Skip to main content
Erschienen in: Investigational New Drugs 3/2012

01.06.2012 | PRECLINICAL STUDIES

Inhibition of TGF-β signaling, vasculogenic mimicry and proinflammatory gene expression by isoxanthohumol

verfasst von: Annegret Serwe, Kristina Rudolph, Timm Anke, Gerhard Erkel

Erschienen in: Investigational New Drugs | Ausgabe 3/2012

Einloggen, um Zugang zu erhalten

Summary

TGF-β is a multifunctional cytokine that regulates cell proliferation, differentiation, apoptosis and extracellular matrix production. Deregulation of TGF-β production or signaling has been associated with a variety of pathological processes such as cancer, metastasis, angiogenesis and fibrosis. Therefore, TGF-β signaling has emerged as an attractive target for the development of new cancer therapeutics. In a screening program of natural compounds from fungi inhibiting the TGF-β dependent expression of a reporter gene in HepG2 cells, we found that the flavone isoxanthohumol inhibited the binding of the activated Smad2/3 transcription factors to the DNA and antagonized the cellular effects of TGF-β including reporter gene activation and expression of TGF-β induced genes in HepG2 and MDA-MB-231 cells. In an in vitro angiogenesis assay, isoxanthohumol (56 μM) strongly decreased the formation of capillary-like tubules of MDA-MB-231 cells on Matrigel. In addition, we found that isoxanthohumol blocked IFN-γ, IL-4 and IL-6 dependent Jak/Stat signaling and strongly inhibited the induction of pro-inflammatory genes in MonoMac6 cells at the transcriptional level after LPS/TPA treatment.
Literatur
1.
Zurück zum Zitat Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821PubMedCrossRef Siegel PM, Massague J (2003) Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 3:807–821PubMedCrossRef
2.
Zurück zum Zitat Li MO, Wan YY, Sanjabi S, Robertson A-KL, Flavell RA (2006) Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 24:99–149PubMedCrossRef Li MO, Wan YY, Sanjabi S, Robertson A-KL, Flavell RA (2006) Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 24:99–149PubMedCrossRef
3.
Zurück zum Zitat Massague J, Seoane J, Wotton D (2006) Smad transcription factors. Genes Dev 19:2783–2810CrossRef Massague J, Seoane J, Wotton D (2006) Smad transcription factors. Genes Dev 19:2783–2810CrossRef
4.
Zurück zum Zitat Gordon KJ, Blobe GC (2008) Role of transforming growth factor-β super family signaling pathways in human disease. Biochim Biophys Acta 1782:197–228PubMed Gordon KJ, Blobe GC (2008) Role of transforming growth factor-β super family signaling pathways in human disease. Biochim Biophys Acta 1782:197–228PubMed
5.
Zurück zum Zitat Feng X-H, Derynck R (2005) Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21:659–693PubMedCrossRef Feng X-H, Derynck R (2005) Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21:659–693PubMedCrossRef
7.
Zurück zum Zitat Pardali K, Moustakas A (2007) Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775:21–62PubMed Pardali K, Moustakas A (2007) Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer. Biochim Biophys Acta 1775:21–62PubMed
8.
Zurück zum Zitat Bierie B, Moses HL (2006) TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520PubMedCrossRef Bierie B, Moses HL (2006) TGFβ: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer 6:506–520PubMedCrossRef
9.
Zurück zum Zitat Leivonen S-K, Kähäri V-M (2007) Transforming growth factor-β signaling in cancer invasion and metastasis. Int J Cancer 121:2119–2124PubMedCrossRef Leivonen S-K, Kähäri V-M (2007) Transforming growth factor-β signaling in cancer invasion and metastasis. Int J Cancer 121:2119–2124PubMedCrossRef
10.
Zurück zum Zitat Bertolino P, Deckers M, Lebrin F, ten Dijke P (2005) Transforming growth factor-β signal transduction in angiogenesis and vascular disorders. Chest 128:585S–590SPubMedCrossRef Bertolino P, Deckers M, Lebrin F, ten Dijke P (2005) Transforming growth factor-β signal transduction in angiogenesis and vascular disorders. Chest 128:585S–590SPubMedCrossRef
11.
