Skip to main content
Log in

Effects of N-Acetylcysteine Plus Mesalamine on Prostaglandin Synthesis and Nitric Oxide Generation in TNBS-Induced Colitis in Rats

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The aim of the present studies was to examine mechanisms by which the rectally administered combination of N-acetylcysteine (NAC) plus mesalamine (5-ASA) affects inducers of inflammation to promote mucosal healing and reduce tissue inflammation in chemically (trinitrobenzene sulfonic acid, TNBS) induced colitis in rats. Experimental findings demonstrate that dual therapy with NAC plus 5-ASA was superior to individual agents in reducing histological measures of colitis. NAC alone and in combination with 5-ASA suppressed COX2 gene expression and prostaglandin E2 (PGE2) levels to control values. Furthermore, NAC plus 5-ASA reduced nitrate generation, an expression of inducible nitric oxide synthase (iNOS) activity, to basal levels and these results were significantly lower than those observed with either NAC or 5-ASA alone. In conclusion, these results indicate that NAC plus 5-ASA exerts therapeutic benefit, in part by countering the actions of PGE2 and the deleterious effects of oxidative and nitrosative stress induced by TNBS colitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fiocchi C. The multiple components of inflammatory bowel disease pathogenesis: should we invest in all of them or should we pick and choose? Curr Opin Gastroenterol. 2005;21:399–400.

    Google Scholar 

  2. Fiocchi C. Non-stop progress in inflammatory bowel disease: new players, new understanding, new therapies. Curr Opin Gastroenterol. 2006;22:347–348. doi:10.1097/01.mog.0000231805.65030.36.

    Article  PubMed  Google Scholar 

  3. Puleston J, Cooper M, Murch S, et al. A distinct subset of chemokines dominates the mucosal chemokine response in inflammatory bowel disease. Aliment Pharmacol Ther. 2005;21:109–120. doi:10.1111/j.1365-2036.2004.02262.x.

    Article  PubMed  CAS  Google Scholar 

  4. Akobeng AK, Zachos M. Tumor necrosis factor-alpha antibody for induction of remission of Crohns disease. Cochrane Database Syst Rev. 2004;CD003574.

  5. Collier HO, Francis AA, McDonald-Gibson WJ, Saeed SA. Inhibition of prostaglandin biosynthesis by sulphasalazine and its metabolites. Prostaglandins. 1976;11:219–225. doi:10.1016/0090-6980(76)90145-3.

    Article  PubMed  CAS  Google Scholar 

  6. Sharon P, Ligumsky M, Rachmilewitz D, Zor U. Role of prostaglandins in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine. Gastroenterology. 1978;75:638–640.

    PubMed  CAS  Google Scholar 

  7. Ahnfelt-Ronne I, Nielsen OH, Christensen A, Langholz E, Binder V, Riis P. Clinical evidence supporting the radical scavenger mechanism of 5-aminosalicylic acid. Gastroenterology. 1990;98:1162–1169.

    PubMed  CAS  Google Scholar 

  8. Bantel H, Berg C, Vieth M, Stolte M, Schulze-Osthoff K. Mesalamine inhibits activation of transcription factor NF-kB in inflamed mucosa of patients with ulcerative colitis. Am J Gastroenterol. 2000;95:3452–3457.

    PubMed  CAS  Google Scholar 

  9. Grisham MB. Oxidants and free radicals in inflammatory bowel disease. Lancet. 1994;B44:859–861. doi:10.1016/S0140-6736(94)92831-2.

    Article  Google Scholar 

  10. Rachmilewitz D, Karmeli F, Bursztyn M. Experimental colitis is ameliorated by inhibition of nitric oxide synthase activity. Gut. 1995;37:247–255. doi:10.1136/gut.37.2.247.

    Article  PubMed  CAS  Google Scholar 

  11. Keshavarzian A, Morgan G, Sedghi S, Gordon JH, Doria M. Role of reactive oxygen metabolites in experimental colitis. Gut. 1990;31:786–790. doi:10.1136/gut.31.7.786.

