Skip to main content
Erschienen in: Digestive Diseases and Sciences 12/2013

01.12.2013 | Original Article

Dietary Red Meat Aggravates Dextran Sulfate Sodium-Induced Colitis in Mice Whereas Resistant Starch Attenuates Inflammation

verfasst von: Richard K. Le Leu, Graeme P. Young, Ying Hu, Jean Winter, Michael A. Conlon

Erschienen in: Digestive Diseases and Sciences | Ausgabe 12/2013

Einloggen, um Zugang zu erhalten

Abstract

Background

Although a genetic component has been identified as a risk factor for developing inflammatory bowel disease, there is evidence that dietary factors also play a role in the development of this disease.

Aims

The aim of this study was to determine the effects of feeding a red meat diet with and without resistant starch (RS) to mice with dextran sulfate sodium (DSS)-induced colitis.

Methods

Colonic experimental colitis was induced in Balb/c mice using DSS. The severity of colitis was evaluated based on a disease activity index (based on bodyweight loss, stool consistency, rectal bleeding, and overall condition of the animal) and a histological score. Estimations were made of numbers of a range of different bacteria in the treatment pools of cecal digesta using quantitative real-time PCR.

Results

Consumption of a diet high in red meat increased DSS-induced colitis as evidenced by higher disease activity and histopathological scores. Addition of RS to the red meat diet exerted a beneficial effect in acute DSS-induced colitis. Subjective analysis of numbers of a range of bacterial targets suggest changes in the gut microbiota abundance were induced by red meat and RS treatments and these changes could contribute to the reported outcomes.