Zurück zum Zitat Wahl SM, Wen J, Moutsopoulos N (2006) TGF-β: a mobile purveyor of immune privilege. Immunol Rev 213:213–227PubMedCrossRef Wahl SM, Wen J, Moutsopoulos N (2006) TGF-β: a mobile purveyor of immune privilege. Immunol Rev 213:213–227PubMedCrossRef
12.
Zurück zum Zitat Yingling JM, Blanchard KL, Sawyer S (2004) Development of TGF-β signaling inhibitors for cancer therapy. Nat Rev Drug Discov 3:1011–1022PubMedCrossRef Yingling JM, Blanchard KL, Sawyer S (2004) Development of TGF-β signaling inhibitors for cancer therapy. Nat Rev Drug Discov 3:1011–1022PubMedCrossRef
13.
Zurück zum Zitat Iyer S, Wang Z-G, Akhtari M, Zhao W, Seth P (2005) Targeting TGFβ signaling for cancer therapy. Cancer Biol Ther 4:261–266PubMedCrossRef Iyer S, Wang Z-G, Akhtari M, Zhao W, Seth P (2005) Targeting TGFβ signaling for cancer therapy. Cancer Biol Ther 4:261–266PubMedCrossRef
14.
Zurück zum Zitat Pinkas J, Teicher BA (2006) TGF-β in cancer and as therapeutic target. Biochem Pharmacol 72:523–529PubMedCrossRef Pinkas J, Teicher BA (2006) TGF-β in cancer and as therapeutic target. Biochem Pharmacol 72:523–529PubMedCrossRef
15.
Zurück zum Zitat Mojzis J, Varinska L, Mojzisova G, Kostova I, Mirossay L (2008) Antiangiogenic effects of flavonoids and chalcones. Pharmacol Res 57:259–265PubMedCrossRef Mojzis J, Varinska L, Mojzisova G, Kostova I, Mirossay L (2008) Antiangiogenic effects of flavonoids and chalcones. Pharmacol Res 57:259–265PubMedCrossRef
16.
Zurück zum Zitat Gerhäuser C (2005) Beer constituents as potential cancer chemo preventive agents. Eur J Cancer 41:1941–1954PubMedCrossRef Gerhäuser C (2005) Beer constituents as potential cancer chemo preventive agents. Eur J Cancer 41:1941–1954PubMedCrossRef
17.
Zurück zum Zitat Juvvadi PR, Seshime Y, Kitamoto K (2005) Genomics reveals traces of fungal phenylpropanoid-flavonoid metabolic pathway in the filamentous fungus Aspergillus oryzae. J Microbiol 43:475–486PubMed Juvvadi PR, Seshime Y, Kitamoto K (2005) Genomics reveals traces of fungal phenylpropanoid-flavonoid metabolic pathway in the filamentous fungus Aspergillus oryzae. J Microbiol 43:475–486PubMed
18.
Zurück zum Zitat White TJ, Bruns T, Lee S, Taylor AW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc, San Diego, pp 315–322 White TJ, Bruns T, Lee S, Taylor AW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, Inc, San Diego, pp 315–322
19.
Zurück zum Zitat Stevens JF, Taylor AW, Deinzer ML (1999) Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography—tandem mass spectrometry. J Chromatogr A 832:97–107PubMedCrossRef Stevens JF, Taylor AW, Deinzer ML (1999) Quantitative analysis of xanthohumol and related prenylflavonoids in hops and beer by liquid chromatography—tandem mass spectrometry. J Chromatogr A 832:97–107PubMedCrossRef
20.
Zurück zum Zitat Roehm NW, Rodgers H, Hatfield SM, Glasebrook AL (1991) An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Meth 142:257–265CrossRef Roehm NW, Rodgers H, Hatfield SM, Glasebrook AL (1991) An improved colorimetric assay for cell proliferation and viability utilizing the tetrazolium salt XTT. J Immunol Meth 142:257–265CrossRef
21.
Zurück zum Zitat Erkel G, Belahmer H, Serwe A, Anke T, Kunz H, Kolshorn H, Liermann J, Opatz T (2008) Oxacyclododecindione, a novel inhibitor of IL-4 signaling from Exserohilum rostratum. J Antibiot (Tokyo) 61:285–290CrossRef Erkel G, Belahmer H, Serwe A, Anke T, Kunz H, Kolshorn H, Liermann J, Opatz T (2008) Oxacyclododecindione, a novel inhibitor of IL-4 signaling from Exserohilum rostratum. J Antibiot (Tokyo) 61:285–290CrossRef
22.