    Article  PubMed  CAS  Google Scholar 

  12. Siddiqui A, Ancha HR, Tedesco D, Lightfoot S, Stewart C, Harty RF. Antioxidant therapy with N-acetylcysteine plus mesalamine accelerates mucosa healing in a rodent model of colitis. Dig Dis Sci. 2006;51:698–705. doi:10.1007/s10620-006-3194-z.

    Article  PubMed  CAS  Google Scholar 

  13. Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–429. doi:10.1056/NEJMra020831.

    Article  PubMed  CAS  Google Scholar 

  14. MacDermott RP. Progress in understanding the mechanisms of action of 5-aminosalicylic acid. Am J Gastroenterol. 2000;95:3343–3345. doi:10.1111/j.1572-0241.2000.03342.x.

    Article  PubMed  CAS  Google Scholar 

  15. Ardite E, Sans M, Panés J, Romero FJ, Pique JM, Fernadez-Checa JC. Replenishment of glutathione levels improves mucosal function in experimental acute colitis. Lab Invest. 2000;80:735–744.

    PubMed  CAS  Google Scholar 

  16. Naito Y, Takagi T, Ashikawa T, et al. α Phenyl-N-tert-butylnitrone provides protection from dextran sulfate sodium-induced colitis in mice. Antioxid Redox Signal. 2002;4:195–206. doi:10.1089/152308602753625951.

    Article  PubMed  CAS  Google Scholar 

  17. McCafferty DM, Shiota E. Role of inducible nitric oxide synthase in trinitrobenzene sulfonic acid induced colitis in mice. Gut. 1999;45:199–209.

    Article  Google Scholar 

  18. Sharon P, Stenson WF. Enhanced synthesis of leukotriene B4 by colonic mucosa in inflammatory bowel disease. Gastroenterology. 1984;86:453–460.

    PubMed  CAS  Google Scholar 

  19. Singer II, Kawka DW, Schloemann S, Tessner T, Riehl T, Stenson WF. Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology. 1998;115:297–306. doi:10.1016/S0016-5085(98)70196-9.

    Article  PubMed  CAS  Google Scholar 

  20. Reuter BK, Asfaha S, Buret A, Sharkey KA, Wallace JL. Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2. J Clin Invest. 1996;98:2076–2085. doi:10.1172/JCI119013.

    Article  PubMed  CAS  Google Scholar 

  21. Krieglstein CF, Cerwinka WH, Salter JW, et al. Regulation of murine intestinal inflammation by reactive metabolites of oxygen and nitrogen: divergent roles of superoxide and nitric oxide. J Exp Med. 2001;194:1207–1218. doi:10.1084/jem.194.9.1207.

    Article  PubMed  CAS  Google Scholar 

  22. Kruidenier L, Kuiper I, Lamers CBHW, Verspaget HW. Intestinal oxidative damage in inflammatory bowel disease: semi-quantification, localization, and association with mucosal antioxidants. J Pathol. 2003;201:28–36. doi:10.1002/path.1409.

    Article  PubMed  CAS  Google Scholar 

  23. Stenson WF. Prostaglandins and epithelial response to injury. Curr Opin Gastroenterol. 2007;23:107–110. doi:10.1097/MOG.0b013e3280143cb6.

    Article  PubMed  CAS  Google Scholar 

  24. Fukata M, Chen A, Klepper A, et al. COX-2 is regulated by toll-like receptor-4 (TLR4) signaling: role in proliferation and apoptosis in the intestine. Gastroenterology. 2006;131:862–877. doi:10.1053/j.gastro.2006.06.017.

    Article  PubMed  CAS  Google Scholar 

  25. Bonner GF. Using COX-2 inhibitors in IBD: anti-inflammatories infame a controversy. Am J Gastroenterol. 2002;97:783–785. doi:10.1111/j.1572-0241.2002.05592.x.

