Skip to main content

Advertisement

Log in

Development of an optimized protocol for primary culture of smooth muscle cells from rat thoracic aortas

  • Technical Note
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Primary culture of smooth muscle cells has been widely used as a valuable tool to study the molecular mechanisms underlying atherosclerosis and restenosis. Currently, tissue explants and enzymatic digestion methods are frequently applied to produce smooth muscle cells. Explants method is time consuming, usually taking several weeks. The enzymatic digestion method requires large amounts of proteolytic enzymes to generate enough cells for cardiovascular research. The present study reports an optimized method by combining both techniques to obtain high purity smooth muscle cells. The cultured cells exhibited the characteristic “hills and valleys” growth pattern as observed by phase contrast microscopy and showed α-SM-actin positive staining by indirect immunocytochemistry and immunofluorescence. Purity of the cells is guaranteed by the lack of von Willebrand Factor immunoreactivity. Finally, the cultured cells well proliferate on oxidized-LDL stimulation, suggesting the practical utility of this new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bellas RE, Lee JS, Sonenshein GE (1998) Expression of a constitutive NF-KB-like activity is essential for proliferation of cultured bovine vascular smooth muscle cells. J Clin Invest 96:2521–2527. doi:10.1172/JCI118313

    Article  Google Scholar 

  • Bond M, Chase AJ, Baker AH, Newby AC (2001) Inhibition of transcription factor NF-kappaB reduces matrix metalloproteinase-1, -3 and -9 production by vascular smooth muscle cells. Cardiovasc Res 50:556–565. doi:10.1016/S0008-6363(01)00220-6

    Article  CAS  Google Scholar 

  • Campbell JH, Campbell GR (1994) The role of smooth muscle cells in atherosclerosis. Curr Opin Lipidol 5:323–330

    Article  CAS  Google Scholar 

  • Cary LA, Guan JL (1999) Focal adhesion kinase integrin-mediated signaling. Front Biosci 4:102–133

    Article  Google Scholar 

  • Chamley JH, Campbell GR, McConnell JD, Gröschel-Stewart U (1977) Comparison of vascular smooth muscle cells from adult human, monkey and rabbit in primary culture and in subculture. Cell Tissue Res 177:503–522

    CAS  Google Scholar 

  • Chamley-Campbell JH, Campbell GR, Ross R (1982) Phenotype-dependent response of cultured aortic smooth muscle to serum mitogens. J Cell Biol 89:379–383

    Article  Google Scholar 

  • Chien MW, Chien CS, Hsiao LD, Lin CH, Yang CM (2003) OxLDL induces mitogen-activated protein kinase activation mediated via PI3-kinase/Akt in vascular smooth muscle cell. J Lipid Res 44:1667–1675. doi:10.1194/jlr.M300006-JLR200

    Article  CAS  Google Scholar 

  • Christen T, Bochaton-Piallat ML, Neuville P, Rensen S, Redard M, van Eys G, Gabbiani G (1999) Cultured porcine coronary artery smooth muscle cells. A new model with advanced differentiation. Circ Res 85:99–107

    CAS  Google Scholar 

  • Fan YH, He CH, Liu GF, Zhang HB (2008) Optimization of the isolation and cultivation of Cyprinus carpio primary hepatocytes. Cytotechnology 58:85–92. doi:10.1007/s10616-008-9169-5

    Article  CAS  Google Scholar 

  • Gunther S, Alexander RW, Atkinson WJ, Gimbrone MA Jr (1982) Functional angiotensin II receptors in cultured vascular smooth muscle cells. J Cell Biol 92:289–298

    Article  CAS  Google Scholar 

  • Hu WY, Fukuda N, Ikeda Y, Suzuki R, Tahira Y, Takagi H, Matsumoto K, Kanmatsuse K, Mugishima H (2003) Human-derived vascular smooth muscle cells produce angiotensin II by changing to the synthetic phenotype. J Cell Physiol 196:284–292. doi:10.1002/jcp.10299

    Article  CAS  Google Scholar 

  • Julia K, Angelika K, Sergey T, Krämer J, Haller H, Dietz R, Smith G, Dumler I (2007) Rosuvastatin regulates vascular smooth muscle cell phenotypic modulation in vascular remodeling: role for the urokinase receptor. Atherosclerosis 195:254–261. doi:10.1016/j.atherosclerosis.2006.12.030

    Article  Google Scholar 

  • Koba S, Pakala R, Watanabe T, Katagiri T, Benedict CR (1999) Vascular smooth muscle proliferation: synergistic interaction between serotonin and low density lipoproteins. J Am Coll Cardiol 34:1644–1651. doi:10.1016/S0735-1097(99)00349-6