Zurück zum Zitat Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100PubMedCrossRef Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM (1998) Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 17:3091–3100PubMedCrossRef
23.
Zurück zum Zitat Mikita T, Campbell D, Wu P, Williamson K, Schindler U (1996) Requirements for interleukin-4-induced gene expression and functional characterization of STAT6. Mol Cell Biol 16:5811–5820PubMed Mikita T, Campbell D, Wu P, Williamson K, Schindler U (1996) Requirements for interleukin-4-induced gene expression and functional characterization of STAT6. Mol Cell Biol 16:5811–5820PubMed
24.
Zurück zum Zitat Weidler M, Rether J, Anke T, Erkel G (2000) Inhibition of interleukin-6 signaling by galiellalactone. FEBS Lett 484:1–6PubMedCrossRef Weidler M, Rether J, Anke T, Erkel G (2000) Inhibition of interleukin-6 signaling by galiellalactone. FEBS Lett 484:1–6PubMedCrossRef
25.
Zurück zum Zitat Rether J, Erkel G, Anke T, Sterner O (2004) Inhibition of inducible TNF-α expression by oxaspirodion, a novel spiro-compound from the ascomycete Chaetomium subspirale. Biol Chem 385:829–834PubMedCrossRef Rether J, Erkel G, Anke T, Sterner O (2004) Inhibition of inducible TNF-α expression by oxaspirodion, a novel spiro-compound from the ascomycete Chaetomium subspirale. Biol Chem 385:829–834PubMedCrossRef
26.
Zurück zum Zitat Spurrell JCL, Wiehler S, Zaheer RS, Sanders SP, Proud D (2005) Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 289:85–95CrossRef Spurrell JCL, Wiehler S, Zaheer RS, Sanders SP, Proud D (2005) Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 289:85–95CrossRef
27.
Zurück zum Zitat Ray S, Sherman CT, Lu M, Brasier AR (2002) Angiotensinogen gene expression is dependent on signal transducer and activator of transcription 3-mediated p300/cAMP response element binding protein-binding protein coactivator recruitment and histone acyltransferase activity. Mol Endocrinol 16:824–836PubMedCrossRef Ray S, Sherman CT, Lu M, Brasier AR (2002) Angiotensinogen gene expression is dependent on signal transducer and activator of transcription 3-mediated p300/cAMP response element binding protein-binding protein coactivator recruitment and histone acyltransferase activity. Mol Endocrinol 16:824–836PubMedCrossRef
28.
Zurück zum Zitat Pahl HL, Baeuerle PA (1995) A novel signal transduction pathway from the endoplasmatic reticulum to the nucleus is mediated by transcription factor NF-κB. EMBO J 14:2580–2588PubMed Pahl HL, Baeuerle PA (1995) A novel signal transduction pathway from the endoplasmatic reticulum to the nucleus is mediated by transcription factor NF-κB. EMBO J 14:2580–2588PubMed
29.
Zurück zum Zitat Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA (2002) Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 62:3729–3735PubMed Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA (2002) Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 62:3729–3735PubMed
30.
Zurück zum Zitat Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007CrossRef Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007CrossRef
31.
Zurück zum Zitat Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281–290PubMedCrossRef Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281–290PubMedCrossRef
32.
Zurück zum Zitat Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634PubMedCrossRef Semenza GL (2010) Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29:625–634PubMedCrossRef
33.
Zurück zum Zitat Melillo G (2007) Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev 26:341–352PubMedCrossRef Melillo G (2007) Targeting hypoxia cell signaling for cancer therapy. Cancer Metastasis Rev 26:341–352PubMedCrossRef
34.
Zurück zum Zitat Abdollah S, Macias-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL (1997) TßRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 272:27678–27685PubMedCrossRef Abdollah S, Macias-Silva M, Tsukazaki T, Hayashi H, Attisano L, Wrana JL (1997) TßRI phosphorylation of Smad2 on Ser465 and Ser467 is required for Smad2-Smad4 complex formation and signaling. J Biol Chem 272:27678–27685PubMedCrossRef
35.
Zurück zum Zitat Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, ten Dijke P, Heldin CH (1997) Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem 272:28107–28115PubMedCrossRef Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, ten Dijke P, Heldin CH (1997) Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-beta signaling. J Biol Chem 272:28107–28115PubMedCrossRef
36.
