Skip to main content
Log in

Spatial distribution of allergenic pollen through a large metropolitan area

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

For nearly a decade, the majority of the world’s population has been living in cities, including a considerable percentage of people suffering from pollen allergy. The increasing concentration of people in cities results in larger populations being exposed to allergenic pollen at the same time. There is almost no information about spatial distribution of pollen within cities as well as a lack of information about the possible impact to human health. To obtain this increasing need for pollen exposure studies on an intra-urban scale, a novelty screening network of 14 weekly changed pollen traps was established within a large metropolitan area—Berlin, Germany. Gravimetric pollen traps were placed at a uniform street-level height from March until October 2014. Three important allergenic pollen types for Central Europe—birch (Betula), grasses (Poaceae), and mugwort (Artemisia)—were monitored. Remarkable spatial and temporal variations of pollen sedimentation within the city and the influences by urban local sources are shown. The observed differences between the trap with the overall highest and the trap with the overall lowest amount of pollen sedimentation were in the case of birch pollen 245%, grass pollen 306%, and mugwort pollen 1962%. Differences of this magnitude can probably lead to different health impacts on allergy sufferers in one city. Therefore, pollen should be monitored preferably in two or more appropriate locations within large cities and as a part of natural air quality regulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aboulaich, N., Bouziane, H., Kadiri, M., et al. (2009). Pollen production in anemophilous species of the Poaceae Family in Tetouan (NW Marocco). Aerobiologia, 25(1), 27–38.

    Article  Google Scholar 

  • Alcázar, P., Cariñanos, P., De Castro, C., Guerra, F., Moreno, C., Domínguez-Vilches, E., & Galán, C. (2004). Airborne plane-tree (Platanus Hispanica) pollen distribution in the city of Córdoba, South-Western Spain, and possible implications on pollen allergy. Journal of Investigational Allergology and Clinical Immunology, 14(3), 238–243.

    Google Scholar 

  • Amt für Statistik Berlin-Brandenburg (2015). Statistisches Jahrbuch 2015. Resource document. Amt für Statistik Berlin-Brandenburg. https://www.statistik-berlin-brandenburg.de/produkte/Jahrbuch/BE_Kap_2015.asp Accessed 20 February 2017.

  • Amt für Statistik Berlin-Brandenburg (2016). Statistisches Jahrbuch 2016. Resource document. Amt für Statistik Berlin-Brandenburg. https://www.statistik-berlin-brandenburg.de/produkte/Jahrbuch/BE_Kap_2016.asp Accessed 20 February 2017.

  • Arroba, D., Guido, M. A., Minale, P., et al. (2000). Airborne pollen in Genoa (NW-Italy): a comparison between two pollen-sampling stations. Aerobiologia, 16(2), 233–243.

    Article  Google Scholar 

  • Barnes, C., Pacheco, F., Landuyt, J., Hu, F., & Portnoy, J. (2001). Hourly variation of airborne ragweed pollen in Kansas City. Annals of Allergy, Asthma & Immunology, 86(2), 166–171.

    Article  CAS  Google Scholar 

  • Bergmann, K.-C., Sehlinger, T., Boelke, G. & Zuberbier, T. (2015). Clinical validation of a mobile allergen exposure chamber. Resource document. http://mcxperts.com/wp-content/uploads/2015/06/Clinical-Poster-EAACI-2015-small-_-reduced.pdf Accessed 11 May 2016.

  • Bergmann, K.-C., Zuberbier, T., Augustin, J., Mücke, H.-G., & Straff, W. (2012). Climate change and pollen allergy: cities and municipalities should take people suffering from pollen allergy into account when planting in public spaces. Allergo Journal, 21(2), 103–107.

    Article  Google Scholar 

  • Beug, H. J. (2004). Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. München: Verlag Dr. Friedrich Pfeil.

    Google Scholar 

  • Cakmak, S., Dales, R. E., & Coates, R. (2012). Does air pollution increase the effect of aeroallergens on hospitalization for asthma? Journal of Allergy and Clinical Immunology, 129(1), 228–231.

    Article  CAS  Google Scholar 

  • Cariñanos, P., Adinolfi, C., Díaz de la Guardia, C., De Linares, C., & Casares-Porcel, M. (2016). Characterization of allergen emission sources in urban areas. Journal of Environmental Quality, 45(1), 244–252.

