-regulation of LATS1 and LATS2 mRNA expression by promoter hypermethylation and its association with biologically aggressive phenotype in human breast cancers. Clin Cancer Res 11:1380–1385PubMedCrossRef
63.
Zurück zum Zitat Osanai T, Takagi Y, Toriya Y et al (2005) Inverse correlation between the expression of O6-methylguanine-DNA methyl transferase (MGMT) and p53 in breast cancer. Jpn J Clin Oncol 35:121–125PubMedCrossRef Osanai T, Takagi Y, Toriya Y et al (2005) Inverse correlation between the expression of O6-methylguanine-DNA methyl transferase (MGMT) and p53 in breast cancer. Jpn J Clin Oncol 35:121–125PubMedCrossRef
64.
Zurück zum Zitat Li X, Cowell JK, Sossey-Alaoui K (2004) CLCA2 tumour suppressor gene in 1p31 is epigenetically regulated in breast cancer. Oncogene 23:1474–1480PubMedCrossRef Li X, Cowell JK, Sossey-Alaoui K (2004) CLCA2 tumour suppressor gene in 1p31 is epigenetically regulated in breast cancer. Oncogene 23:1474–1480PubMedCrossRef
65.
Zurück zum Zitat Yang D, Thangaraju M, Greeneltch K et al (2007) Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells. Cancer Res 67:3301–3309PubMedCrossRef Yang D, Thangaraju M, Greeneltch K et al (2007) Repression of IFN regulatory factor 8 by DNA methylation is a molecular determinant of apoptotic resistance and metastatic phenotype in metastatic tumor cells. Cancer Res 67:3301–3309PubMedCrossRef
66.
Zurück zum Zitat Hu XC, Wong IH, Chow LW (2003) Tumor-derived aberrant methylation in plasma of invasive ductal breast cancer patients: clinical implications. Oncol Rep 10:1811–1815PubMed Hu XC, Wong IH, Chow LW (2003) Tumor-derived aberrant methylation in plasma of invasive ductal breast cancer patients: clinical implications. Oncol Rep 10:1811–1815PubMed
67.
Zurück zum Zitat Lui EL, Loo WT, Zhu L et al (2005) DNA hypermethylation of TIMP3 gene in invasive breast ductal carcinoma. Biomed Pharmacother 59(Suppl 2):S363–S365PubMedCrossRef Lui EL, Loo WT, Zhu L et al (2005) DNA hypermethylation of TIMP3 gene in invasive breast ductal carcinoma. Biomed Pharmacother 59(Suppl 2):S363–S365PubMedCrossRef
68.
Zurück zum Zitat Mehrotra J, Vali M, McVeigh M et al (2004) Very high frequency of hypermethylated genes in breast cancer metastasis to the bone, brain, and lung. Clin Cancer Res 10:3104–3109PubMedCrossRef Mehrotra J, Vali M, McVeigh M et al (2004) Very high frequency of hypermethylated genes in breast cancer metastasis to the bone, brain, and lung. Clin Cancer Res 10:3104–3109PubMedCrossRef
69.
Zurück zum Zitat Shinozaki M, Hoon DS, Giuliano AE et al (2005) Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res 11:2156–2162PubMedCrossRef Shinozaki M, Hoon DS, Giuliano AE et al (2005) Distinct hypermethylation profile of primary breast cancer is associated with sentinel lymph node metastasis. Clin Cancer Res 11:2156–2162PubMedCrossRef
70.
Zurück zum Zitat Mimori K, Kataoka A, Yoshinaga K et al (2005) Identification of molecular markers for metastasis-related genes in primary breast cancer cells. Clin Exp Metastasis 22:59–67PubMedCrossRef Mimori K, Kataoka A, Yoshinaga K et al (2005) Identification of molecular markers for metastasis-related genes in primary breast cancer cells. Clin Exp Metastasis 22:59–67PubMedCrossRef
71.
Zurück zum Zitat Cavalli LR, Urban CA, Dai D et al (2003) Genetic and epigenetic alterations in sentinel lymph nodes metastatic lesions compared to their corresponding primary breast tumors. Cancer Genet Cytogenet 146:33–40PubMedCrossRef Cavalli LR, Urban CA, Dai D et al (2003) Genetic and epigenetic alterations in sentinel lymph nodes metastatic lesions compared to their corresponding primary breast tumors. Cancer Genet Cytogenet 146:33–40PubMedCrossRef
72.
Zurück zum Zitat Caldeira JR, Prando EC, Quevedo FC et al (2006) CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer 6:48PubMedCrossRef Caldeira JR, Prando EC, Quevedo FC et al (2006) CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer 6:48PubMedCrossRef
73.
Zurück zum Zitat Nakayama H, Sano T, Motegi A et al (2005) Increasing 14-3-3 sigma expression with declining estrogen receptor alpha and estrogen-responsive finger protein expression defines malignant progression of endometrial carcinoma. Pathol Int 55:707–715PubMedCrossRef Nakayama H, Sano T, Motegi A et al (2005) Increasing 14-3-3 sigma expression with declining estrogen receptor alpha and estrogen-responsive finger protein expression defines malignant progression of endometrial carcinoma. Pathol Int 55:707–715PubMedCrossRef
74.