Conclusions

A dietary intake of red meat aggravates DSS-induced colitis whereas co-consumption of resistant starch reduces the severity of colitis.
Literatur
1.
Zurück zum Zitat Molodecky NA, Kaplan GG. Environmental risk factors for inflammatory bowel disease. Gastroenterol Hepatol (NY). 2010;6:339–346. Molodecky NA, Kaplan GG. Environmental risk factors for inflammatory bowel disease. Gastroenterol Hepatol (NY). 2010;6:339–346.
2.
Zurück zum Zitat Hendrickson BA, Gokhale R, Cho JH. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev. 2002;15:79–94.PubMedCrossRef Hendrickson BA, Gokhale R, Cho JH. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev. 2002;15:79–94.PubMedCrossRef
3.
Zurück zum Zitat Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307–317.PubMedCrossRef Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307–317.PubMedCrossRef
4.
Zurück zum Zitat Lakatos PL. Environmental factors affecting inflammatory bowel disease: have we made progress? Dig Dis. 2009;27:215–225.PubMedCrossRef Lakatos PL. Environmental factors affecting inflammatory bowel disease: have we made progress? Dig Dis. 2009;27:215–225.PubMedCrossRef
5.
Zurück zum Zitat Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology. 2004;126:1504–1517.PubMedCrossRef Loftus EV Jr. Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology. 2004;126:1504–1517.PubMedCrossRef
6.
Zurück zum Zitat Andersen V, Olsen A, Carbonnel F, et al. Diet and risk of inflammatory bowel disease. Dig Liver Dis. 2012;44:185–194.PubMedCrossRef Andersen V, Olsen A, Carbonnel F, et al. Diet and risk of inflammatory bowel disease. Dig Liver Dis. 2012;44:185–194.PubMedCrossRef
7.
Zurück zum Zitat Research WCRFAIoC. Food, Nutrition, Physical Activity, and the Prevention of cancer: a Global Perspective; 2007. Research WCRFAIoC. Food, Nutrition, Physical Activity, and the Prevention of cancer: a Global Perspective; 2007.
8.
Zurück zum Zitat Seril DN, Liao J, Yang GY, et al. Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis. 2003;24:353–362.PubMedCrossRef Seril DN, Liao J, Yang GY, et al. Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis. 2003;24:353–362.PubMedCrossRef
9.
Zurück zum Zitat Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001;48:526–535.PubMedCrossRef Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001;48:526–535.PubMedCrossRef
10.
Zurück zum Zitat Lucendo AJ, De Rezende LC. Importance of nutrition in inflammatory bowel disease. World J Gastroenterol. 2009;15:2081–2088.PubMedCrossRef Lucendo AJ, De Rezende LC. Importance of nutrition in inflammatory bowel disease. World J Gastroenterol. 2009;15:2081–2088.PubMedCrossRef
11.
Zurück zum Zitat Bingham SA, Day NE, Luben R, et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet. 2003;361:1496–1501.PubMedCrossRef Bingham SA, Day NE, Luben R, et al. Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. Lancet. 2003;361:1496–1501.PubMedCrossRef
12.
Zurück zum Zitat Whitehead RH, Young GP, Bhathal PS. Effects of short chain fatty acids on a new human colon carcinoma cell line (LIM1215). Gut. 1986;27:1457–1463.PubMedCrossRef Whitehead RH, Young GP, Bhathal PS. Effects of short chain fatty acids on a new human colon carcinoma cell line (LIM1215). Gut. 1986;27:1457–1463.PubMedCrossRef
13.
Zurück zum Zitat Heerdt BG, Houston MA, Augenlicht LH. Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Differ Mol Biol J Am Assoc Can Res. 1997;8:523–532. Heerdt BG, Houston MA, Augenlicht LH. Short-chain fatty acid-initiated cell cycle arrest and apoptosis of colonic epithelial cells is linked to mitochondrial function. Cell Growth Differ Mol Biol J Am Assoc Can Res. 1997;8:523–532.
14.
Zurück zum Zitat De Preter V, Arijs I, Windey K, et al. Impaired butyrate oxidation in ulcerative colitis is due to decreased butyrate uptake and a defect in the oxidation pathway. Inflamm Bowel Dis. 2012;18:1127–1136.PubMedCrossRef De Preter V, Arijs I, Windey K, et al. Impaired butyrate oxidation in ulcerative colitis is due to decreased butyrate uptake and a defect in the oxidation pathway. Inflamm Bowel Dis. 2012;18:1127–1136.PubMedCrossRef
15.