    Article  Google Scholar 

  • Cariñanos, P., & Casares-Porcel, M. (2011). Urban green zones and related pollen allergies: a review. Guidelines for designing spaces of low allergy impact. Landscape and Urban Planning, 101(3), 205–214.

    Article  Google Scholar 

  • Cariñanos, P., S’nchez-Mesa, J. A., Prieto-Baena, J. C., et al. (2002). Pollen allergy related to the area of residence in the city of Córdoba, south-west Spain. Journal of Environmental Monitoring, 4(5), 734–739.

    Article  Google Scholar 

  • Celenk, S., Bicakci, A., Tamay, Z., et al. (2010). Airborne pollen in European and Asian parts of Istanbul. Environmental Monitoring and Assessment, 164(1), 391–402.

    Article  CAS  Google Scholar 

  • Corden, J., Millington, W., Bailey, J., et al. (2000). UK regional variations in Betula pollen (1993–1997). Aerobiologia, 16(2), 227–232.

    Article  Google Scholar 

  • Crispen, K. L., Gillespie, D. N., Weiler, E. C., Noonan, C. W., Hamilton, R. F., & Ward, T. J. (2010). A comparison of 1978 and 2006 peak pollen seasons and sampling methods in Missoula, Montana. Grana, 49(2), 128–133.

    Article  Google Scholar 

  • Dadvand, P., Villanueva, C. M., Font-Ribera, L., et al. (2014). Risks and benefits of green spaces for children: a cross-sectional study of associations with sedentary behavior, obesity, asthma, and allergy. Environmental Health Perspectives. doi:10.1289/ehp.1308038.

    Google Scholar 

  • D'Amato, G., Bergmann, K. C., Cecchi, L., et al. (2014). Climate change and air pollution. Effects on pollen allergy and other allergic respiratory diseases. Allergo Journal International, 23(132), 17–23.

    Article  Google Scholar 

  • D'Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-Maesano, I., Behrendt, H., Liccardi, G., Popov, T., & van Cauwenberge, P. (2007). Allergenic pollen and pollen allergy in Europe. Allergy, 62(9), 976–990.

    Article  Google Scholar 

  • D'Amato, G., Spieksma, F. T. M., Liccardi, G., Jäger, S., Russo, M., Kontou-Fili, K., Nikkels, H., Wüthrich, B., & Bonini, S. (1998). Pollen-related allergy in Europe. Allergy, 53(6), 567–578.

    Article  Google Scholar 

  • de Weger, L. A., Bergmann, K. C., Rantio-Lehtimäki, A., et al. (2013). Impact of pollen. In M. Sofiev & K.-C. Bergmann (Eds.), Allergenic pollen: a review of the production, release, distribution and health impacts (pp. 161–215). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Durham, O. C. (1946). The volumetric incidence of atmospheric allergens. IV. A proposed standard method of gravity sampling, counting, and volumetric interpolation of results. Journal of Allergy, 17(2), 79–86.

    Article  CAS  Google Scholar 

  • Eckl-Dorna, J., Klein, B., Reichenauer, T. G., Niederberger, V., & Valenta, R. (2010). Exposure of rye (Secale cereale) to elevated ozone levels increases the allergen content in pollen. Journal of Allergy and Clinical Immunology, 126(6), 1315–1317.

    Article  CAS  Google Scholar 

  • Emberlin, J., & Norris-Hill, J. (1991). Spatial variation of pollen deposition in north London. Grana, 30(1), 190–195.

    Article  Google Scholar 

  • Feo Brito, F., Mur Gimeno, P., Martínez, C., Tobías, A., Suárez, L., Guerra, F., Borja, J. M., & Alonso, A. M. (2007). Air pollution and seasonal asthma during the pollen season. A cohort study in Puertollano and Ciudad Real (Spain). Allergy, 62(10), 1152–1157.

    Article  CAS  Google Scholar 

  • Fernández-Rodríguez, S., Tormo-Molina, R., Maya-Manzano, J. M., Silva-Palacios, I., & Gonzalo-Garijo, A. (2014). Comparative study of the effect of distance on the daily and hourly pollen counts in a city in the south-western Iberian peninsula. Aerobiologia, 30(2), 173–187.

    Article  Google Scholar 

  • Ferreira, F., Himly, M., Hebenstreit, D., Dabrowska, M., Vollmann, U., Kraft, D., Obermeyer, G., & Richter, K. (2001). Isolation and characterization of cDNA clones coding for mugwort (Artemisia vulgaris) pollen allergens. International Archives of Allergy and Immunology, 124(1–3), 77–79.