Zurück zum Zitat Hong SM, Choi J, Ryu K et al (2006) Promoter hypermethylation of the p16 gene and loss of its protein expression is correlated with tumor progression in extrahepatic bile duct carcinomas. Arch Pathol Lab Med 130:33–38PubMed Hong SM, Choi J, Ryu K et al (2006) Promoter hypermethylation of the p16 gene and loss of its protein expression is correlated with tumor progression in extrahepatic bile duct carcinomas. Arch Pathol Lab Med 130:33–38PubMed
75.
Zurück zum Zitat Kim BH, Cho NY, Choi M et al (2007) Methylation profiles of multiple CpG island loci in extrahepatic cholangiocarcinoma versus those of intrahepatic cholangiocarcinomas. Arch Pathol Lab Med 131:923–930PubMed Kim BH, Cho NY, Choi M et al (2007) Methylation profiles of multiple CpG island loci in extrahepatic cholangiocarcinoma versus those of intrahepatic cholangiocarcinomas. Arch Pathol Lab Med 131:923–930PubMed
76.
Zurück zum Zitat Wendt MK, Johanesen PA, Kang-Decker N et al (2006) Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene 25:4986–4997PubMedCrossRef Wendt MK, Johanesen PA, Kang-Decker N et al (2006) Silencing of epithelial CXCL12 expression by DNA hypermethylation promotes colonic carcinoma metastasis. Oncogene 25:4986–4997PubMedCrossRef
77.
Zurück zum Zitat Semba S, Itoh N, Ito M et al (2002) Down-regulation of PIK3CG, a catalytic subunit of phosphatidylinositol 3-OH kinase, by CpG hypermethylation in human colorectal carcinoma. Clin Cancer Res 8:3824–3831PubMed Semba S, Itoh N, Ito M et al (2002) Down-regulation of PIK3CG, a catalytic subunit of phosphatidylinositol 3-OH kinase, by CpG hypermethylation in human colorectal carcinoma. Clin Cancer Res 8:3824–3831PubMed
78.
Zurück zum Zitat Lee M, Sup Han W, Kyoung Kim O et al (2006) Prognostic value of p16INK4a and p14ARF gene hypermethylation in human colon cancer. Pathol Res Pract 202:415–424PubMedCrossRef Lee M, Sup Han W, Kyoung Kim O et al (2006) Prognostic value of p16INK4a and p14ARF gene hypermethylation in human colon cancer. Pathol Res Pract 202:415–424PubMedCrossRef
79.
Zurück zum Zitat Umetani N, Fujimoto A, Takeuchi H et al (2004) Allelic imbalance of APAF-1 locus at 12q23 is related to progression of colorectal carcinoma. Oncogene 23:8292–8300PubMedCrossRef Umetani N, Fujimoto A, Takeuchi H et al (2004) Allelic imbalance of APAF-1 locus at 12q23 is related to progression of colorectal carcinoma. Oncogene 23:8292–8300PubMedCrossRef
80.
Zurück zum Zitat Ebert MP, Mooney SH, Tonnes-Priddy L et al (2005) Hypermethylation of the TPEF/HPP1 gene in primary and metastatic colorectal cancers. Neoplasia 7:771–778PubMedCrossRef Ebert MP, Mooney SH, Tonnes-Priddy L et al (2005) Hypermethylation of the TPEF/HPP1 gene in primary and metastatic colorectal cancers. Neoplasia 7:771–778PubMedCrossRef
81.
Zurück zum Zitat Tang M, Torres-Lanzas J, Lopez-Rios F et al (2006) Wnt signaling promoter hypermethylation distinguishes lung primary adenocarcinomas from colorectal metastasis to the lung. Int J Cancer 119:2603–2606PubMedCrossRef Tang M, Torres-Lanzas J, Lopez-Rios F et al (2006) Wnt signaling promoter hypermethylation distinguishes lung primary adenocarcinomas from colorectal metastasis to the lung. Int J Cancer 119:2603–2606PubMedCrossRef
82.
Zurück zum Zitat Fu L, Qin YR, Xie D et al (2007) Characterization of a novel tumor-suppressor gene PLC delta 1 at 3p22 in esophageal squamous cell carcinoma. Cancer Res 67:10720–10726PubMedCrossRef Fu L, Qin YR, Xie D et al (2007) Characterization of a novel tumor-suppressor gene PLC delta 1 at 3p22 in esophageal squamous cell carcinoma. Cancer Res 67:10720–10726PubMedCrossRef
83.
