Skip to main content

Advertisement

Log in

Extraction and electrophoretic analysis of large dsRNAs from desiccated plant tissues infected with plant viruses and biotrophic fungi

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Extraction and electrophoretic analysis of large dsRNAs from plant and fungal tissues has been used successfully to detect RNA viruses infecting plants, fungi, and oomycetes. We modified a previously reported dsRNA extraction protocol and used it to detect a wide variety of plant and putative fungal viruses from infected plant tissues. The modified protocol was used successfully to extract large dsRNAs from 50 to 70 mg of desiccated plant tissues infected with acute and persistent RNA viruses and from plant tissues infected with biotrophic fungi causing rusts and powdery mildew diseases. The protocol proved to be efficient, fast, economic and versatile and requires relatively small amounts of desiccated tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BaEV :

Basella alba endornavirus

BPEV :

Bell pepper endornavirus

BMV :

Brome mosaic virus

BYDV-PAV :

Barley yellow dwarf virus-PAV

CTV :

Citrus tristeza virus

DsRNA :

Double-stranded ribonucleic acid

ELISA :

Enzyme-linked immunosorbent assay

EtOH :

Ethanol

JHFMoV :

Japanese holly fern mottle virus

PCV1 :

Pepper cryptic virus 1

PCV2 :

Pepper cryptic virus 2

PcV :

Penicillium chrysogenum virus

PMV :

Panicum mosaic virus

PMMoV :

Pepper mild mottle virus

PvEV1 :

Phaseolus vulgaris endornavirus 1

RT-PCR :

Reverse transcription polymerase chain reaction

SMV :

Soybean mosaic virus

NaAc :

Sodium acetate

STV :

Southern tomato virus

STE :

Sodium chloride tris EDTA

TMV :

Tomato mosaic virus

TMGMV :

Tomato mild green mosaic virus

TAE :

Tris-acetate EDTA

TNV :

Tobacco necrosis virus

TRSV :

Tobacco ringspot virus

UmV-H1 :

Ustilago maydis virus H1

References

  • Aime, C. M. (2006). Toward resolving family-levels relationship in rust fungi (Uredinales. Mycoscience, 47, 112–122.

    Article  CAS  Google Scholar 

  • Akin, A., Wu, C. C., & Lin, T. L. (1998). A comparison of two RNA isolation methods for double-stranded RNA of infectious bursal disease virus. Journal of Virological Methods, 74, 179–184.

    Article  CAS  PubMed  Google Scholar 

  • Al Rwahnih, M., Daubert, S., Urbez-Torres, J. R., Cordero, F., & Rowhani, A. (2011). Deep sequencing evidence from single grapevine plants reveals a virome dominated by mycoviruses. Archives of Virology, 156, 397–403.

    Article  CAS  PubMed  Google Scholar 

  • Azzam, O. I., & Gonsalves, D. (1999). Detection of dsRNA from cleistothecia and conidia of the grape powdery mildew pathogen Uncinula necator. Plant Disease, 75, 964–967.

    Article  Google Scholar 

  • Balijja, A., Kvarnheden, A., & Turchetti, T. (2008). A non-phenol-chloroform extraction of double-stranded RNA from plant and fungal tissues. Journal of Virological Methods, 152, 32–37.

    Article  CAS  PubMed  Google Scholar 

  • Bar-Joseph, M., Rosner, A., Moskovitz, M., & Hull, R. (1983). A simple procedure for the extraction of double-stranded RNA from viral infected plants. Journal of Virological Methods, 6, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Buck, K. W. (1999). Replication of tobacco mosaic virus RNA. Philosophical Transactions of the Royal Society B: Biological Sciences, 354, 613–627.

    Article  CAS  Google Scholar 

  • Candresse, T., Marais, A., Faure, C., & Gentit, P. (2013). Association of Little cherry virus 1 (LChV1) with the Shirofugen stunt disease and characterization of the genome of a divergent LChV1 isolate. Phytopathology, 103, 293–308.

