Skip to main content
Log in

Use and abuse of Pb-isotope fingerprinting technique and GIS mapping data to assess lead in environmental studies

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The danger to health, especially of young children, from lead-bearing particulates in the surface environment is still a valid concern. Given the multifaceted uses of lead today as well as historically, the sources of lead must be investigated to distinguish the etiology of lead contamination on the environment. The lead isotope finger printing technique based on isotopic ratio analyses (IRA) is one of the methods used commonly for provenancing lead sources in environmental studies throughout the world. This technique, however, has some inherited shortcomings. Therefore, caution must be used in the interpretation of the results, as this technique can lead to overestimations as well as underestimations of the true source etiology/apportionment of lead in specific environments. This paper illustrates this with some examples. Data on geographical information systems (GIS) mapping in urban regions are also presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agency for Toxic Substances and Disease Registry (1988). The nature and extent of lead poisoning in children in the united states: A report to congress.

  • Al-Chalabi, A. S., & Hawker, D. (1997). Response of vehicular lead to the presence of street dust in the atmospheric environment of major roads. The Science of the Total Environment, 206, 195–202.

    CAS  Google Scholar 

  • Alloway, B. J. (1995). The origins of heavy metals in soils. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 38–57). Reading, UK: Blackie Academic & Professional.

    Google Scholar 

  • Angle, C. R., Manton, W. I., & Stanek, K. L. (1995). Stable isotope identification of lead sources in preschool children—The Omaha study. Journal of Toxicology. Clinical Toxicology, 33, 657–662.

    CAS  Google Scholar 

  • Binns, H. J., Gray, K. A., Chen, T., et al. (2004). Evaluation of landscape coverings to reduce soil lead hazards in urban residential yards: The safer yards project. Environmental Research, 96, 127–138.

    Article  CAS  Google Scholar 

  • Bollhofer, A., & Rosman, K. J. R. (2000). Isotopic source signatures for atmospheric lead: The Southern Hemisphere. Geochimica et Cosmochimica Acta, 64, 3251–3262.

    Article  CAS  Google Scholar 

  • Bollhofer, A., & Rosman, K. J. R. (2001). Isotopic source signatures for atmospheric lead: The northern hemisphere. Geochimica et Cosmochimica Acta, 65, 1727–1740.

    Article  CAS  Google Scholar 

  • Bushnell, P. J., & Jaeger, R. J. (1986). Hazards to health from environmental lead exposure: A review of recent literature. Veterinary and Human Toxicology, 28, 255–261.

    CAS  Google Scholar 

  • Canfield, R. L., Henderson, C. R., Coryslechta, D. A., Cox, C., Jusko, T. A., & Lanphear, B. P. (2003). Intellectual impairment in children with blood lead concentrations below 10 mg per deciliter. The New England Journal of Medicine, 348, 1517–1526.

    Article  CAS  Google Scholar 

  • Caravanos, J., Weiss, A. L., Blaise, M. J., & Jaeger, R. J. (2006). A survey of spatially distributed exterior dust lead loadings in New York City. Environmental Research, 100, 165–172.

    Article  CAS  Google Scholar 

  • Centers for Disease Control (1991). Preventing lead poisoning in young children. A statement by the Centers for Disease Control. 4th rev Atlanta Ga Centers for Disease Control: US Department of Health and Human Services/Public Health Service, October 1991.

  • Clark, H. F., Brabander, D. J., & Erdinc, E. (2006). Sources, sinks, and exposure pathways of lead in urban garden soil. Journal of Environmental Quality, 5(6), 2066–2074.

    Article  CAS  Google Scholar 

  • Davies, B. E. (1995). Lead. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 206–223). Reading, UK: Blackie Academic & Professional.

    Google Scholar 

  • Duzgoren-Aydin, N. (2007). Sources and characteristics of lead pollution in the urban environment of Guangzhou. Science of the Total Environment, 385, 182–195.

    Article  CAS  Google Scholar 

  • Duzgoren-Aydin, N., Li, X., & Wong, S. (2004). Lead contamination and isotope signatures in the urban environment of Hong Kong. Environment International, 30, 209–217.

    Article  CAS  Google Scholar 

  • Duzgoren-Aydin, N., Wong, C. S. C., Aydin, A., Song, Z., You, M., & Li, X. D. (2006a). Heavy metal contamination and distribution in the urban environment of Guangzhou, SE China. Environmental Geochemistry and Health, 28, 375–391.