    Article  PubMed  Google Scholar 

  26. Tsubouchi R, Hayashi S, Aoi Y, et al. Healing impairment effect of cyclooxygenase inhibitors on dextran sulfate sodium-induced colitis in rats. Digestion. 2006;74:91–100. doi:10.1159/000097657.

    Article  PubMed  CAS  Google Scholar 

  27. Melgar S, Drmotova M, Rehnström E, Jansson L, Michaësson. Local production of chemokines and prostaglandins E2 in the acute, chronic and recovery phase of murine experimental colitis. Cytokine. 2006;35:275–283. doi:10.1016/j.cyto.2006.09.007.

    Article  PubMed  CAS  Google Scholar 

  28. Sheibanie AF, Yen JH, Khayrullina T, et al. The proinflammatory effect of prostaglandin E2 in experimental inflammatory bowel disease is mediated through the IL-23–IL-17 axis. J Immunol. 2007;178:8138–8147

    PubMed  CAS  Google Scholar 

  29. Zhang L, Lu YM, Dong XY. Effects and mechanisms of the selective COX-2 inhibitor, celecoxib, on rat colitis induced by trinitrobenzene sulfonic acid. Chin J Dig Dis. 2004;5:110–114. doi:10.1111/j.1443-9573.2004.00164.x.

    Article  PubMed  CAS  Google Scholar 

  30. Zhang Z, Andoh A, Inatomi O, Shimizu N, Fujiyama Y. Interleukin-17 and lipopolysaccharides synergistically induce cyclooxygenase-2 expression in human intestinal myofibroblasts. J Gastro Hepatol. 2005;20:619–627. doi:10.1111/j.1440-1746.2004.03748.x.

    Article  CAS  Google Scholar 

  31. Yedgar S, Krimsky M, Cohen Y, Flower RJ. Treatment of inflammatory diseases by selective eicosanoid inhibition: a double edged sword? Trends Pharmacol Sci. 2007;28:459–464. doi:10.1016/j.tips.2007.07.005.

    Article  PubMed  CAS  Google Scholar 

  32. Celotti F, Laufer S. Anti-inflammatory drugs: new multi target compounds to face an old problem. The dual inhibition concept. Pharmacol Res. 2001;43:429–436. doi:10.1006/phrs.2000.0784.

    Article  PubMed  CAS  Google Scholar 

  33. Celotti F, Durand T. The metabolic effects of inhibition of 5-lipoxygenase and cyclooxygenase 1 and 2 are an advancement in the efficacy and safety of anti-inflammatory therapy. Prostaglandins Other Lipid Mediat. 2003;71:147–162.

    Article  PubMed  CAS  Google Scholar 

  34. Dryden GW Jr, Deaciuc I, Arteel G, McClain CJ. Clinical implications of oxidative stress and antioxidant therapy. Curr Gastroenterol Rep. 2007;7:306–316.

    Google Scholar 

  35. Kreiglstein CF, Anthoni C, Cerwinka WH, et al. Role of blood-and tissue-associated inducible nitric-oxide synthase in colonic inflammation. Am J Pathol. 2007;170:490–496.

    Article  CAS  Google Scholar 

  36. Lu Y, Wahl LM. Oxidative stress augments the production of matrix metalloproteinase-1, cyclooxygenase-2, and prostagland in E2 through enhancement of NF-kB activity in lipopolysaccharide-activated human primary monocytes. J Immunol. 2005;175:5423–5429.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Harty.

Additional information

The authors thank Helen Prince for expert secretarial assistance in manuscript preparation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ancha, H.R., Kurella, R.R., McKimmey, C.C. et al. Effects of N-Acetylcysteine Plus Mesalamine on Prostaglandin Synthesis and Nitric Oxide Generation in TNBS-Induced Colitis in Rats. Dig Dis Sci 54, 758–766 (2009). https://doi.org/10.1007/s10620-008-0438-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-008-0438-0

Keywords

Navigation