    Article  CAS  PubMed  Google Scholar 

  • Castillo, A., Cottet, L., Castro, M., & Selpulveda, F. (2011). Rapid isolation of mycoviral double-stranded RNA from Botrytis cinerea and Saccharomyces cerevisiae. Virology Journal, 8, 38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coetzee, B., Freeborough, M. J., Maree, H. J., Celton, J. M., Rees, D. J. G., & Burger, J. T. (2010). Deep sequencing analysis of viruses infecting grapevines: Virome of a vineyard. Virology, 400, 157–163.

    Article  CAS  PubMed  Google Scholar 

  • Deker, C. J., & Parker, R. (2014). Analysis of double-stranded RNA from microbial communities identifies double-stranded RNA virus-like elements. Cell Reports, 7, 898–906.

    Article  Google Scholar 

  • Delye, C., & Corio-Costet, M. F. (1998). Rapid isolation of both double-stranded RNA and PCR-suitable DNA from the obligate biotrophic phytopathogenic fungus Uncinula necator using a commercially available reagent. Journal of Virological Methods, 74, 149–153.

    Article  CAS  PubMed  Google Scholar 

  • DePaulo, J. J., & Powell, C. A. (1995). Extraction of double-stranded RNA from plant tissues without the use of organic solvents. Plant Disease, 79, 246–248.

    Article  CAS  Google Scholar 

  • Dickinson, M. J., & Pryor, A. (1989). Isometric virus-like particles encapsidate the double-stranded RNA found in Puccinia striiformis, Puccinia recondita, and Puccinia sorghi. Canadian Journal of Botany, 67, 3420–3425.

    Article  CAS  Google Scholar 

  • Enebak, S. A., Hillman, B. I., & Macdonald, W. L. (1994). A hypovirulent isolate of Cryphonectria parasitica with multiple, genetically unique dsRNA segments. Molecular Plant-Microbe Interactions, 7, 590–595.

    Article  CAS  Google Scholar 

  • Espach, Y., Maree H., J., & Burger, J. T. (2012). Complete genome of a novel endornavirus assembled from next-generation sequence data. Journal of Virology, 86, 13142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin, R. M. (1966). Purification and properties of replicative intermediate of the RNA bacteriophage R17. Proceedings of the National Academy of Sciences USA, 55, 1504–1511.

    Article  CAS  Google Scholar 

  • Heffer, V., Johnson, K. B., Powelson, M. L., & Shishkoff, N. (2006). Identification of powdery mildew fungi. The Plant Health Instructor. doi:10.1094/PHI-I-2006-0706-01.

    Google Scholar 

  • Herrero, N., Márquez, S. S., & Zabalgogeazcoa, I. (2009). Mycoviruses are common among different species of endophytic fungi of grasses. Archives of Virology, 154, 327–330.

    Article  CAS  PubMed  Google Scholar 

  • Hillman, B. I., Foglia, R., & Yuan, W. (2000). Satellite and defective RNAs of Cryphonectria hypovirus 3-Grand Haven 2, a virus species in the family Hypoviridae with a single open reading frame. Virology, 276, 181–189.

    Article  CAS  PubMed  Google Scholar 

  • Holcomb, G. E., & Valverde, R. A. (1995). First report of rust on Salvia coccinea in Louisiana. Plant Disease, 79, 426.

    Article  Google Scholar 

  • Hoy, J. W., & Hollier, C. A. (2009). Effect of brown rust on yield of sugarcane in Louisiana. Plant Disease, 93, 1171–1174.

    Article  Google Scholar 

  • Huang, Q., Baum, L., & Fu, W. L. (2010). Simple and practical staining of DNA with GelRed in agarose gel electrophoresis. Clinical Laboratory, 56, 149–152.

    CAS  PubMed  Google Scholar 

  • Jelkmann, W., Martin, R. R., & Maiss, E. (1989). Cloning of four viruses from small quantities of double-stranded RNA. Phytopathology, 79, 1250–1253.