Zurück zum Zitat Vieira EL, Leonel AJ, Sad AP, et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J Nutr Biochem. 2012;23:430–436.PubMedCrossRef Vieira EL, Leonel AJ, Sad AP, et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J Nutr Biochem. 2012;23:430–436.PubMedCrossRef
16.
Zurück zum Zitat Morita T, Tanabe H, Sugiyama K, et al. Dietary resistant starch alters the characteristics of colonic mucosa and exerts a protective effect on trinitrobenzene sulfonic acid-induced colitis in rats. Biosci Biotechnol Biochem. 2004;68:2155–2164.PubMedCrossRef Morita T, Tanabe H, Sugiyama K, et al. Dietary resistant starch alters the characteristics of colonic mucosa and exerts a protective effect on trinitrobenzene sulfonic acid-induced colitis in rats. Biosci Biotechnol Biochem. 2004;68:2155–2164.PubMedCrossRef
17.
Zurück zum Zitat Okayasu I, Hatakeyama S, Yamada M, et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.PubMed Okayasu I, Hatakeyama S, Yamada M, et al. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology. 1990;98:694–702.PubMed
18.
Zurück zum Zitat Le Leu RK, Hu Y, Brown IL, et al. Effect of high amylose maize starches on colonic fermentation and apoptotic response to DNA-damage in the colon of rats. Nutr Metab (Lond). 2009;6:11.CrossRef Le Leu RK, Hu Y, Brown IL, et al. Effect of high amylose maize starches on colonic fermentation and apoptotic response to DNA-damage in the colon of rats. Nutr Metab (Lond). 2009;6:11.CrossRef
19.
Zurück zum Zitat Birkett AM, Jones GP, de Silva AM, et al. Dietary intake and faecal excretion of carbohydrate by Australians: importance of achieving stool weights greater than 150 g to improve faecal markers relevant to colon cancer risk. Eur J Clin Nutr. 1997;51:625–632.PubMedCrossRef Birkett AM, Jones GP, de Silva AM, et al. Dietary intake and faecal excretion of carbohydrate by Australians: importance of achieving stool weights greater than 150 g to improve faecal markers relevant to colon cancer risk. Eur J Clin Nutr. 1997;51:625–632.PubMedCrossRef
20.
Zurück zum Zitat Bellomonte G, Costantini A, Giammarioli S. Comparison of modified automatic Dumas method and the traditional Kjeldahl method for nitrogen determination in infant food. J Assoc Off Anal Chem. 1987;70:227–229.PubMed Bellomonte G, Costantini A, Giammarioli S. Comparison of modified automatic Dumas method and the traditional Kjeldahl method for nitrogen determination in infant food. J Assoc Off Anal Chem. 1987;70:227–229.PubMed
21.
Zurück zum Zitat Folch J, Lees M. Sloane Stanley GH: a simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.PubMed Folch J, Lees M. Sloane Stanley GH: a simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.PubMed
22.
Zurück zum Zitat Cooper HS, Murthy SN, Shah RS, et al. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69:238–249.PubMed Cooper HS, Murthy SN, Shah RS, et al. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest. 1993;69:238–249.PubMed
23.
Zurück zum Zitat Yazbeck R, Sulda ML, Howarth GS, et al. Dipeptidyl peptidase expression during experimental colitis in mice. Inflamm Bowel Dis. 2010;16:1340–1351.PubMedCrossRef Yazbeck R, Sulda ML, Howarth GS, et al. Dipeptidyl peptidase expression during experimental colitis in mice. Inflamm Bowel Dis. 2010;16:1340–1351.PubMedCrossRef
24.
Zurück zum Zitat Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques. 2004;36:808–812.PubMed Yu Z, Morrison M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques. 2004;36:808–812.PubMed
25.
Zurück zum Zitat Wang L, Christophersen CT, Sorich MJ, et al. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol. 2011;77:6718–6721.PubMedCrossRef Wang L, Christophersen CT, Sorich MJ, et al. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol. 2011;77:6718–6721.PubMedCrossRef
26.
Zurück zum Zitat Christophersen CT, Morrison M, Conlon MA. Overestimation of the abundance of sulfate-reducing bacteria in human feces by quantitative PCR targeting the Desulfovibrio 16S rRNA gene. Appl Environ Microbiol. 2011;77:3544–3546.PubMedCrossRef Christophersen CT, Morrison M, Conlon MA. Overestimation of the abundance of sulfate-reducing bacteria in human feces by quantitative PCR targeting the Desulfovibrio 16S rRNA gene. Appl Environ Microbiol. 2011;77:3544–3546.PubMedCrossRef
27.