Zurück zum Zitat Liu X, Sun Y, Constantinescu SN, Karam E, Weinberg RA, Lodish HF (1997) Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc Natl Acad Sci USA 94:10669–10674PubMedCrossRef Liu X, Sun Y, Constantinescu SN, Karam E, Weinberg RA, Lodish HF (1997) Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc Natl Acad Sci USA 94:10669–10674PubMedCrossRef
37.
Zurück zum Zitat Chen CR, Kang Y, Massague J (2001) Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program. Proc Natl Acad Sci USA 98:992–999PubMedCrossRef Chen CR, Kang Y, Massague J (2001) Defective repression of c-myc in breast cancer cells: a loss at the core of the transforming growth factor β growth arrest program. Proc Natl Acad Sci USA 98:992–999PubMedCrossRef
38.
Zurück zum Zitat Deng J, Grande F, Neamati N (2007) Small molecule inhibitors of Stat3 signaling pathway. Curr Cancer Drug Targets 7:91–107PubMedCrossRef Deng J, Grande F, Neamati N (2007) Small molecule inhibitors of Stat3 signaling pathway. Curr Cancer Drug Targets 7:91–107PubMedCrossRef
39.
Zurück zum Zitat Klampfer L (2006) Signal transducers and activators of transcription (STATs): novel targets of chemo preventive and chemotherapeutic drugs. Curr Cancer Drug Targets 6:107–121PubMedCrossRef Klampfer L (2006) Signal transducers and activators of transcription (STATs): novel targets of chemo preventive and chemotherapeutic drugs. Curr Cancer Drug Targets 6:107–121PubMedCrossRef
40.
Zurück zum Zitat Janknecht R, Wells NJ, Hunter T (1998) TGF-β-stimulated cooperation of Smad proteins with the coactivators CBP/p300. Genes Dev 12:2114–2119PubMedCrossRef Janknecht R, Wells NJ, Hunter T (1998) TGF-β-stimulated cooperation of Smad proteins with the coactivators CBP/p300. Genes Dev 12:2114–2119PubMedCrossRef
41.
Zurück zum Zitat Simonsson M, Kanduri M, Grönroos E, Heldin C-H, Ericsson J (2006) The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J Biol Chem 281:39870–39880PubMedCrossRef Simonsson M, Kanduri M, Grönroos E, Heldin C-H, Ericsson J (2006) The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J Biol Chem 281:39870–39880PubMedCrossRef
42.
Zurück zum Zitat Hebenstreit D, Wirnsberger G, Horejs-Hoeck J, Duschl A (2006) Signaling mechanisms, interaction partners, and target genes of Stat6. Cytokine Growth Factor Rev 17:173–188PubMedCrossRef Hebenstreit D, Wirnsberger G, Horejs-Hoeck J, Duschl A (2006) Signaling mechanisms, interaction partners, and target genes of Stat6. Cytokine Growth Factor Rev 17:173–188PubMedCrossRef
43.
Zurück zum Zitat Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444PubMedCrossRef Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444PubMedCrossRef
44.
Zurück zum Zitat Gaestel M, Kotlyarov A, Kracht M (2009) Targeting innate immunity protein kinase signalling in inflammation. Nat Rev Drug Discov 8:480–499PubMedCrossRef Gaestel M, Kotlyarov A, Kracht M (2009) Targeting innate immunity protein kinase signalling in inflammation. Nat Rev Drug Discov 8:480–499PubMedCrossRef
45.
Zurück zum Zitat Wrzesinski SH, Wan YY, Flavell RA (2007) Transforming growth factor-β and the immune response: Implications for anticancer therapy. Clin Cancer Res 13:5262–5270PubMedCrossRef Wrzesinski SH, Wan YY, Flavell RA (2007) Transforming growth factor-β and the immune response: Implications for anticancer therapy. Clin Cancer Res 13:5262–5270PubMedCrossRef
46.
Zurück zum Zitat von Gersdorff G, Susztak K, Rezvani F, Bitzer M, Liang D, Boettinger EP (2000) Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor β. J Biol Chem 275:11320–11326CrossRef von Gersdorff G, Susztak K, Rezvani F, Bitzer M, Liang D, Boettinger EP (2000) Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor β. J Biol Chem 275:11320–11326CrossRef
47.