    Article  CAS  Google Scholar 

  • Jiang, D., & Ghabrial, S. A. (2004). Molecular characterization of Penicillium chrysogenum virus: reconsideration of the taxonomy of the genus Chrysovirus. Journal of General Virology, 85, 2111–2121.

    Article  CAS  PubMed  Google Scholar 

  • Khalifa, M. E., & Pearson, M. N. (2014). Molecular characterization of an endornavirus infecting he phytopathogen Sclerotinia sclerotiorum. Virus Research, 189, 303–309.

    Article  CAS  PubMed  Google Scholar 

  • Khankhum, S., Valverde, R. A., Pastor-Corrales, M., Osorno, J. M., & Sabanadzovic, S. (2015). Two endornaviruses show differential infection patterns between gene pools of Phaseolus vulgaris. Archives of Virology, 160, 1131–1137.

    Article  CAS  PubMed  Google Scholar 

  • Kondo, H., Hisano, S., Chiba, S., Maruyama, K., Andik, I. B., Toyoda, K., Fujimori, F., & Suzuki, N. (2016). Sequence and phylogenetic analyses of novel totivirus-like double-stranded RNAs from field-collected powdery mildew fungi. Virus Research, 213, 353–364.

    Article  CAS  PubMed  Google Scholar 

  • Morris, T. J., & Dodds, J. A. (1979). Isolation and analysis of double-stranded RNA from virus infected plant and fungal tissue. Phytopathology, 69, 854–858.

    Article  CAS  Google Scholar 

  • Morris, T. J., Dodds, J. A., Hillman, B., Jordan, R., Lommel, S. A., & Tamaki, S. (1983). Viral specific dsRNA: diagnostic value for plant disease identification. Plant Molecular Biology Reporter, 1, 27–30..

    Article  CAS  Google Scholar 

  • Nerva, L., Ciuffo, M., Vallino, M., Margaria, P., Varese, G. C., Gnavi, G., & Turina, M. (2016). Multiple approaches for the detection and characterization of viral and plasmid symbionts from a collection of marine fungi. Virus Research. doi:10.1016/j.virusres.2015.10.028.

    PubMed  Google Scholar 

  • Nuss, D. L., & Koltin, Y. (1990). Significance of dsRNA genetic elements in plant pathogenic fungi. Annual Review of Phytopathology, 28, 37–58.

    Article  CAS  PubMed  Google Scholar 

  • Okada, R., Kiyota, E., Sabanadzovic, S., Moriyama, H., Fukuhara, T., Saha, P., Roossinck. M., J., Severin, A., & Valverde, R. A. (2011). Bell pepper endornavirus: molecular and biological properties and occurrence in the genus Capsicum. Journal of General Virology, 92, 2664–2673.

    Article  CAS  PubMed  Google Scholar 

  • Okada, R., Kiyota, E., Moriyama, H., Fukuhara, T., & Natsuaki, T. (2015). A simple and rapid method to purify viral dsRNA from plant and fungal tissue. Journal of General Plant Pathology, 8, 103–107.

    Article  Google Scholar 

  • Quito-Avila, D. F., Jelkmann, W., Tzanetakis, I., Keller, K., & Martin, R. R. (2011). Complete sequence and genetic characterization of Raspberry latent virus, a novel member of the family Reoviridae. Virus Research, 155, 397–405.

    Article  CAS  PubMed  Google Scholar 

  • Roossinck, M. J. (2010). Lifestyles of plant viruses. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 1899–1905.

    Article  Google Scholar 

  • Roossinck, M. J., Saha, P., Wiley, G. B., Quan, J., White, J. D., Lai, H., Chavarria, F., Shen, G., & Roe, B. A. (2010). Ecogenomics: Using massively parallel pyrosequencing to understand virus ecology. Molecular Ecology, 19, 81–88.

    Article  PubMed  Google Scholar 

  • Rott, M. E., & Jelkmann, W. (2001). Characterization and detection of several filamentous viruses of cherry: Adaptation of an alternative cloning method (DOP-PCR), and modification of an RNA extraction protocol. European Journal of Plant Pathology, 107, 411–420.