Zurück zum Zitat Onda T, Uzawa K, Nakashima D et al (2007) Lin-7C/VELI3/MALS-3: an essential component in metastasis of human squamous cell carcinoma. Cancer Res 67:9643–9648PubMedCrossRef Onda T, Uzawa K, Nakashima D et al (2007) Lin-7C/VELI3/MALS-3: an essential component in metastasis of human squamous cell carcinoma. Cancer Res 67:9643–9648PubMedCrossRef
84.
Zurück zum Zitat Ito S, Ohga T, Saeki H et al (2007) Promoter hypermethylation and quantitative expression analysis of CDKN2A (p14ARF and pl6INK4a) gene in esophageal squamous cell carcinoma. Anticancer Res 27:3345–3353PubMed Ito S, Ohga T, Saeki H et al (2007) Promoter hypermethylation and quantitative expression analysis of CDKN2A (p14ARF and pl6INK4a) gene in esophageal squamous cell carcinoma. Anticancer Res 27:3345–3353PubMed
85.
Zurück zum Zitat Zhang C, Li K, Wei L et al (2007) p300 expression repression by hypermethylation associated with tumour invasion and metastasis in oesophageal squamous cell carcinoma. J Clin Pathol 60:1249–1253PubMedCrossRef Zhang C, Li K, Wei L et al (2007) p300 expression repression by hypermethylation associated with tumour invasion and metastasis in oesophageal squamous cell carcinoma. J Clin Pathol 60:1249–1253PubMedCrossRef
86.
Zurück zum Zitat Liu WT, Jiao HL, Yang YL et al (2007) Correlation of E-cadherin hypermethylation to tumorigenesis and development of gastric cancer. Ai Zheng 26:1199–1203PubMed Liu WT, Jiao HL, Yang YL et al (2007) Correlation of E-cadherin hypermethylation to tumorigenesis and development of gastric cancer. Ai Zheng 26:1199–1203PubMed
87.
Zurück zum Zitat Yi Kim D, Kyoon Joo J, Kyu Park Y et al (2007) E-cadherin expression in early gastric carcinoma and correlation with lymph node metastasis. J Surg Oncol 96:429–435PubMedCrossRef Yi Kim D, Kyoon Joo J, Kyu Park Y et al (2007) E-cadherin expression in early gastric carcinoma and correlation with lymph node metastasis. J Surg Oncol 96:429–435PubMedCrossRef
88.
Zurück zum Zitat Wang J, Li G, Ma H et al (2007) Differential expression of EphA7 receptor tyrosine kinase in gastric carcinoma. Hum Pathol 38:1649–1656PubMedCrossRef Wang J, Li G, Ma H et al (2007) Differential expression of EphA7 receptor tyrosine kinase in gastric carcinoma. Hum Pathol 38:1649–1656PubMedCrossRef
89.
Zurück zum Zitat Kim SK, Jang HR, Kim JH et al (2006) The epigenetic silencing of LIMS2 in gastric cancer and its inhibitory effect on cell migration. Biochem Biophys Res Commun 349:1032–1040PubMedCrossRef Kim SK, Jang HR, Kim JH et al (2006) The epigenetic silencing of LIMS2 in gastric cancer and its inhibitory effect on cell migration. Biochem Biophys Res Commun 349:1032–1040PubMedCrossRef
90.
Zurück zum Zitat Chan AW, Chan MW, Lee TL et al (2005) Promoter hypermethylation of Death-associated protein-kinase gene associated with advance stage gastric cancer. Oncol Rep 13:937–941PubMed Chan AW, Chan MW, Lee TL et al (2005) Promoter hypermethylation of Death-associated protein-kinase gene associated with advance stage gastric cancer. Oncol Rep 13:937–941PubMed
91.
Zurück zum Zitat Wei D, Gong W, Kanai M et al (2005) Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res 65:2746–2754PubMedCrossRef Wei D, Gong W, Kanai M et al (2005) Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res 65:2746–2754PubMedCrossRef
92.
Zurück zum Zitat Ebert MP, Yu J, Hoffmann J et al (2003) Loss of beta-catenin expression in metastatic gastric cancer. J Clin Oncol 21:1708–1714PubMedCrossRef Ebert MP, Yu J, Hoffmann J et al (2003) Loss of beta-catenin expression in metastatic gastric cancer. J Clin Oncol 21:1708–1714PubMedCrossRef
93.
Zurück zum Zitat Oshimo Y, Kuraoka K, Nakayama H et al (2004) Epigenetic inactivation of SOCS-1 by CpG island hypermethylation in human gastric carcinoma. Int J Cancer 112:1003–1009PubMedCrossRef Oshimo Y, Kuraoka K, Nakayama H et al (2004) Epigenetic inactivation of SOCS-1 by CpG island hypermethylation in human gastric carcinoma. Int J Cancer 112:1003–1009PubMedCrossRef
94.
Zurück zum Zitat Wang S, Ding YB, Chen GY et al (2004) Hypermethylation of Syk gene in promoter region associated with oncogenesis and metastasis of gastric carcinoma. World J Gastroenterol 10:1815–1818PubMed Wang S, Ding YB, Chen GY et al (2004) Hypermethylation of Syk gene in promoter region associated with oncogenesis and metastasis of gastric carcinoma. World J Gastroenterol 10:1815–1818PubMed
95.