    Article  CAS  Google Scholar 

  • Duzgoren-Aydin, N., Wong, C. S. C., Song, Z., Aydin, A., Li, X. D., & You, M. (2006b). Fate of heavy metal contaminants in road dusts and gully sediments in Guangzzhou, SE China: A chemical and mineralogical assessment. Human and Ecological Risk Assessment, 12, 374–389.

    Article  CAS  Google Scholar 

  • EPA, E.C.A.O. (2006). Air quality criteria for lead. EPA Research & Development, Volume 1 of 2.

  • Facchetti, S. (1989). Lead in petrol, the isotopic lead experiment. Accounts of Chemical Research, 22, 370–374.

    Article  CAS  Google Scholar 

  • Farfel, M. R., Orlova, A. O., Lees, P. S. J., et al. (2003). A study of urban housing demolitions as sources of lead in ambient dust: Demolition Practices and exterior dust fall. Enviromental Health Perspectives, 111, 1228–1234.

    CAS  Google Scholar 

  • Farfel, M. R., Orlova, A. O., Lees, P. S. J., et al. (2004). A study of urban housing demolition as a source of lead in ambient dust on sidewalks, streets, and alleys. Environmental Research, 99, 204–213.

    Google Scholar 

  • Flament, P., Bertho, M.-L., Deboudt, K., et al. (2002). European isotopic signatures for lead in atmospheric aerolols: A source apportionment based upon 206Pb/207Pb ratios. The Science of the Total Environment, 296, 35–57.

    Article  CAS  Google Scholar 

  • Florig, H. K. (2007). Air pollution risks. Environmental Science & Technology News, 32, 274A–297A.

    Google Scholar 

  • Graziano, J. H., Blum, C. B., Lolacono, N. J., Slavkovich, V., Manton, W. I., Pond, S., et al. (1996). Human in vivo model for the determination of lead bioavailability using stable isotope dilution. Environmental Health Perspectives, 104, 176–179.

    Article  CAS  Google Scholar 

  • Gulson, B. L., & Gillings, B. R. (1997). Lead exchange in teeth and bone—A pilot study using stable lead isotopes. Environmental Health Perspectives, 105, 820–824.

    Article  CAS  Google Scholar 

  • Gulson, B. L., Korsch, M., Dickson, B., Cohen, D., Mizon, K., & Davis, J. M. (2007). Comparison of lead isotopes with source apportionment models, including SOM, for air particulates. Science of the Total Environment, 381, 169–179.

    Article  CAS  Google Scholar 

  • Gulson, B., Mizon, K., Korsch, M., & Taylor, A. (2006). Changes in the lead isotopic composition of blood, diet and air in Australia over a decade: Globalization and implications for future isotopic studies. Environmental Research, 100, 130–138.

    Article  CAS  Google Scholar 

  • Harris, A. R., & Davidson, C. I. (2005). The role of resuspended soil in lead flows in the California south coast air basin. Environmental Science & Technology, 39, 7410–7415.

    Article  CAS  Google Scholar 

  • Harrison, R. M., Tilling, R., Callen Romero, M. S., et al. (2003). A study of trace metals and polycyclic aromatic hydrocarbons in the roadside environment. Atmospheric Environment, 37, 2391–2402.

    Article  CAS  Google Scholar 

  • Hjortenkrans, D. S. T., Bergback, B. G., & Haggerud, A. V. (2007). Metal emissions from brake linings and tires: Case studies of Stockholm, Sweden 1995/1998 and 2005. Environmental Science & Technology, 41, 5224–5230.

    Article  CAS  Google Scholar 

  • Hunt, A., Abraham, J., Powell, J., & Mokryzcki, B. (1998). Lead contributions to urban soil and dust from window friction surfaces. State Univ of NY, 1–7.

  • Hurst, R. W., Davis, T. E., & Chinn, B. D. (1996). The lead fingerprints of gasoline contamination: Isotopic analysis of the lead additives in gasoline can improve estimates of the ages of leaks and spills. Environmental Science & Technology, 30, 304a–308a.

    CAS  Google Scholar 

  • Ip, C. C., Li, X. D., Zhang, G., Wai, O. W., & Li, Y. S. (2007). Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 147, 311–323.

    Article  CAS  Google Scholar 

  • Jacobs, D. E., Clickner, R. P., Zhou, J. Y., et al. (2002). The prevalance of lead-based paint hazards in U.S. housing. Environmenntal Health Perspectives, 110, 599–606.

    Google Scholar 

  • Jaeger, R. J., Weiss, A. L., & Manton, W. I. (1998). Isotopic ratio analysis in residential lead-based paint and associated surficial dust. Clinical Toxicology, 36, 691–703.

