Skip to main content
Erschienen in: European Journal of Epidemiology 10/2015

01.10.2015 | METHODS

Limitations of individual causal models, causal graphs, and ignorability assumptions, as illustrated by random confounding and design unfaithfulness

verfasst von: Sander Greenland, Mohammad Ali Mansournia

Erschienen in: European Journal of Epidemiology | Ausgabe 10/2015

Einloggen, um Zugang zu erhalten

Abstract

We describe how ordinary interpretations of causal models and causal graphs fail to capture important distinctions among ignorable allocation mechanisms for subject selection or allocation. We illustrate these limitations in the case of random confounding and designs that prevent such confounding. In many experimental designs individual treatment allocations are dependent, and explicit population models are needed to show this dependency. In particular, certain designs impose unfaithful covariate-treatment distributions to prevent random confounding, yet ordinary causal graphs cannot discriminate between these unconfounded designs and confounded studies. Causal models for populations are better suited for displaying these phenomena than are individual-level models, because they allow representation of allocation dependencies as well as outcome dependencies across individuals. Nonetheless, even with this extension, ordinary graphical models still fail to capture distinctions between hypothetical superpopulations (sampling distributions) and observed populations (actual distributions), although potential-outcome models can be adapted to show these distinctions and their consequences.
Literatur
1.
Zurück zum Zitat Glymour MM, Greenland S. Causal diagrams. In: Rothman KJ, Greenland S, Lash T, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 183–209. Glymour MM, Greenland S. Causal diagrams. In: Rothman KJ, Greenland S, Lash T, editors. Modern epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 183–209.
2.
Zurück zum Zitat Pearl J. Causality. 2nd ed. New York: Cambridge University Press; 2009.CrossRef Pearl J. Causality. 2nd ed. New York: Cambridge University Press; 2009.CrossRef
3.
Zurück zum Zitat Hernán MA, Robins JM. Causal inference. London: Chapman & Hall/CRC; 2015. Hernán MA, Robins JM. Causal inference. London: Chapman & Hall/CRC; 2015.
4.
Zurück zum Zitat Greenland S, Robins JM. Identifiability, exchangeability, and epidemiological confounding. Int J Epidemiol. 1986;15:413–9.CrossRefPubMed Greenland S, Robins JM. Identifiability, exchangeability, and epidemiological confounding. Int J Epidemiol. 1986;15:413–9.CrossRefPubMed
5.
Zurück zum Zitat Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999;14:29–46.CrossRef Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999;14:29–46.CrossRef
8.
Zurück zum Zitat Greenland S, Neutra RR. Control of confounding in the assessment of medical technology. Int J Epidemiol. 1980;9:361–7.CrossRefPubMed Greenland S, Neutra RR. Control of confounding in the assessment of medical technology. Int J Epidemiol. 1980;9:361–7.CrossRefPubMed
9.
Zurück zum Zitat Matthews JNS. An introduction to randomised controlled clinical trials. 2nd ed. Boca Raton: Chapman & Hall/CRC; 2006.CrossRef Matthews JNS. An introduction to randomised controlled clinical trials. 2nd ed. Boca Raton: Chapman & Hall/CRC; 2006.CrossRef
10.
11.
Zurück zum Zitat Rosenbaum PR. Model-based direct adjustment. J Am Stat Assoc. 1987;82:387–94.CrossRef Rosenbaum PR. Model-based direct adjustment. J Am Stat Assoc. 1987;82:387–94.CrossRef
12.
13.
Zurück zum Zitat Robins JM, Scheines R, Spirtes P, Wasserman L. Uniform consistency in causal inference. Biometrika. 2003;90:491–515.CrossRef Robins JM, Scheines R, Spirtes P, Wasserman L. Uniform consistency in causal inference. Biometrika. 2003;90:491–515.CrossRef
14.
Zurück zum Zitat Spirtes P, Glymour C, Scheines R. Causation, prediction, and search. 2nd ed. Cambridge: MIT Press; 2001. Spirtes P, Glymour C, Scheines R. Causation, prediction, and search. 2nd ed. Cambridge: MIT Press; 2001.
16.
Zurück zum Zitat Mansournia MA, Greenland S. The relation of collapsibility and confounding to faithfulness and stability. Epidemiology. 2015;26: in press. Mansournia MA, Greenland S. The relation of collapsibility and confounding to faithfulness and stability. Epidemiology. 2015;26: in press.
17.
Zurück zum Zitat Cox DR, Hinkley DV. Theoretical statistics. New York: Chapman and Hall; 1974.CrossRef Cox DR, Hinkley DV. Theoretical statistics. New York: Chapman and Hall; 1974.CrossRef