Zurück zum Zitat Chen J, Rocken C, Klein-Hitpass L et al (2004) Microarray analysis of gene expression in metastatic gastric cancer cells after incubation with the methylation inhibitor 5-aza-2’-deoxycytidine. Clin Exp Metastasis 21:389–397PubMedCrossRef Chen J, Rocken C, Klein-Hitpass L et al (2004) Microarray analysis of gene expression in metastatic gastric cancer cells after incubation with the methylation inhibitor 5-aza-2’-deoxycytidine. Clin Exp Metastasis 21:389–397PubMedCrossRef
96.
Zurück zum Zitat Taniguchi H, Yamamoto H, Akutsu N et al (2007) Transcriptional silencing of hedgehog-interacting protein by CpG hypermethylation and chromatic structure in human gastrointestinal cancer. J Pathol 213:131–139PubMedCrossRef Taniguchi H, Yamamoto H, Akutsu N et al (2007) Transcriptional silencing of hedgehog-interacting protein by CpG hypermethylation and chromatic structure in human gastrointestinal cancer. J Pathol 213:131–139PubMedCrossRef
97.
Zurück zum Zitat Nakamura M, Ishida E, Shimada K et al (2005) Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab Invest 85:165–175PubMedCrossRef Nakamura M, Ishida E, Shimada K et al (2005) Frequent LOH on 22q12.3 and TIMP-3 inactivation occur in the progression to secondary glioblastomas. Lab Invest 85:165–175PubMedCrossRef
98.
Zurück zum Zitat Smiraglia DJ, Smith LT, Lang JC et al (2003) Differential targets of CpG island hypermethylation in primary and metastatic head and neck squamous cell carcinoma (HNSCC). J Med Genet 40:25–33PubMedCrossRef Smiraglia DJ, Smith LT, Lang JC et al (2003) Differential targets of CpG island hypermethylation in primary and metastatic head and neck squamous cell carcinoma (HNSCC). J Med Genet 40:25–33PubMedCrossRef
99.
Zurück zum Zitat Lee MN, Tseng RC, Hsu HS et al (2007) Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 13:832–838PubMedCrossRef Lee MN, Tseng RC, Hsu HS et al (2007) Epigenetic inactivation of the chromosomal stability control genes BRCA1, BRCA2, and XRCC5 in non-small cell lung cancer. Clin Cancer Res 13:832–838PubMedCrossRef
100.
Zurück zum Zitat Harden SV, Tokumaru Y, Westra WH et al (2003) Gene promoter hypermethylation in tumors and lymph nodes of stage I lung cancer patients. Clin Cancer Res 9:1370–1375PubMed Harden SV, Tokumaru Y, Westra WH et al (2003) Gene promoter hypermethylation in tumors and lymph nodes of stage I lung cancer patients. Clin Cancer Res 9:1370–1375PubMed
101.
Zurück zum Zitat Chakraborty AK, Sousa Jde F, Chakraborty D et al (2006) GnT-V expression and metastatic phenotypes in macrophage-melanoma fusion hybrids is down-regulated by 5-Aza-dC: evidence for methylation sensitive, extragenic regulation of GnT-V transcription. Gene 374:166–173PubMedCrossRef Chakraborty AK, Sousa Jde F, Chakraborty D et al (2006) GnT-V expression and metastatic phenotypes in macrophage-melanoma fusion hybrids is down-regulated by 5-Aza-dC: evidence for methylation sensitive, extragenic regulation of GnT-V transcription. Gene 374:166–173PubMedCrossRef
102.
Zurück zum Zitat Lung HL, Bangarusamy DK, Xie D et al (2005) THY1 is a candidate tumour suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 24:6525–6532PubMed Lung HL, Bangarusamy DK, Xie D et al (2005) THY1 is a candidate tumour suppressor gene with decreased expression in metastatic nasopharyngeal carcinoma. Oncogene 24:6525–6532PubMed
103.
Zurück zum Zitat Kudo Y, Kitajima S, Ogawa I et al (2004) Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. Clin Cancer Res 10:5455–5463PubMedCrossRef Kudo Y, Kitajima S, Ogawa I et al (2004) Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. Clin Cancer Res 10:5455–5463PubMedCrossRef
104.
Zurück zum Zitat Ishida E, Nakamura M, Ikuta M et al (2005) Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol 41:614–622PubMedCrossRef Ishida E, Nakamura M, Ikuta M et al (2005) Promotor hypermethylation of p14ARF is a key alteration for progression of oral squamous cell carcinoma. Oral Oncol 41:614–622PubMedCrossRef
105.