Zurück zum Zitat Clarke JM, Topping DL, Christophersen CT, et al. Butyrate esterified to starch is released in the human gastrointestinal tract. Am J Clin Nutr. 2011;94:1276–1283.PubMedCrossRef Clarke JM, Topping DL, Christophersen CT, et al. Butyrate esterified to starch is released in the human gastrointestinal tract. Am J Clin Nutr. 2011;94:1276–1283.PubMedCrossRef
28.
Zurück zum Zitat Mondot S, Kang S, Furet JP, et al. Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis. 2011;17:185–192.PubMedCrossRef Mondot S, Kang S, Furet JP, et al. Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis. 2011;17:185–192.PubMedCrossRef
29.
Zurück zum Zitat Png CW, Linden SK, Gilshenan KS, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105:2420–2428.PubMedCrossRef Png CW, Linden SK, Gilshenan KS, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105:2420–2428.PubMedCrossRef
30.
Zurück zum Zitat Bartosch S, Fite A, Macfarlane GT, et al. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol. 2004;70:3575–3581.PubMedCrossRef Bartosch S, Fite A, Macfarlane GT, et al. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol. 2004;70:3575–3581.PubMedCrossRef
31.
Zurück zum Zitat Shoda R, Matsueda K, Yamato S, et al. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. Am J Clin Nutr. 1996;63:741–745.PubMed Shoda R, Matsueda K, Yamato S, et al. Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan. Am J Clin Nutr. 1996;63:741–745.PubMed
32.
Zurück zum Zitat Jantchou P, Morois S, Clavel-Chapelon F, et al. Animal protein intake and risk of inflammatory bowel disease: the E3 N prospective study. Am J Gastroenterol. 2010;105:2195–2201.PubMedCrossRef Jantchou P, Morois S, Clavel-Chapelon F, et al. Animal protein intake and risk of inflammatory bowel disease: the E3 N prospective study. Am J Gastroenterol. 2010;105:2195–2201.PubMedCrossRef
33.
Zurück zum Zitat Maconi G, Ardizzone S, Cucino C, et al. Pre-illness changes in dietary habits and diet as a risk factor for inflammatory bowel disease: a case-control study. World J Gastroenterol. 2010;16:4297–4304.PubMedCrossRef Maconi G, Ardizzone S, Cucino C, et al. Pre-illness changes in dietary habits and diet as a risk factor for inflammatory bowel disease: a case-control study. World J Gastroenterol. 2010;16:4297–4304.PubMedCrossRef
34.
Zurück zum Zitat Le Leu RK, Young GP. Fermentation of starch and protein in the colon: implications for genomic instability. Cancer Biol Ther. 2007;6:259–260.PubMedCrossRef Le Leu RK, Young GP. Fermentation of starch and protein in the colon: implications for genomic instability. Cancer Biol Ther. 2007;6:259–260.PubMedCrossRef
35.
Zurück zum Zitat Cummings JH, Hill MJ, Bone ES, et al. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am J Clin Nutr. 1979;32:2094–2101.PubMed Cummings JH, Hill MJ, Bone ES, et al. The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine. Am J Clin Nutr. 1979;32:2094–2101.PubMed
36.
Zurück zum Zitat Geypens B, Claus D, Evenepoel P, et al. Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut. 1997;41:70–76.PubMedCrossRef Geypens B, Claus D, Evenepoel P, et al. Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut. 1997;41:70–76.PubMedCrossRef
37.
Zurück zum Zitat Glei M, Klenow S, Sauer J, et al. Hemoglobin and hemin induce DNA damage in human colon tumor cells HT29 clone 19A and in primary human colonocytes. Mutat Res. 2006;594:162–171.PubMedCrossRef Glei M, Klenow S, Sauer J, et al. Hemoglobin and hemin induce DNA damage in human colon tumor cells HT29 clone 19A and in primary human colonocytes. Mutat Res. 2006;594:162–171.PubMedCrossRef
38.
Zurück zum Zitat Sesink AL, Termont DS, Kleibeuker JH, et al. Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme. Cancer Res. 1999;59:5704–5709.PubMed Sesink AL, Termont DS, Kleibeuker JH, et al. Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme. Cancer Res. 1999;59:5704–5709.PubMed
39.
Zurück zum Zitat Toden S, Bird AR, Topping DL, et al. Resistant starch prevents colonic DNA damage induced by high dietary cooked red meat or casein in rats. Cancer Biol Ther. 2006;5:267–272.PubMedCrossRef Toden S, Bird AR, Topping DL, et al. Resistant starch prevents colonic DNA damage induced by high dietary cooked red meat or casein in rats. Cancer Biol Ther. 2006;5:267–272.PubMedCrossRef