    CAS  Google Scholar 

  • Kelly, J., Thornton, I., & Simpson, P. R. (1996). Urban geochemistry: A study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Applied Geochemistry, 11, 363–370.

    Article  CAS  Google Scholar 

  • Krueger, H. W. (1972). Lead content of dirt from urban households—A 1972 perspective. Summary Report Project 72-4, Krueger Enterprises, Inc.

  • Laidlaw, M. A. S., Mielke, H. W., Filippelli, G. M., et al. (2005). Seasonality and children’s blood lead levels: Developing a predictive model using climatic variables and blood lead data from Indianapolis, Indiana, Syracuse, New York and New Orleans, Louisiana (USA). Environmental Health Perspectives, 113, 793–800.

    Article  CAS  Google Scholar 

  • Lanphear, B. P., Burgoon, D. A., Rust, S. W., Eberly, S., & Galke, W. (1998a). Environmental exposures to lead and urban children’s blood lead levels. Environmental Research, 76, 120–130.

    Article  CAS  Google Scholar 

  • Lanphear, B. P., Matte, T. D., Rogers, J., Clickner, R. P., Dietz, B., Bornschein, R. L., et al. (1998b). The contribution of lead-contaminated house dust and residential soil to children’s blood lead levels. Environmental Research, 79, 51–68.

    Article  CAS  Google Scholar 

  • Li, X., Poon, C., & Liu, P. (2001). Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 16, 1361–1368.

    Article  CAS  Google Scholar 

  • Lough, G. C., Schauer, J. J., Park, J.-S., et al. (2005). Emissions of metals associated with motor vehicle roadways. Environmental Science & Technology, 39, 826–836.

    Article  CAS  Google Scholar 

  • Manton, W. (1973). Significance of lead isotope composition in blood. Nature, 244, 165–167.

    Article  CAS  Google Scholar 

  • Manton, W. (1977). Sources of lead in blood—Identification by stable isotopes. Archives of Environmental Health, 35, 149–159.

    Google Scholar 

  • Manton, W. I., Angle, C. R., Stanek, K. L., Reese, Y. R., & Kuehnemann, T. J. (2000). Acquisition and retention of lead by young children. Environmental Research, Section A, 82, 60–80.

    Article  CAS  Google Scholar 

  • Mielke, H. W. (1999). Lead in the inner cities. American Scientist, 87, 62–73.

    Google Scholar 

  • Mielke, H. W., & Reagan, P. L. (1998). Soil is an important pathway of human lead exposure. Environmental Health Perspectives, 106, 217–229.

    Article  CAS  Google Scholar 

  • Needleman, H. (2004). Lead poisoning. Annual Review of Medicine, 55, 209–222.

    Article  CAS  Google Scholar 

  • Needleman, H. L., & Scanlon, J. (1973). Getting the lead out. The New England Journal of Medicine, 288, 466–467.

    CAS  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333, 134–139.

    Article  CAS  Google Scholar 

  • Pagotto, C., Remy, N., Legret, M., & LeCloirec, P. (2001). Heavy metal pollution of road dust and roadside soil near a major rural highway. Environmental Technology, 22, 307–319.

    Article  CAS  Google Scholar 

  • Plumlee, G. S., Morman, S. A., & Ziegler, T. L. (2006). The toxicological geochemistry of earth materials: An overview of processes and the interdisciplinary methods used to understand them. In N. Sahai & M. A. A. Schoonen (Eds.), Medical mineralogy and geochemistry (pp. 5–57). Chantilly, VA: The Mineralogical Society of America.

    Google Scholar 

  • Rabinowitz, M. B. (1987). Stable isotope mass specrometry in childhood lead poisoning. Biological Trace Element Research, 12, 223–229.

    Article  CAS  Google Scholar 

  • Rabinowitz, M. B. (1995). Stable isotopes of lead for source identification. Clinical Toxicology, 33, 649–655.

    Article  CAS  Google Scholar 

  • Rabinowitz, M. B. (2002). Isotopic characterization of various brands of corroding grade refined lead metal. Bulletin of Environmental Contamination and Toxicology, 69, 501–508.

    Article  CAS  Google Scholar 

  • Rabinowitz, M. B. (2005). Lead isotopes in soils near five historic American lead smelters and refineries. Science of the Total Environment, 346, 138–148.

    Article  CAS  Google Scholar 

  • Rabinowitz, M. B., & Hall, G. S. (2002). Isotopic characterization of six major brands of white basic lead carbonate paint pigments. Bulletin of Environmental Contamination and Toxicology, 69, 617–623.