    Google Scholar 

  • Fornaciari, M., Bricchi, E., Frenguelli, G., & Romano, B. (1996). The results of 2-year pollen monitoring of an urban network in Perugia, Central Italy. Aerobiologia, 12(1), 219–227.

    Article  Google Scholar 

  • Fortin, M.-J., & Dale, M. R. T. (2005). Spatial analysis: a guide for ecologists. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gonzalo-Garijo, M. A., Tormo-Molina, R., Muñoz-Rodríguez, A. F., & Silva-Palacios, I. (2006). Differences in the spatial distribution of airborne pollen concentrations at different urban locations within a city. Journal of Investigational Allergology and Clinical Immunology, 16(1), 37–43.

    Google Scholar 

  • Hawkins, B. A., Diniz-Filho, J. A. F., Mauricio Bini, L., De Marco, P., & Blackburn, T. M. (2007). Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography, 30(3), 375–384.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39(2), 257–265.

    Article  Google Scholar 

  • Hjort, J., Hugg, T. T., Antikainen, H., et al. (2016). Fine-scale exposure to allergenic pollen in the urban environment: evaluation of land use regression approach. Environmental Health Perspectives, 124(5), 619–626.

    Google Scholar 

  • Hjort, J., Suomi, J., & Käyhkö, J. (2011). Spatial prediction of urban–rural temperatures using statistical methods. Theoretical and Applied Climatology, 106(1), 139–152.

    Article  Google Scholar 

  • Ianovici, N. (2015). Relation between Poaceae pollen concentrations and meteorological factors during 2000–2010 in Timisoara, Romania. Acta Agrobotanica, 68(4), 373–381.

    Article  Google Scholar 

  • Ishibashi, Y., Ohno, H., Oh-ishi, S., Matsuoka, T., Kizaki, T., & Yoshizumi, K. (2008). Characterization of pollen dispersion in the neighborhood of Tokyo, Japan in the spring of 2005 and 2006. International Journal of Environmental Research and Public Health, 5(1), 76–85.

    Article  Google Scholar 

  • Jäger, E. J., Müller, F., Ritz, C. M., Welk, E., & Wesche, K. (Eds.). (2013). Rothmaler: Exkursionsflora von Deutschland, Gefäßpflanzen: Atlasband (12. Auflage ed.). Berlin & Heidelberg: Springer Verlag.

    Google Scholar 

  • Katelaris, C. H., Burke, T. V., & Byth, K. (2004). Spatial variability in the pollen count in Sydney, Australia: can one sampling site accurately reflect the pollen count for a region? Annals of Allergy. Asthma & Immunology, 93(2), 131–136.

    Article  Google Scholar 

  • Katz, D. S. W., & Carey, T. S. (2014). Heterogeneity in ragweed pollen exposure is determined by plant composition at small spatial scales. Science of the Total Environment, 485-486, 435–440.

    Article  CAS  Google Scholar 

  • Kendall, M. G. (1955). Rank correlation methods. New York: Hafner Publishing Co..

    Google Scholar 

  • Kishikawa, R., Sahashi, N., Saitoh, A., Kotoh, E., Shimoda, T., Shoji, S., Akiyama, K., & Nishima, S. (2009). Japanese cedar airborne pollen monitoring by Durham’s and Burkard samplers in Japan—estimation of the usefulness of Durham’s sampler on Japanese cedar pollinosis. Global Environmental Research, 13(1), 55–62.

    Google Scholar 

  • Kleine-Tebbe, J., & Davis, J. M. (2014). Grass pollen allergens. In C. A. Akdis & I. Agache (Eds.), Global atlas of allergy (pp. 22–26). Zurich: European Academy of Allergy and Clinical Immunology (EAACI).

    Google Scholar 

  • Kmenta, M., Bastl, K., Bergman, K.-C., et al. (2016). Grass pollen season 2015 in Vienna (Austria), Berlin (Germany) and Turku (Finland): Spatial and temporal variation in pollination of different grass species and their impact on pollen allergy sufferers. Allergy, 71(Suppl. 102), 217.

    Google Scholar 

  • Knox, R. B. (1979). Pollen and allergy. In Studies in biology no. 107. London: Edward Arnold.