18.
19.
Zurück zum Zitat Greenland S. On the logical justification of conditional tests for two-by-two contingency tables. Am Stat. 1991;45:248–51. Greenland S. On the logical justification of conditional tests for two-by-two contingency tables. Am Stat. 1991;45:248–51.
20.
Zurück zum Zitat Rosenbaum PR. Observational studies. 2nd ed. New York: Springer; 2002.CrossRef Rosenbaum PR. Observational studies. 2nd ed. New York: Springer; 2002.CrossRef
21.
Zurück zum Zitat Richardson TS, Robins JM. Single world intervention graphs: a primer. Second UAI Workshop on Causal Structure Learning, Bellevue, Washington, 2013. Richardson TS, Robins JM. Single world intervention graphs: a primer. Second UAI Workshop on Causal Structure Learning, Bellevue, Washington, 2013.
22.
Zurück zum Zitat Robins JM, Richardson TS. Alternative graphical causal models and the identification of direct effects. In: Shrout P, Keyes K, Ornstein K, editors. Causality and psychopathology: finding the determinants of disorders and their cures. Oxford: Oxford University Press; 2011. p. 1–52. Robins JM, Richardson TS. Alternative graphical causal models and the identification of direct effects. In: Shrout P, Keyes K, Ornstein K, editors. Causality and psychopathology: finding the determinants of disorders and their cures. Oxford: Oxford University Press; 2011. p. 1–52.
23.
Zurück zum Zitat Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10:37–48.CrossRefPubMed Greenland S, Pearl J, Robins JM. Causal diagrams for epidemiologic research. Epidemiology. 1999;10:37–48.CrossRefPubMed
24.
Zurück zum Zitat Greenland S, Pearl J. Causal diagrams. In: Boslaugh S, editor. Encyclopedia of epidemiology. Thousand Oaks: Sage Publications; 2008. p. 149–56. Greenland S, Pearl J. Causal diagrams. In: Boslaugh S, editor. Encyclopedia of epidemiology. Thousand Oaks: Sage Publications; 2008. p. 149–56.
25.
Zurück zum Zitat Pearl J. Causal diagrams for empirical research. Biometrika. 1995;82:669–710.CrossRef Pearl J. Causal diagrams for empirical research. Biometrika. 1995;82:669–710.CrossRef
26.
Zurück zum Zitat Rubin DB. Practical implications of modes of statistical inference for causal effects and the critical role of the assignment mechanism. Biometrics. 1991;47:1213–34.CrossRefPubMed Rubin DB. Practical implications of modes of statistical inference for causal effects and the critical role of the assignment mechanism. Biometrics. 1991;47:1213–34.CrossRefPubMed
27.
Zurück zum Zitat Rosenbaum P, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41–55.CrossRef Rosenbaum P, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70:41–55.CrossRef
28.
Zurück zum Zitat Ho DE, Imai K, King G, Stuart EA. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit Anal. 2007;15:199–236.CrossRef Ho DE, Imai K, King G, Stuart EA. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit Anal. 2007;15:199–236.CrossRef
30.
Zurück zum Zitat Waernbaum I. Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation. Stat Med. 2012;31:1572–81.CrossRefPubMed Waernbaum I. Model misspecification and robustness in causal inference: comparing matching with doubly robust estimation. Stat Med. 2012;31:1572–81.CrossRefPubMed
31.
Zurück zum Zitat Imai K, Ratkovic M. Covariate balancing propensity score. J R Stat Soc Ser B. 2014;76:243–63.CrossRef Imai K, Ratkovic M. Covariate balancing propensity score. J R Stat Soc Ser B. 2014;76:243–63.CrossRef
32.
Zurück zum Zitat Kurth T, Walker AM, Glynn RJ, Chan KA, Gaziano JM, Berger K, Robins JM. Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect. Am J Epidemiol. 2006;163:262–70.CrossRefPubMed Kurth T, Walker AM, Glynn RJ, Chan KA, Gaziano JM, Berger K, Robins JM. Results of multivariable logistic regression, propensity matching, propensity adjustment, and propensity-based weighting under conditions of nonuniform effect. Am J Epidemiol. 2006;163:262–70.CrossRefPubMed
33.
Zurück zum Zitat Fisher RA. The design of experiments. Edinburgh: Oliver and Boyd; 1935. Fisher RA. The design of experiments. Edinburgh: Oliver and Boyd; 1935.
34.
Zurück zum Zitat Robins JM, Morgenstern H. The foundations of confounding in epidemiology. Comp Math Appl. 1987;14:869–916.CrossRef Robins JM, Morgenstern H. The foundations of confounding in epidemiology. Comp Math Appl. 1987;14:869–916.CrossRef
35.
36.