    Article  CAS  Google Scholar 

  • Rabinowitz, M. B., Wetherill, G. W., & Kopple, J. D. (1977). Magnitude of lead intake from respiration by normal man. The Journal of Laboratory and Clinical Medicine, 90, 260–270.

    Google Scholar 

  • Reeder, R. J., Schoonen, M. A. A., & Lanzirotti, A. (2006). Metal speciation and its role in bioaccessibility and bioavailability. In N. Sahai & M. A. A. Schoonen (Eds.), Medical mineralogy and geochemistry (pp. 59–113). Chantilly, VA: The Mineralogical Society of America.

    Google Scholar 

  • Roychowdhury, M. (1998). Environmental and occupational lead exposure: Progress and perspectives. American Society of Safety Engineers, 43, 35–40.

    Google Scholar 

  • Singh, A. K., & Singh, M. (2006). Lead decline in the Indian environment resulting from the petrol-lead phase-out programme. Science of the Total Environment, 368, 686–694.

    Article  CAS  Google Scholar 

  • Song, Z. G., You, M. G., & Duzgoren-Aydin, N. (2005). Characterization of particulate organics accumulated on the ceiling of vehicular tunnels in Hong Kong and Guangzhou, China. Atmospheric Environment, 39, 6398–6408.

    Article  CAS  Google Scholar 

  • Sturges, W. T., & Barrie, L. A. (1987). Lead 206/207 isotope ratios in the atmosphere of North America as tracers of US and Canadian emissions. Nature, 329, 144–146.

    Article  CAS  Google Scholar 

  • Sutherland, R. A., Day, J. P., & Bussen, J. O. (2002). Lead concentrations, isotope ratios andsource apportionment in road deposited sediments, Honolulu, Oahu, Hawaii. Water, Air and Soil Pollution, 142, 165–186.

    Article  Google Scholar 

  • Swaine, D. J. (1994). Trace elements in coal and their dispersal during combustion. Fuel Process Technology, 39, 121–138.

    Article  CAS  Google Scholar 

  • Thornton, I. (1990). Soil contamination in urban areas. Palaeogeography Palaeoclimatology, Palaeoecology (Global and Planetary Change Section), 82, 121–140.

    Google Scholar 

  • Wang, W., Liu, X., Zhao, L., et al. (2006). Effectiveness of leaded petrol phase-out in Tianjin, Cina based on th aerosol lead concentration and isotope abundance ratio. Science of the Total Environment, 364, 175–187.

    Article  CAS  Google Scholar 

  • Weiss, A. L., Caravanos, J., Blaise, M. J., & Jaeger, R. J. (2006). Distribution of lead in urban roadway grit and its association with elevated steel structures. Chemosphere, 65, 1762–1771.

    Article  CAS  Google Scholar 

  • Wong, C. S. C., & Li, X. D. (2004). Pb contamination and isotopic composition of urban soils in Hong Kong. Science of the Total Environment, 319, 185–195.

    Article  CAS  Google Scholar 

  • Wong, C. S. C., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142, 1–16.

    Article  CAS  Google Scholar 

  • Wong, E. Y., Shirai, J. H., Garlock, T. J., & Kissel, J. C. (2000). Survey of selected activities relevant to exposures to soils. Bulletin of Environmental Contamination and Toxicology, 65, 443–450.

    Article  CAS  Google Scholar 

  • Yaffe, Y., Flessel, C. P., Wesolowski, J. J., del Rosario, A., Guirguis, G. N., Matias, V., et al. (1983). identification of lead sources in california children using the stable isotope ratio technique. Archives Environmental Health, 38, 237–245.

    CAS  Google Scholar 

  • Yim, W.W.-S., Nau, P.S. (1987). Distribution of lead, zinc, copper and cadmium in dust from selected urban areas of Hong Kong. Journal Hong Kong Institution of Engineers, 15, 7–14.

    Google Scholar 

  • Young, T. M., Heeraman, D. A., Sirin, G., & Ashbaugh, L. L. (2002). Resuspension of soil as a source of airborne lead near industrial facilities and highways. Environmental Science & Technology, 36, 2484–2490.

    Article  CAS  Google Scholar 

  • Zhu, B. Q., Chen, Y. W., & Peng, J. H. (2001). Lead isotope geochemistry of urban environment in the Pearl River Delta. Applied Geochemistry, 16, 409–417.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Weiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duzgoren-Aydin, N.S., Weiss, A.L. Use and abuse of Pb-isotope fingerprinting technique and GIS mapping data to assess lead in environmental studies. Environ Geochem Health 30, 577–588 (2008). https://doi.org/10.1007/s10653-008-9179-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9179-4

Keywords

Navigation