40.
Zurück zum Zitat Winter J, Nyskohus L, Young GP, et al. Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon. Cancer Prev Res (Phila). 2011;4:1920–1928.CrossRef Winter J, Nyskohus L, Young GP, et al. Inhibition by resistant starch of red meat-induced promutagenic adducts in mouse colon. Cancer Prev Res (Phila). 2011;4:1920–1928.CrossRef
41.
Zurück zum Zitat Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr. 1992;46:S33–S50.PubMed Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr. 1992;46:S33–S50.PubMed
42.
Zurück zum Zitat Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81:1031–1064.PubMed Topping DL, Clifton PM. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol Rev. 2001;81:1031–1064.PubMed
43.
Zurück zum Zitat Andoh A, Tsujikawa T, Fujiyama Y. Role of dietary fiber and short-chain fatty acids in the colon. Curr Pharm Des. 2003;9:347–358.PubMedCrossRef Andoh A, Tsujikawa T, Fujiyama Y. Role of dietary fiber and short-chain fatty acids in the colon. Curr Pharm Des. 2003;9:347–358.PubMedCrossRef
44.
45.
Zurück zum Zitat Le Leu RK, Hu Y, Brown IL, et al. Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis. 2010;31:246–251.PubMedCrossRef Le Leu RK, Hu Y, Brown IL, et al. Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis. 2010;31:246–251.PubMedCrossRef
46.
Zurück zum Zitat Le Leu RK, Brown IL, Hu Y, et al. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Carcinogenesis. 2007;28:240–245.PubMedCrossRef Le Leu RK, Brown IL, Hu Y, et al. Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats. Carcinogenesis. 2007;28:240–245.PubMedCrossRef
47.
Zurück zum Zitat Toden S, Bird AR, Topping DL, et al. High red meat diets induce greater numbers of colonic DNA double-strand breaks than white meat in rats: attenuation by high-amylose maize starch. Carcinogenesis. 2007;28:2355–2362.PubMedCrossRef Toden S, Bird AR, Topping DL, et al. High red meat diets induce greater numbers of colonic DNA double-strand breaks than white meat in rats: attenuation by high-amylose maize starch. Carcinogenesis. 2007;28:2355–2362.PubMedCrossRef
48.
Zurück zum Zitat Cummings JH, Macfarlane GT. Role of intestinal bacteria in nutrient metabolism. JPEN. 1997;21:357–365.CrossRef Cummings JH, Macfarlane GT. Role of intestinal bacteria in nutrient metabolism. JPEN. 1997;21:357–365.CrossRef
49.
Zurück zum Zitat Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–211.PubMedCrossRef Manichanh C, Rigottier-Gois L, Bonnaud E, et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut. 2006;55:205–211.PubMedCrossRef
50.
Zurück zum Zitat Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohns disease patients. PNAS. 2008;105:16731–16736.PubMedCrossRef Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohns disease patients. PNAS. 2008;105:16731–16736.PubMedCrossRef
51.
Zurück zum Zitat Sokol H, Seksik P, Furet JP, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15:1183–1189.PubMedCrossRef Sokol H, Seksik P, Furet JP, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15:1183–1189.PubMedCrossRef
52.
Zurück zum Zitat Toden S, Bird AR, Topping DL, et al. Dose-dependent reduction of dietary protein-induced colonocyte DNA damage by resistant starch in rats correlates more highly with caecal butyrate than with other short chain fatty acids. Cancer Biol Ther. 2007;6:253–258.PubMed Toden S, Bird AR, Topping DL, et al. Dose-dependent reduction of dietary protein-induced colonocyte DNA damage by resistant starch in rats correlates more highly with caecal butyrate than with other short chain fatty acids. Cancer Biol Ther. 2007;6:253–258.PubMed
Metadaten
Titel
Dietary Red Meat Aggravates Dextran Sulfate Sodium-Induced Colitis in Mice Whereas Resistant Starch Attenuates Inflammation
verfasst von
Richard K. Le Leu
Graeme P. Young
Ying Hu
Jean Winter
Michael A. Conlon
Publikationsdatum
01.12.2013
Verlag
Springer US
Erschienen in
Digestive Diseases and Sciences / Ausgabe 12/2013
Print ISSN: 0163-2116
Elektronische ISSN: 1573-2568
DOI
https://doi.org/10.1007/s10620-013-2844-1

Weitere Artikel der Ausgabe 12/2013

Digestive Diseases and Sciences 12/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.