Zurück zum Zitat Makarla PB, Saboorian MH, Ashfaq R et al (2005) Promoter hypermethylation profile of ovarian epithelial neoplasms. Clin Cancer Res 11:5365–5369PubMedCrossRef Makarla PB, Saboorian MH, Ashfaq R et al (2005) Promoter hypermethylation profile of ovarian epithelial neoplasms. Clin Cancer Res 11:5365–5369PubMedCrossRef
106.
Zurück zum Zitat House MG, Guo M, Efron DT et al (2003) Tumor suppressor gene hypermethylation as a predictor of gastric stromal tumor behavior. J Gastrointest Surg 7:1004–1014. Discussion 1014PubMedCrossRef House MG, Guo M, Efron DT et al (2003) Tumor suppressor gene hypermethylation as a predictor of gastric stromal tumor behavior. J Gastrointest Surg 7:1004–1014. Discussion 1014PubMedCrossRef
107.
Zurück zum Zitat Pulukuri SM, Patibandla S, Patel J et al (2007) Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene 26:5229–5237PubMedCrossRef Pulukuri SM, Patibandla S, Patel J et al (2007) Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene 26:5229–5237PubMedCrossRef
108.
Zurück zum Zitat Zhu X, Leav I, Leung YK et al (2004) Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. Am J Pathol 164:2003–2012PubMed Zhu X, Leav I, Leung YK et al (2004) Dynamic regulation of estrogen receptor-beta expression by DNA methylation during prostate cancer development and metastasis. Am J Pathol 164:2003–2012PubMed
109.
Zurück zum Zitat Kelavkar UP, Harya NS, Hutzley J et al (2007) DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Prostaglandins Other Lipid Mediat 82:185–197PubMedCrossRef Kelavkar UP, Harya NS, Hutzley J et al (2007) DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Prostaglandins Other Lipid Mediat 82:185–197PubMedCrossRef
110.
Zurück zum Zitat Bastian PJ, Ellinger J, Wellmann A et al (2005) Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci. Clin Cancer Res 11:4097–4106PubMedCrossRef Bastian PJ, Ellinger J, Wellmann A et al (2005) Diagnostic and prognostic information in prostate cancer with the help of a small set of hypermethylated gene loci. Clin Cancer Res 11:4097–4106PubMedCrossRef
111.
Zurück zum Zitat Yegnasubramanian S, Kowalski J, Gonzalgo ML et al (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64:1975–1986PubMedCrossRef Yegnasubramanian S, Kowalski J, Gonzalgo ML et al (2004) Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64:1975–1986PubMedCrossRef
112.
Zurück zum Zitat Kasahara T, Bilim V, Hara N et al (2006) Homozygous deletions of the INK4a/ARF locus in renal cell cancer. Anticancer Res 26:4299–4305PubMed Kasahara T, Bilim V, Hara N et al (2006) Homozygous deletions of the INK4a/ARF locus in renal cell cancer. Anticancer Res 26:4299–4305PubMed
113.
Zurück zum Zitat Yamada D, Kikuchi S, Williams YN et al (2006) Promoter hypermethylation of the potential tumor suppressor DAL-1/4.1B gene in renal clear cell carcinoma. Int J Cancer 118:916–923PubMedCrossRef Yamada D, Kikuchi S, Williams YN et al (2006) Promoter hypermethylation of the potential tumor suppressor DAL-1/4.1B gene in renal clear cell carcinoma. Int J Cancer 118:916–923PubMedCrossRef
114.
Zurück zum Zitat Boltze C, Schneider-Stock R, Quednow C et al (2003) Silencing of the maspin gene by promoter hypermethylation in thyroid cancer. Int J Mol Med 12:479–484PubMed Boltze C, Schneider-Stock R, Quednow C et al (2003) Silencing of the maspin gene by promoter hypermethylation in thyroid cancer. Int J Mol Med 12:479–484PubMed
115.
Zurück zum Zitat van der Velden PA, Zuidervaart W, Hurks MH et al (2003) Expression profiling reveals that methylation of TIMP3 is involved in uveal melanoma development. Int J Cancer 106:472–479PubMedCrossRef van der Velden PA, Zuidervaart W, Hurks MH et al (2003) Expression profiling reveals that methylation of TIMP3 is involved in uveal melanoma development. Int J Cancer 106:472–479PubMedCrossRef
116.
Zurück zum Zitat Gonzalez-Gomez P, Bello MJ, Alonso ME et al (2003) Frequent death-associated protein-kinase promoter hypermethylation in brain metastases of solid tumors. Oncol Rep 10:1031–1033PubMed Gonzalez-Gomez P, Bello MJ, Alonso ME et al (2003) Frequent death-associated protein-kinase promoter hypermethylation in brain metastases of solid tumors. Oncol Rep 10:1031–1033PubMed
117.
Zurück zum Zitat Tan SH, Ida H, Goh BC et al (2006) Analyses of promoter hypermethylation for RUNX3 and other tumor suppressor genes in nasopharyngeal carcinoma. Anticancer Res 26:4287–4292PubMed Tan SH, Ida H, Goh BC et al (2006) Analyses of promoter hypermethylation for RUNX3 and other tumor suppressor genes in nasopharyngeal carcinoma. Anticancer Res 26:4287–4292PubMed
118.