    Google Scholar 

  • Koenig, W. (1998). Spatial autocorrelation of ecological phenomena. Trees, 14(1), 22–26.

    Google Scholar 

  • Kottek, M., Grieser, J., Beck, C., Rudolf, B., & Rubel, F. (2006). World map of the Köppen–Geiger climate classification updated. Meteorologische Zeitschrift, 15(3), 259–263.

    Article  Google Scholar 

  • Kowarik, I., von der Lippe, M., & Cierjacks, A. (2013). Prevalence of alien versus native species of woody plants in Berlin differs between habitats and at different scales. Preslia, 85(2), 113–132.

    Google Scholar 

  • Langen, U., Schmitz, R., & Steppuhn, H. (2013). Häufigkeit allergischer Erkrankungen in Deutschland - Ergebnisse der Studie zur Gesundheit Erwachsener in Deutschland (DEGS1). Bundesgesundheitsblatt, 56(5/6), 698–706.

    Article  CAS  Google Scholar 

  • Legendre, P., & Legendre, L. (1998). Numerical ecology. Amsterdam: Elsevier.

    Google Scholar 

  • León-Ruiz, E., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2011). Study of Poaceae phenology in a Mediterranean climate. Which species contribute most to airborne pollen counts? Aerobiologia, 27(1), 37–50.

    Article  Google Scholar 

  • Leuschner, R. M., Christen, H., Jordan, P., & Vonthein, R. (2000). 30 years of studies of grass pollen in Basel (Switzerland). Aerobiologia, 16(3–4), 381–391.

    Article  Google Scholar 

  • McPherson, E. G., Simpson, J. R., Xiao, Q., & Wu, C. (2011). Million tress Los Angeles canopy cover and benefit assessment. Landscape and Urban Planning, 99(1), 40–50.

    Article  Google Scholar 

  • Ministerium für Ländliche Entwicklung, Umwelt und Landwirtschaft des Landes Brandenburg (MLUL Brandenburg) 2015. Ergebnisse der ersten landesweiten Waldinventur in Brandenburg. Resource document. MLUL Brandenburg. http://forst.brandenburg.de/cms/media.php/lbm1.a.3310.de/inv2015.pdf Accessed 17 April 2016.

  • Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1–2), 17–23.

    Article  CAS  Google Scholar 

  • Mücke, H.-G., Wagener, S., Werchan, M., & Bergmann, K.-C. (2014). Measurements of particulate matter and pollen in the city of Berlin. Urban Climate, 10(4), 621–629.

    Article  Google Scholar 

  • Nowak, M., Szymańska, A., & Grewling, Ł. (2012). Allergenic risk zones of plane tree pollen (Platanus sp.) in Poznan. Postępy Dermatologii i Alergologii, 29(3), 156–160.

    Google Scholar 

  • Obstová, B. (2012). Pylová spektra v ovzduší různých typů městské zástavby: sezonní dynamika a význam pro alergologii. Resource document. Masaryk University. http://is.muni.cz/th/223092/prif_m/ Accessed 19 February 2017.

  • Pawankar, R., Canonica, G. W., Holgate, S. T., Lockey, R. F. & Blaiss, M. S. (2013). World Allergy Organization (WAO) white book on allergy: Update 2013. Resource document. World Allergy Organization. http://www.worldallergy.org/UserFiles/file/WhiteBook2-2013-v8.pdf Accessed 19 February 2017.

  • Peternel, R., Milanović, S. M., Hrga, I., Mileta, T., & Culig, J. (2007). Incidence of Betulaceae pollen and pollinosis in Zagreb, Croatia, 2002-2005. Annals of Agricultural and Environmental Medicine, 14(1), 87–91.

    Google Scholar 

  • Piotrowska, K., & Weryszko-Chmielewska, E. (2003). Pollen count of selected taxa in the atmosphere of Lublin using two monitoring methods. Annals of Agricultural and Environmental Medicine, 10(1), 79–85.

    Google Scholar 

  • Prieto-Baena, J. C., Hidalgo, P. J., Domínguez, E., & Galán, C. (2003). Pollen production in the Poaceae Family. Grana, 42(3), 153–160.

    Article  Google Scholar 

  • Puc, M., & Puc, M. I. (2004). Allergenic airborne grass pollen in Szczecin, Poland. Annals of Agricultural and Environmental Medicine, 11(2), 237–244.