Zurück zum Zitat Javelaud D, Mauviel A (2005) Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-β: implications for carcinogenesis. Oncogene 24:5742–5750PubMedCrossRef Javelaud D, Mauviel A (2005) Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-β: implications for carcinogenesis. Oncogene 24:5742–5750PubMedCrossRef
48.
Zurück zum Zitat Zhang S, Zhang D, Sun B (2007) Vasculogenic mimicry: current status and future prospects. Cancer Lett 254:157–164PubMedCrossRef Zhang S, Zhang D, Sun B (2007) Vasculogenic mimicry: current status and future prospects. Cancer Lett 254:157–164PubMedCrossRef
49.
Zurück zum Zitat Paulis YWJ, Soetekouw PMMB, Verheul HMW, Tjan-Heijnen VCG, Griffioen AW (2010) Signalling pathways in vasculogenic mimicry. Biochim Biophys Acta 1806:18–28PubMed Paulis YWJ, Soetekouw PMMB, Verheul HMW, Tjan-Heijnen VCG, Griffioen AW (2010) Signalling pathways in vasculogenic mimicry. Biochim Biophys Acta 1806:18–28PubMed
50.
51.
52.
Zurück zum Zitat Inoue Y, Itoh Y, Abe K, Okamoto T, Daitoku H, Fukamizu A, Onozaki K, Hayashi H (2007) Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene 26:500–508PubMedCrossRef Inoue Y, Itoh Y, Abe K, Okamoto T, Daitoku H, Fukamizu A, Onozaki K, Hayashi H (2007) Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene 26:500–508PubMedCrossRef
53.
Zurück zum Zitat Shankaranarayanan P, Chaitidis P, Kühn H, Nigam S (2001) Acetylation by histone acetyltransferase CREB-binding protein/p300 of Stat6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. J Biol Chem 276:42753–42760PubMedCrossRef Shankaranarayanan P, Chaitidis P, Kühn H, Nigam S (2001) Acetylation by histone acetyltransferase CREB-binding protein/p300 of Stat6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. J Biol Chem 276:42753–42760PubMedCrossRef
54.
Zurück zum Zitat Yu H, Jove R (2004) The Stats of cancer-new molecular targets come of age. Nat Rev Cancer 4:97–105PubMedCrossRef Yu H, Jove R (2004) The Stats of cancer-new molecular targets come of age. Nat Rev Cancer 4:97–105PubMedCrossRef
55.
Zurück zum Zitat Devarajan E, Huang S (2009) STAT3 as a central regulator of tumor metastases. Curr Mol Med 9:626–633PubMedCrossRef Devarajan E, Huang S (2009) STAT3 as a central regulator of tumor metastases. Curr Mol Med 9:626–633PubMedCrossRef
56.
Zurück zum Zitat Chen Z, Han ZC (2008) Stat3: a critical transcription activator in angiogenesis. Med Res Rev 28:185–200PubMedCrossRef Chen Z, Han ZC (2008) Stat3: a critical transcription activator in angiogenesis. Med Res Rev 28:185–200PubMedCrossRef
57.
Zurück zum Zitat Berg T (2008) Signal transducers and activators of transcription as targets for small organic molecules. Chembiochem 9:2039–2044PubMedCrossRef Berg T (2008) Signal transducers and activators of transcription as targets for small organic molecules. Chembiochem 9:2039–2044PubMedCrossRef
58.
Zurück zum Zitat Lin W-W, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation and cancer. J Clin Invest 117:1175–1183PubMedCrossRef Lin W-W, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation and cancer. J Clin Invest 117:1175–1183PubMedCrossRef
59.
Zurück zum Zitat Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72:1605–1621PubMedCrossRef Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G (2006) Inflammation and cancer: how hot is the link? Biochem Pharmacol 72:1605–1621PubMedCrossRef
60.
Zurück zum Zitat Nakanishi C, Toi M (2005) Nuclear factor-κB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5:297–309PubMedCrossRef Nakanishi C, Toi M (2005) Nuclear factor-κB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5:297–309PubMedCrossRef
61.