    Article  CAS  Google Scholar 

  • Mnjoyan ZH, Doan D, Brandon JL, Felix K, Sitter CL, Rege AA, Brock TA, Fujise K (2008) The critical role of the intrinsic VSMC proliferation and death programs in injury-induced neointimal hyperplasia. Am J Physiol Heart Circ Physiol 294:H2276–H2284

    Article  CAS  Google Scholar 

  • Nakagawa M, Ohno T, Maruyama R, Okubo M, Nagatsu A, Inoue M, Tanabe H, Takemura G, Minatoguchi S, Fujiwara H (2007) Sesquiterpene lactone suppresses vascular smooth muscle cell proliferation and migration via inhibition of cell cycle progression. Biol Pharm Bull 30:1754–1757. doi:10.1248/bpb.30.1754

    Article  CAS  Google Scholar 

  • Newby AC, Zaltsman AB (2000) Molecular mechanisms in intimal hyperplasia. J Pathol 190:300–309. doi:10.1002/(SICI)1096-9896(200002)190:3<300

    Article  CAS  Google Scholar 

  • Okker-Reitsma GH, Dziadkowiec IJ, Groot CG (1985) Isolation and culture of smooth muscle cells from human umbilical cord arteries. In Vitro Cell Dev Biol 21:22–25

    Article  CAS  Google Scholar 

  • Ray JL, Leach R, Herbert JM, Benson M (2001) Isolation of vascular smooth muscle cells from a single murine aorta. Methods Cell Sci 23:185–188

    Article  CAS  Google Scholar 

  • Ross R (1971) The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol 50:172–186

    Article  CAS  Google Scholar 

  • Ross R (1993) The pathogenesis of atherosclerosis: perspective for the 1990 s. Nature 362:801–809

    Article  CAS  Google Scholar 

  • Schwartz SM, deBlois D, O’Brien ER (1995) The intima. Soil for atherosclerosis and restenosis. Circ Res 77:445–465

    CAS  Google Scholar 

  • Schwertschlag US, Whorton AR (1988) Platelet-activating factor-induced homologous and heterologous desensitization in cultured vascular smooth muscle cells. J Biol Chem 263:13791–13796

    CAS  Google Scholar 

  • Strauss BH, Robinson R, Batchelor WB, Chisholm RJ, Ravi G, Natarajan MK, Logan RA, Mehta SR, Levy DE, Ezrin AM, Keeley FW (1996) In vivo collagen turnover following experimental balloon angioplasty injury and the role of matrix metalloproteinases. Circ Res 79:541–550

    CAS  Google Scholar 

  • Szöcs K, Lassègue B, Wenzel P, Wendt M, Daiber A, Oelze M, Meinertz T, Münzel T, Baldus S (2007) Increased superoxide production in nitrate tolerance is associated with NAD(P)H oxidase and aldehyde dehydrogenase 2 downregulation. J Mol Cell Cardiol 42:1111–1118. doi:10.1016/j.yjmcc.2007.03.904

    Article  Google Scholar 

  • Walford RL, Gallagher R, Sjaarda JR (1964) Serologic typing of human lymphocytes with immune serum obtained after homografting. Science 144:868–870

    Article  CAS  Google Scholar 

  • Witztum JL (1993) Role of oxidized low density lipoprotein in atherosclerosis. Br Heart J 69:S12–S18

    Article  CAS  Google Scholar 

  • Yang RF, Liu AJ, Ma XJ, Li L, Su D, Liu J (2008) Sodium tanshinone IIA sulfonate protects cardiomyocytes against oxidative stress-mediated apoptosis through inhibiting JNK activation. J Cardiovasc Pharmacol 51:396–401. doi:10.1097/FJC.0b013e3181671439

    Article  CAS  Google Scholar 

  • Zhou YF, Guetta E, Yu ZX, Finkel T, Epstein SE (1996) Human cytomegalovirus increased modified low density lipoprotein uptake and scanvenger receptor mRNA expression in vascular smooth muscle cell. J Clin Invest 98:2129–2138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by research grants from National Natural Science Foundation of China (No: 30472022), and Major Program in Key Field of People’s Government of Guangdong Province (P.R. of China) (No: 2003A30904), and Major Program in Scientific Research of Ministry of Education (P.R. of China) (No: 104146). We are grateful to Dr. Shaorui Chen and Dr. Minfeng Su for expert technical assistance. The authors extend their gratitude to the laboratory personnel for encouragement and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiqing Liu.

Additional information

Suowen Xu and Jiajia Fu have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, S., Fu, J., Chen, J. et al. Development of an optimized protocol for primary culture of smooth muscle cells from rat thoracic aortas. Cytotechnology 61, 65–72 (2009). https://doi.org/10.1007/s10616-009-9236-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-009-9236-6

Keywords

Navigation