    Google Scholar 

  • Rantio-Lehtimäki, A., Koivikko, A., Kupias, R., Mäkinen, Y., & Pohjola, A. (1991). Significance of sampling height of airborne particles for aerobiological information. Allergy, 46(1), 68–76.

    Article  Google Scholar 

  • Raynor, G. S., Ogden, E. C., & Hayes, J. V. (1975). Spatial variabilty in airborne pollen concentrations. Journal of Allergy and Clinical Immunology, 55(3), 195–202.

    Article  CAS  Google Scholar 

  • Rodríguez-Rajo, F. J., Fdez-Sevilla, D., Stach, A., & Jato, V. (2010). Assessment between pollen seasons in areas with different urbanization level related to local vegetation sources and differences in allergen exposure. Aerobiologia, 26(1), 1–14.

    Article  Google Scholar 

  • Sabit, M., Ramos, J. D., Alejandro, G. J., & Galán, C. (2016). Seasonal distribution of airborne pollen in Manila, Philippines, and the effect of meteorological factors to its daily concentrations. Aerobiologia, 32(3), 375–383.

    Article  Google Scholar 

  • Schmitz, R., Atzpodien, K., & Schlaud, M. (2012). Prevalence and risk factors of atopic diseases in German children and adolescents. Pediatric Allergy and Immunology, 23(2), 716–723.

    Article  Google Scholar 

  • Selmi, W., Weber, C., Rivière, E., Blond, N., Mehdi, L., & Nowak, D. (2016). Air pollution removal by trees in public green spaces in Strasbourg city, France. Urban Forestry & Urban Greening. doi:10.1016/j.ufug.2016.04.010.

    Google Scholar 

  • Senate Department for Urban Development and the Environment (SDUDE) (2013). Less pollutants. More quality of life. The air quality plan 2011–2017 of Berlin. Resource document. Senate Department for Urban Development and the Environment. http://www.stadtentwicklung.berlin.de/umwelt/stadtgruen/stadtbaeume/en/daten_fakten/uebersichten/index.shtml Accessed 13 April 2016.

  • Shapiro, R. S., & Rooks, R. (1951). The accuracy of the reported ragweed pollen count as a measure of the actual pollen exposure of individuals in that community. Journal of Allergy, 22(5), 450–460.

    Article  CAS  Google Scholar 

  • Simoleit, A., Gauger, U., Mücke, H.-G., Werchan, M., Obstová, B., Zuberbier, T., & Bergmann, K.-C. (2016). Intradiurnal patterns of allergenic airborne pollen near a city motorway in Berlin, Germany. Aerobiologia, 32(2), 199–209.

    Article  Google Scholar 

  • Simoleit, A., Werchan, M., Werchan, B., Mücke, H.-G., Gauger, U., Zuberbier, T., & Bergmann, K.-C. (2017). Birch, grass, and mugwort pollen concentrations and intradiurnal patterns at two different urban sites in Berlin. Germany: Allergo Journal International.

  • Skjøth, C. A., Sommer, J., Brandt, J., Hvidberg, M., Geels, C., Hansen, K., Hertel, O., Frohn, L., & Christensen, J. (2008). Copenhagen—a significant source of birch (Betula) pollen? International Journal of Biometeorology, 52(6), 453–462.

    Article  Google Scholar 

  • Skjøth, C. A., Ørby, P. V., Becker, T., et al. (2013). Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences, 10(1), 541–554.

    Article  Google Scholar 

  • Smith, M., Emberlin, J., & Kress, A. (2005). Examining high magnitude grass pollen episodes at Worcester, United Kingdom, using backtrajectory analysis. Aerobiologia, 21(2), 85–94.

    Article  Google Scholar 

  • Spieksma, F. T. M., van Noort, P., & Nikkels, H. (2000). Influence of nearby stands of Artemisia on street-level versus roof-top-level ratio’s of airborne pollen quantities. Aerobiologia, 16(1), 21–24.

    Article  Google Scholar 

  • Sousa, R., Duque, L., Duarte, A. J., Gomes, C. R., Ribeiro, H., Cruz, A., Esteves da Silva, J. C., & Abreu, I. (2012). In vitro exposure of Acer negundo pollen to atmospheric levels of SO2 and NO2: effects on allergenicity and germination. Environmental Science & Technology, 46(4), 2406–2412.