Zurück zum Zitat Gerhauser C, Alt A, Heiss E, Gamal-Eldeen A, Klimo K, Knauft J, Neumann I, Scherf H-R, Frank N, Bartsch H, Becker H (2002) Cancer chemo preventive activity of xanthohumol, a natural product derived from hop. Mol Cancer Ther 1:959–969PubMed Gerhauser C, Alt A, Heiss E, Gamal-Eldeen A, Klimo K, Knauft J, Neumann I, Scherf H-R, Frank N, Bartsch H, Becker H (2002) Cancer chemo preventive activity of xanthohumol, a natural product derived from hop. Mol Cancer Ther 1:959–969PubMed
62.
Zurück zum Zitat Albini A, Dell’Eva R, Vene R, Ferrari N, Buhler DR, Noonan DM, Fassina G (2006) Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J 20:527–529PubMed Albini A, Dell’Eva R, Vene R, Ferrari N, Buhler DR, Noonan DM, Fassina G (2006) Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J 20:527–529PubMed
63.
Zurück zum Zitat Harikumar KB, Kunnumakkara AB, Ahn KS, Anand P, Krishnan S, Guha S, Aggarwal BB (2009) Modification of the cysteine residues in IκBα kinase and NF-κB (p65) by xanthohumol leads to suppression of NF-κB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood 113:2003–2013PubMedCrossRef Harikumar KB, Kunnumakkara AB, Ahn KS, Anand P, Krishnan S, Guha S, Aggarwal BB (2009) Modification of the cysteine residues in IκBα kinase and NF-κB (p65) by xanthohumol leads to suppression of NF-κB-regulated gene products and potentiation of apoptosis in leukemia cells. Blood 113:2003–2013PubMedCrossRef
64.
Zurück zum Zitat Vanhoecke B, Derycke L, Van Marck V, Depypere H, De Keukeleire D, Bracke M (2005) Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int J Cancer 117:889–895PubMedCrossRef Vanhoecke B, Derycke L, Van Marck V, Depypere H, De Keukeleire D, Bracke M (2005) Antiinvasive effect of xanthohumol, a prenylated chalcone present in hops (Humulus lupulus L.) and beer. Int J Cancer 117:889–895PubMedCrossRef
65.
Zurück zum Zitat Monteiro R, Calhau C, e Silva AO, Pinheiro-Silva S, Guerreiro S, Gärtner F, Azevedo I, Soares R (2008) Xanthohumol Inhibits inflammatory factor production and angiogenesis in breast cancer xenografts. J Cell Biochem 04:1699–1707CrossRef Monteiro R, Calhau C, e Silva AO, Pinheiro-Silva S, Guerreiro S, Gärtner F, Azevedo I, Soares R (2008) Xanthohumol Inhibits inflammatory factor production and angiogenesis in breast cancer xenografts. J Cell Biochem 04:1699–1707CrossRef
66.
Zurück zum Zitat Cho Y-C, Kim HJ, Kim Y-J, Lee KY, Choi HJ, Lee I-S, Kang BY (2008) Differential anti-inflammatory pathway by xanthohumol in IFN-γ and LPS-activated macrophages. Int Immunopharmacol 8:567–573PubMedCrossRef Cho Y-C, Kim HJ, Kim Y-J, Lee KY, Choi HJ, Lee I-S, Kang BY (2008) Differential anti-inflammatory pathway by xanthohumol in IFN-γ and LPS-activated macrophages. Int Immunopharmacol 8:567–573PubMedCrossRef
67.
Zurück zum Zitat Bertl E, Becker H, Eicher T, Herhaus C, Kapadia G, Bartsch H, Gerhäuser C (2004) Inhibition of endothelial cell functions by novel potential cancer chemo preventive agents. Biochem Biophys Res Commun 325:287–295PubMedCrossRef Bertl E, Becker H, Eicher T, Herhaus C, Kapadia G, Bartsch H, Gerhäuser C (2004) Inhibition of endothelial cell functions by novel potential cancer chemo preventive agents. Biochem Biophys Res Commun 325:287–295PubMedCrossRef
Metadaten
Titel
Inhibition of TGF-β signaling, vasculogenic mimicry and proinflammatory gene expression by isoxanthohumol
verfasst von
Annegret Serwe
Kristina Rudolph
Timm Anke
Gerhard Erkel
Publikationsdatum
01.06.2012
Verlag
Springer US
Erschienen in
Investigational New Drugs / Ausgabe 3/2012
Print ISSN: 0167-6997
Elektronische ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-011-9643-3

Weitere Artikel der Ausgabe 3/2012

Investigational New Drugs 3/2012 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.