Zurück zum Zitat Pellise M, Castells A, Gines A et al (2004) Detection of lymph node micrometastases by gene promoter hypermethylation in samples obtained by endosonography- guided fine-needle aspiration biopsy. Clin Cancer Res 10:4444–4449PubMedCrossRef Pellise M, Castells A, Gines A et al (2004) Detection of lymph node micrometastases by gene promoter hypermethylation in samples obtained by endosonography- guided fine-needle aspiration biopsy. Clin Cancer Res 10:4444–4449PubMedCrossRef
119.
Zurück zum Zitat Yamashita K, Park HL, Kim MS et al (2006) PGP9.5 methylation in diffuse-type gastric cancer. Cancer Res 66:3921–3927PubMedCrossRef Yamashita K, Park HL, Kim MS et al (2006) PGP9.5 methylation in diffuse-type gastric cancer. Cancer Res 66:3921–3927PubMedCrossRef
120.
Zurück zum Zitat Driouch K, Landemaine T, Sin S et al (2007) Gene arrays for diagnosis, prognosis and treatment of breast cancer metastasis. Clin Exp Metastasis 24:575–585PubMedCrossRef Driouch K, Landemaine T, Sin S et al (2007) Gene arrays for diagnosis, prognosis and treatment of breast cancer metastasis. Clin Exp Metastasis 24:575–585PubMedCrossRef
121.
Zurück zum Zitat Takayama T, Miyanishi K, Hayashi T et al (2006) Colorectal cancer: genetics of development and metastasis. J Gastroenterol 41:185–192PubMedCrossRef Takayama T, Miyanishi K, Hayashi T et al (2006) Colorectal cancer: genetics of development and metastasis. J Gastroenterol 41:185–192PubMedCrossRef
122.
Zurück zum Zitat Segditsas S, Tomlinson I (2006) Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25:7531–7537PubMedCrossRef Segditsas S, Tomlinson I (2006) Colorectal cancer and genetic alterations in the Wnt pathway. Oncogene 25:7531–7537PubMedCrossRef
123.
Zurück zum Zitat Vogiatzi P, Vindigni C, Roviello F et al (2007) Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. J Cell Physiol 211:287–295PubMedCrossRef Vogiatzi P, Vindigni C, Roviello F et al (2007) Deciphering the underlying genetic and epigenetic events leading to gastric carcinogenesis. J Cell Physiol 211:287–295PubMedCrossRef
124.
Zurück zum Zitat Jee CD, Lee HS, Bae SI et al (2005) Loss of caspase-1 gene expression in human gastric carcinomas and cell lines. Int J Oncol 26:1265–1271PubMed Jee CD, Lee HS, Bae SI et al (2005) Loss of caspase-1 gene expression in human gastric carcinomas and cell lines. Int J Oncol 26:1265–1271PubMed
125.
Zurück zum Zitat Nelson WG, Yegnasubramanian S, Agoston AT et al (2007) Abnormal DNA methylation, epigenetics, and prostate cancer. Front Biosci 12:4254–4266PubMedCrossRef Nelson WG, Yegnasubramanian S, Agoston AT et al (2007) Abnormal DNA methylation, epigenetics, and prostate cancer. Front Biosci 12:4254–4266PubMedCrossRef
126.
Zurück zum Zitat Yu J, Yu J, Rhodes DR et al (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67:10657–10663PubMedCrossRef Yu J, Yu J, Rhodes DR et al (2007) A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 67:10657–10663PubMedCrossRef
127.
Zurück zum Zitat Beke L, Nuytten M, Van Eynde A et al (2007) The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene 26:4590–4595PubMedCrossRef Beke L, Nuytten M, Van Eynde A et al (2007) The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene 26:4590–4595PubMedCrossRef
128.
Zurück zum Zitat Chen H, Tu SW, Hsieh JT (2005) Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem 280:22437–22444PubMedCrossRef Chen H, Tu SW, Hsieh JT (2005) Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem 280:22437–22444PubMedCrossRef
129.
Zurück zum Zitat Vire E, Brenner C, Deplus R et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874PubMedCrossRef Vire E, Brenner C, Deplus R et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874PubMedCrossRef
130.
Zurück zum Zitat Berezovska OP, Glinskii AB, Yang Z et al (2006) Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle 5:1886–1901PubMed Berezovska OP, Glinskii AB, Yang Z et al (2006) Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle 5:1886–1901PubMed
131.
Zurück zum Zitat Cho KS, Oh HY, Lee EJ et al (2007) Identification of enhancer of zeste homolog 2 expression in peripheral circulating tumor cells in metastatic prostate cancer patients: a preliminary study. Yonsei Med J 48:1009–1014PubMedCrossRef Cho KS, Oh HY, Lee EJ et al (2007) Identification of enhancer of zeste homolog 2 expression in peripheral circulating tumor cells in metastatic prostate cancer patients: a preliminary study. Yonsei Med J 48:1009–1014PubMedCrossRef
132.