    Article  CAS  Google Scholar 

  • Sabanadzovic, S., & Valverde, R. A. (2011). Properties of two cryptoviruses from pepper (Capsicum annuum). Virus Genes, 43, 307–312.

    Article  CAS  PubMed  Google Scholar 

  • Sabanadzovic, S., Valverde, R. A., Brown, J. K., Martin, R. R., & Tzanetakis, I. E. (2009). Southern tomato virus: the link between the families Totiviridae and Partitiviridae. Virus Research, 140, 130–137.

    Article  CAS  PubMed  Google Scholar 

  • Sabanadzovic, S., Ingram, D. M., & Lawrence, A. M. (2010). First report of Tobacco ringspot virus in Joe-pye weed (Eupatorium purpureum) in Mississippi. Plant Disease, 94, 126.

    Article  Google Scholar 

  • Schneider, R. W., Hollier, C. A., Whitam, H. K., Palm, M. E., McKemy, J. M., Hernandez, J. R., Levy, L., & DeVries-Paterson, R. (2005). First report of soybean rust caused by Phakopsora pachyrhizi in the continental United States. Plant Disease, 89, 774.

    Article  Google Scholar 

  • Stones, M. (1991). Flora of Louisiana: water color drawings. Louisiana State University Press, Baton Rouge, 218 pp.

  • Tzanetakis, I. E., & Martin, R. R. (2008). A new method for extraction of double-stranded RNA from plants. Journal of Virological Methods, 149, 167–170.

    Article  CAS  PubMed  Google Scholar 

  • Tzanetakis, I. E., Halgren, G. B., Keller, K. E., Hokanson, S. C., Maas, J. L., McCarthy, P. L., & Martin, R. R. (2004). Identification and detection of a virus associated with strawberry pallidosis disease. Plant Disease, 88, 383–390.

    Article  CAS  Google Scholar 

  • Valverde, R. A., & Dodds, J. A. (1986). Evidence for a satellite RNA associated naturally with the U5 strain and experimentally with the U1 strain of tobacco mosaic virus. Journal of General Virology, 67, 1875–1884.

    Article  CAS  Google Scholar 

  • Valverde, R. A., & Sabanadzovic, S. (2009). A new plant virus with unique properties infecting Japanese holly fern. Journal of General Virology, 90, 2542–2549.

    Article  CAS  PubMed  Google Scholar 

  • Valverde, R. A., Dodds, J. A., & Heick, J. A. (1986). Double stranded RNAs from plants infected with viruses having elongated particles and undivided genomes. Phytopathology, 76, 459–465.

    Article  CAS  Google Scholar 

  • Valverde, R. A., Nameth, S. T., & Jordan, R. L. (1990). Analysis of double-stranded RNA for plant virus diagnosis. Plant Disease, 74, 255–258.

    Article  Google Scholar 

  • Voth, P. D., Mairura, L., Lockhart, B. E & May, G. (2006). Phylogeography of Ustilago maydis virus H1 in the USA and Mexico. Journal of General Virology 87, 3433–3441.

  • Zhang, Y. P., & Rowhani, A. (2000). A strategy for rapid cDNA cloning from double-stranded RNA templates isolated from plants infected with RNA viruses using Taq DNA polymerase. Journal of Virological Methods, 84, 59–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Andrea Hebert, Middleton Library, Louisiana State University for providing valuable suggestions to the manuscript. This research was partially supported by funds from the National Institute of Food and Agriculture, the Louisiana Soybean and Grain Research and Promotion Board, and a grant to E. Rodrigues de Souto from Coordenacăo de Aperfeicoamento de Pessoal de Nível Superior (CAPES), Brasil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Valverde.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khankhum, S., Escalante, C., de Souto and, E.R. et al. Extraction and electrophoretic analysis of large dsRNAs from desiccated plant tissues infected with plant viruses and biotrophic fungi. Eur J Plant Pathol 147, 431–441 (2017). https://doi.org/10.1007/s10658-016-1014-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-016-1014-7

Keywords

Navigation