    Article  CAS  Google Scholar 

  • Staffolani, L., Velasco-Jiménez, M. J., Galán, C., & Hruska, K. (2011). Allergenicity of the ornamental urban flora: ecological and aerobiological analyses in Córdoba (Spain) and Ascoli Piceno (Italy). Aerobiologia, 27(3), 239–246.

    Article  Google Scholar 

  • Steerenberg, P. A., Withagen, C. E., Dormans, J. A., van Dalen, W. J., van Loveren, H., & Casee, F. R. (2003). Adjuvant activity of various diesel exhaust and ambient particles in two allergic models. Journal of Toxicology and Environmental Health, 66(15), 1421–1439.

    Article  CAS  Google Scholar 

  • Subba Reddi, C., Reddi, N. S., & Atluri Janaki, B. (1988). Circadian patterns of pollen release in some species of Poaceae. Review of Palaeobotany and Palynology, 55(1–2), 11–42.

    Article  Google Scholar 

  • Teranishi, H., Katoh, T., Kenda, K., & Hayashi, S. (2006). Global warming and the earlier start of the Japanese-cedar (Cryptomeria japonica) pollen season in Toyama, Japan. Aerobiologia, 22(2), 91–95.

    Article  Google Scholar 

  • Tormo, R., Silva, I., Gonzalo, A., Moreno, A., Pérez, R., & Fernández, S. (2011). Phenological records as a complement to aerobiological data. International Journal of Biometeorology, 55(1), 51–65.

    Article  Google Scholar 

  • Tosunoğlu, A., Babayiğit, S., & Bıçakçı, A. (2015). Aeropalynological survey in Büyükorhan, Bursa. Turkish Journal of Botany, 39(1), 40–47.

    Article  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2015). World Urbanization Prospects: The 2014 Revision, (ST/ESA/SER.A/366). Resource Document. United Nations. https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Report.pdf Accessed 19 February 2017.

  • Velasco-Jiménez, M. J., Alcázar, P., Domínguez-Vilches, E., & Galán, C. (2013). Comparative study of airborne pollen counts located in different areas of the city of Córdoba (south-western Spain). Aerobiologia, 29(1), 113–120.

    Article  Google Scholar 

  • von Wahl, P. G., & Puls, K. E. (1991). Pollenemission und Pollenflug von Kräuterpollen. Grana, 30(1), 260–264.

    Article  Google Scholar 

  • Weinberger, K. R., Kinney, P. L., Robinson, G. S., Sheehan, D., Kheirbek, I., Matte, T. D., & Lovasi, G. S. (2016). Levels and determinants of tree pollen in New York City. Journal of Exposure Science and Environmental Epidemiology. doi:10.1038/jes.2016.72.

    Google Scholar 

  • Werchan, M., Sehlinger, T., Werchan, B. & Bergmann, K. C. (2016). Klein und handlich—Das persönliche Pollenmessgerät. 11. Deutscher Allergiekongress, Berlin, Germany: ePoster P47.

  • Wieringa, J. (1993). Representative roughness parameters for homogeneous terrain. Boundary-Layer Meteorology, 6(4), 323–363.

    Article  Google Scholar 

  • Ziello, C., Sparks, T. H., Estrella, N., Belmonte, J., Bergmann, K.-C., Bucher, E., et al. (2012). Changes to airborne pollen counts across Europe. PloS One. doi:10.1371/journal.pone.0034076.

    Google Scholar 

  • Ziska, L. H., Gebhard, D. E., Frenz, D. A., Faulkner, S., & Singer, B. D. (2003). Cities as harbingers of climate change: common ragweed, urbanization, and public health. Journal of Allergy and Clinical Immunology, 111(2), 290–295.

    Article  Google Scholar 

  • Zuberbier, T., Lötvall, J., Simoens, S., Subramanian, S. V., & Church, M. K. (2014). Economic burden of inadequate management of allergic diseases in the European Union: a GA2LEN review. Allergy, 69(10), 1275–1279.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The main author thanks and dedicates this paper to her dear father, geologist RNDr. Petr Obst. The authors would like to thank the anonymous reviewers for their valuable comments. The study was supported by the German Environment Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbora Werchan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Werchan, B., Werchan, M., Mücke, HG. et al. Spatial distribution of allergenic pollen through a large metropolitan area. Environ Monit Assess 189, 169 (2017). https://doi.org/10.1007/s10661-017-5876-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-017-5876-8

Keywords

Navigation