Zurück zum Zitat Rosenberger WF, Lachin JM. Randomization in clinical trials: theory and practice. New York: Wiley; 2002.CrossRef Rosenberger WF, Lachin JM. Randomization in clinical trials: theory and practice. New York: Wiley; 2002.CrossRef
37.
Zurück zum Zitat Friedman LM, Furberg CD, DeMets DL. Fundamentals of clinical trials. 4th ed. New York: Springer; 2010.CrossRef Friedman LM, Furberg CD, DeMets DL. Fundamentals of clinical trials. 4th ed. New York: Springer; 2010.CrossRef
38.
Zurück zum Zitat Chow SC, Liu JP. Design and analysis of clinical trials. 2nd ed. Hoboken: Wiley; 2004. Chow SC, Liu JP. Design and analysis of clinical trials. 2nd ed. Hoboken: Wiley; 2004.
39.
Zurück zum Zitat Lauritzen SL, Dawid AP, Larsen BN, Leimar HG. Independence properties of directed Markov fields. Networks. 1990;20:491–505.CrossRef Lauritzen SL, Dawid AP, Larsen BN, Leimar HG. Independence properties of directed Markov fields. Networks. 1990;20:491–505.CrossRef
40.
Zurück zum Zitat Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550–60.CrossRefPubMed Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11:550–60.CrossRefPubMed
41.
Zurück zum Zitat Sato T, Matsuyama Y. Marginal structural models as a tool for standardization. Epidemiology. 2003;14:680–6.CrossRefPubMed Sato T, Matsuyama Y. Marginal structural models as a tool for standardization. Epidemiology. 2003;14:680–6.CrossRefPubMed
42.
Zurück zum Zitat Kang JD, Schafer JL. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data (with discussion). Stat Sci. 2007;22:523–80.CrossRef Kang JD, Schafer JL. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data (with discussion). Stat Sci. 2007;22:523–80.CrossRef
43.
Zurück zum Zitat Cochran WG. Sampling techniques. 3rd ed. New York: Wiley; 1977. Cochran WG. Sampling techniques. 3rd ed. New York: Wiley; 1977.
44.
Zurück zum Zitat Sjölander A, Greenland S. Ignoring the matching variables in cohort studies—When is it valid and why? Stat Med. 2013;32:4696–708.CrossRefPubMed Sjölander A, Greenland S. Ignoring the matching variables in cohort studies—When is it valid and why? Stat Med. 2013;32:4696–708.CrossRefPubMed
45.
Zurück zum Zitat Greenland S, Pearl J. Adjustments and their consequences—collapsibility analysis using graphical models. Int Stat Rev. 2011;79:401–26.CrossRef Greenland S, Pearl J. Adjustments and their consequences—collapsibility analysis using graphical models. Int Stat Rev. 2011;79:401–26.CrossRef
46.
Zurück zum Zitat Gail MH. Adjusting for covariates that have the same distribution in exposed and unexposed cohorts. In: Moolgavkar SH, Prentice RL, editors. Modern statistical methods in chronic disease epidemiology. New York: Wiley; 1986. p. 3–18. Gail MH. Adjusting for covariates that have the same distribution in exposed and unexposed cohorts. In: Moolgavkar SH, Prentice RL, editors. Modern statistical methods in chronic disease epidemiology. New York: Wiley; 1986. p. 3–18.
47.
Zurück zum Zitat Robinson LD, Jewell NP. Some surprising results about covariate adjustment in logistic regression. Int Stat Rev. 1991;59:227–40.CrossRef Robinson LD, Jewell NP. Some surprising results about covariate adjustment in logistic regression. Int Stat Rev. 1991;59:227–40.CrossRef
48.
Zurück zum Zitat Neuhaus J, Jewell NP. A geometric approach to assess bias due to omitted covariates in generalized linear models. Biometrika. 1993;80:807–15.CrossRef Neuhaus J, Jewell NP. A geometric approach to assess bias due to omitted covariates in generalized linear models. Biometrika. 1993;80:807–15.CrossRef
49.
Zurück zum Zitat Robinson LD, Dorroh JR, Lien D, Tiku ML. The effects of covariate adjustment in generalized linear models. Commun Stat Theory Methods. 1998;27:1653–75.CrossRef Robinson LD, Dorroh JR, Lien D, Tiku ML. The effects of covariate adjustment in generalized linear models. Commun Stat Theory Methods. 1998;27:1653–75.CrossRef
Metadaten
Titel
Limitations of individual causal models, causal graphs, and ignorability assumptions, as illustrated by random confounding and design unfaithfulness
verfasst von
Sander Greenland
Mohammad Ali Mansournia
Publikationsdatum
01.10.2015
Verlag
Springer Netherlands
Erschienen in
European Journal of Epidemiology / Ausgabe 10/2015
Print ISSN: 0393-2990
Elektronische ISSN: 1573-7284
DOI
https://doi.org/10.1007/s10654-015-9995-7

Weitere Artikel der Ausgabe 10/2015

European Journal of Epidemiology 10/2015 Zur Ausgabe