Zurück zum Zitat Choi IS, Estecio MR, Nagano Y et al (2007) Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Mod Pathol 20:802–810PubMedCrossRef Choi IS, Estecio MR, Nagano Y et al (2007) Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Mod Pathol 20:802–810PubMedCrossRef
133.
Zurück zum Zitat Schulz WA, Elo JP, Florl AR et al (2002) Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35:58–65PubMedCrossRef Schulz WA, Elo JP, Florl AR et al (2002) Genomewide DNA hypomethylation is associated with alterations on chromosome 8 in prostate carcinoma. Genes Chromosomes Cancer 35:58–65PubMedCrossRef
134.
Zurück zum Zitat Shukeir N, Pakneshan P, Chen G et al (2006) Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Res 66:9202–9210PubMedCrossRef Shukeir N, Pakneshan P, Chen G et al (2006) Alteration of the methylation status of tumor-promoting genes decreases prostate cancer cell invasiveness and tumorigenesis in vitro and in vivo. Cancer Res 66:9202–9210PubMedCrossRef
135.
Zurück zum Zitat Nakamura N, Takenaga K (1998) Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clin Exp Metastasis 16:471–479PubMedCrossRef Nakamura N, Takenaga K (1998) Hypomethylation of the metastasis-associated S100A4 gene correlates with gene activation in human colon adenocarcinoma cell lines. Clin Exp Metastasis 16:471–479PubMedCrossRef
136.
Zurück zum Zitat Rosty C, Ueki T, Argani P et al (2002) Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. Am J Pathol 160:45–50PubMed Rosty C, Ueki T, Argani P et al (2002) Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. Am J Pathol 160:45–50PubMed
137.
Zurück zum Zitat Xie R, Loose DS, Shipley GL et al (2007) Hypomethylation-induced expression of S100A4 in endometrial carcinoma. Mod Pathol 20:1045–1054PubMedCrossRef Xie R, Loose DS, Shipley GL et al (2007) Hypomethylation-induced expression of S100A4 in endometrial carcinoma. Mod Pathol 20:1045–1054PubMedCrossRef
138.
Zurück zum Zitat Lindsey JC, Lusher ME, Anderton JA et al (2007) Epigenetic deregulation of multiple S100 gene family members by differential hypomethylation and hypermethylation events in medulloblastoma. Br J Cancer 97:267–274PubMedCrossRef Lindsey JC, Lusher ME, Anderton JA et al (2007) Epigenetic deregulation of multiple S100 gene family members by differential hypomethylation and hypermethylation events in medulloblastoma. Br J Cancer 97:267–274PubMedCrossRef
139.
Zurück zum Zitat Arisawa T, Tahara T, Shibata T et al (2007) Promoter hypomethylation of protease-activated receptor 2 associated with carcinogenesis in the stomach. J Gastroenterol Hepatol 22:943–948PubMedCrossRef Arisawa T, Tahara T, Shibata T et al (2007) Promoter hypomethylation of protease-activated receptor 2 associated with carcinogenesis in the stomach. J Gastroenterol Hepatol 22:943–948PubMedCrossRef
140.
Zurück zum Zitat Honda T, Tamura G, Waki T et al (2004) Demethylation of MAGE promoters during gastric cancer progression. Br J Cancer 90:838–843PubMedCrossRef Honda T, Tamura G, Waki T et al (2004) Demethylation of MAGE promoters during gastric cancer progression. Br J Cancer 90:838–843PubMedCrossRef
141.
Zurück zum Zitat Jung EJ, Kim MA, Lee HS et al (2005) Expression of family A melanoma antigen in human gastric carcinoma. Anticancer Res 25:2105–2111PubMed Jung EJ, Kim MA, Lee HS et al (2005) Expression of family A melanoma antigen in human gastric carcinoma. Anticancer Res 25:2105–2111PubMed
142.
Zurück zum Zitat Gupta A, Godwin AK, Vanderveer L et al (2003) Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res 63:664–673PubMed Gupta A, Godwin AK, Vanderveer L et al (2003) Hypomethylation of the synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Res 63:664–673PubMed
143.
Zurück zum Zitat Bariol C, Suter C, Cheong K et al (2003) The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am J Pathol 162:1361–1371PubMed Bariol C, Suter C, Cheong K et al (2003) The relationship between hypomethylation and CpG island methylation in colorectal neoplasia. Am J Pathol 162:1361–1371PubMed
144.
Zurück zum Zitat Sadikovic B, Andrews J, Carter D et al (2008) Genome-wide H3K9 histone acetylation profiles are altered in benzopyrene treated MCF7 breast cancer cells. J Biol Chem 283:4051–4060PubMedCrossRef Sadikovic B, Andrews J, Carter D et al (2008) Genome-wide H3K9 histone acetylation profiles are altered in benzopyrene treated MCF7 breast cancer cells. J Biol Chem 283:4051–4060PubMedCrossRef
145.
Zurück zum Zitat Sigalotti L, Fratta E, Coral S et al (2007) Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications. J Cell Physiol 212:330–344PubMedCrossRef Sigalotti L, Fratta E, Coral S et al (2007) Epigenetic drugs as pleiotropic agents in cancer treatment: biomolecular aspects and clinical applications. J Cell Physiol 212:330–344PubMedCrossRef
146.
Zurück zum Zitat Oh BK, Kim H, Park HJ et al (2007) DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med 20:65–73PubMed Oh BK, Kim H, Park HJ et al (2007) DNA methyltransferase expression and DNA methylation in human hepatocellular carcinoma and their clinicopathological correlation. Int J Mol Med 20:65–73PubMed
147.
Zurück zum Zitat Momparler RL (2005) Epigenetic therapy of cancer with 5-aza-2′-deoxycytidine (decitabine). Semin Oncol 32:443–451PubMedCrossRef Momparler RL (2005) Epigenetic therapy of cancer with 5-aza-2′-deoxycytidine (decitabine). Semin Oncol 32:443–451PubMedCrossRef
148.
Zurück zum Zitat Cho CY, Wang JH, Chang HC et al (2007) Epigenetic inactivation of the metastasis suppressor RECK enhances invasion of human colon cancer cells. J Cell Physiol 213:65–69PubMedCrossRef Cho CY, Wang JH, Chang HC et al (2007) Epigenetic inactivation of the metastasis suppressor RECK enhances invasion of human colon cancer cells. J Cell Physiol 213:65–69PubMedCrossRef
149.
Zurück zum Zitat Kassis ES, Zhao M, Hong JA et al (2006) Depletion of DNA methyltransferase 1 and/or DNA methyltransferase 3b mediates growth arrest and apoptosis in lung and esophageal cancer and malignant pleural mesothelioma cells. J Thorac Cardiovasc Surg 131:298–306PubMedCrossRef Kassis ES, Zhao M, Hong JA et al (2006) Depletion of DNA methyltransferase 1 and/or DNA methyltransferase 3b mediates growth arrest and apoptosis in lung and esophageal cancer and malignant pleural mesothelioma cells. J Thorac Cardiovasc Surg 131:298–306PubMedCrossRef
150.
Zurück zum Zitat Winquist E, Knox J, Ayoub JP et al (2006) Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study. Invest New Drugs 24:159–167PubMedCrossRef Winquist E, Knox J, Ayoub JP et al (2006) Phase II trial of DNA methyltransferase 1 inhibition with the antisense oligonucleotide MG98 in patients with metastatic renal carcinoma: a National Cancer Institute of Canada Clinical Trials Group investigational new drug study. Invest New Drugs 24:159–167PubMedCrossRef
151.
Zurück zum Zitat Lin RK, Hsu CH, Wang YC (2007) Mithramycin A inhibits DNA methyltransferase and metastasis potential of lung cancer cells. Anticancer Drugs 18:1157–1164PubMed Lin RK, Hsu CH, Wang YC (2007) Mithramycin A inhibits DNA methyltransferase and metastasis potential of lung cancer cells. Anticancer Drugs 18:1157–1164PubMed
152.
Zurück zum Zitat Yoo CB, Jones PA (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5:37–50PubMedCrossRef Yoo CB, Jones PA (2006) Epigenetic therapy of cancer: past, present and future. Nat Rev Drug Discov 5:37–50PubMedCrossRef
153.
Zurück zum Zitat Joseph J, Mudduluru G, Antony S et al (2004) Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB. Oncogene 23:6304–6315PubMedCrossRef Joseph J, Mudduluru G, Antony S et al (2004) Expression profiling of sodium butyrate (NaB)-treated cells: identification of regulation of genes related to cytokine signaling and cancer metastasis by NaB. Oncogene 23:6304–6315PubMedCrossRef
154.
Zurück zum Zitat Lin KT, Yeh SH, Chen DS et al (2005) Epigenetic activation of alpha4, beta2 and beta6 integrins involved in cell migration in trichostatin A-treated Hep3B cells. J Biomed Sci 12:803–813PubMedCrossRef Lin KT, Yeh SH, Chen DS et al (2005) Epigenetic activation of alpha4, beta2 and beta6 integrins involved in cell migration in trichostatin A-treated Hep3B cells. J Biomed Sci 12:803–813PubMedCrossRef
Metadaten
Titel
Epigenetic contributions to cancer metastasis
verfasst von
David I. Rodenhiser
Publikationsdatum
01.01.2009
Verlag
Springer Netherlands
Erschienen in
Clinical & Experimental Metastasis / Ausgabe 1/2009
Print ISSN: 0262-0898
Elektronische ISSN: 1573-7276
DOI
https://doi.org/10.1007/s10585-008-9166-2

Weitere Artikel der Ausgabe 1/2009

Clinical & Experimental Metastasis 1/2009 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.