Skip to main content
Log in

The molecular diversity of α-gliadin genes in the tribe Triticeae

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Many of the unique properties of wheat flour are derived from seed storage proteins such as the α-gliadins. In this study these α-gliadin genes from diploid Triticeae species were systemically characterized, and divided into 3 classes according to the distinct organization of their protein domains. Our analyses indicated that these α-gliadins varied in the number of cysteine residues they contained. Most of the α-gliadin genes were grouped according to their genomic origins within the phylogenetic tree. As expected, sequence alignments suggested that the repetitive domain and the two polyglutamine regions were responsible for length variations of α-gliadins as were the insertion/deletion of structural domains within the three different classes (I, II, and III) of α-gliadins. A screening of celiac disease toxic epitopes indicated that the α-gliadins of the class II, derived from the Ns genome, contain no epitope, and that some other genomes contain much fewer epitopes than the A, S(B) and D genomes of wheat. Our results suggest that the observed genetic differences in α-gliadins of Triticeae might indicate their use as a fertile ground for the breeding of less CD-toxic wheat varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson OD, Greene FC (1997) The α-gliadin gene family. II. DNA and protein sequence variation, subfamily structure, and origins of pseudogenes. Theor Appl Genet 95:59–65. doi:10.1007/s001220050532

    Article  CAS  Google Scholar 

  • Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AVS (2000) In vivo antigen challenge in celiac disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell epitope. Nat Med 6:337–342. doi:10.1038/73200

    Article  PubMed  CAS  Google Scholar 

  • Anderson OD, Hisa CC, Torres V (2001) The wheat γ-gliadin genes: characterization of ten new sequences and further understanding of γ-gliadin gene family structure. Theor Appl Genet 103:323–330. doi:10.1007/s00122-001-0551-3

    Article  CAS  Google Scholar 

  • Arentz-Hansen H, Körner R, Molberg O, Quarsten H, Vader W, Kooy YMC, Lundin KEA, Koning F, Roepstorff P, Sollid LM, McAdam SN (2000) The intestinal T cell response to alpha-gliadin in adult celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. J Exp Med 191:603–612. doi:10.1084/jem.191.4.603

    Article  PubMed  CAS  Google Scholar 

  • Arentz-Hansen H, McAdam SN, Molberg O, Fleckenstein B, Lundin KEA, Jorgensen TJD, Jung G, Roepstorff P, Sollid LM (2002) Celiac lesion T cells recognize epitopes that cluster in regions of gliadins rich in proline residues. Gastroenterology 123:803–809. doi:10.1053/gast.2002.35381

    Article  PubMed  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem Bull 19:11–15

    Google Scholar 

  • Gianfrani C, Troncone R, Mugione P, Cosentini E, De Pascale M, Faruolo C, Senger S, Terrazzano G, Southwood S, Auricchio S, Sette A (2003) Celiac disease association with CD8+ T cell responses: identification of a novel gliadin-derived HLA-A2-restricted epitope. J Immunol 170:2719–2726

    PubMed  CAS  Google Scholar 

  • Gustafson JP, Butler E, Mcintyre CL (1990) Physical mapping of a low-copy DNA sequence in rye (Secale cereale L.). Proc Natl Sci USA 87:1899–1902

    Article  CAS  Google Scholar 

  • Koning F, Gilissen L, Wijmenga C (2005) Gluten: a two edged sword. Immunopathogenesis of celiac disease. Springer Semin Immun 27:217–232. doi:10.1007/s00281-005-0203-9

    Article  CAS  Google Scholar 

  • Li GR, Ren ZL, Liu C, Zhou JP, Yang ZJ (2008) Isolation and sequence analysis of α-gliadin genes from Dasypyrum breviaristatum. Acta Agron Sin 34:1097–1103. doi:10.3724/SP.J.1006.2008.01097

    Article  CAS  Google Scholar 

  • Li G, Zhang T, Wei P, Jia J, Yang Z (2010a) Sequence analysis of α-gliadin genes from Aegilops tauschii native to China. Asian J Agric Sci 2:128–135

    Google Scholar 

  • Li G, Zhang T, Ban Y, Yang Z (2010b) Molecular characterization and evolutionary analysis of α-gliadin genes from Eremopyrum bonaepartis (Triticeae). J Agric Sci 2:30–36

    Google Scholar 

  • Lundin KEA, Scott H, Hansen T, Paulsen G, Halstensen TS, Fausa O, Thorsby E, Sollid LM (1993) Gliadin-specific, Hla-Dq (α1*0501, β1*0201) restricted T-cells isolated from the small-intestinal mucosa of celiac disease patients. J Exp Med 178:187–196. doi:10.1084/jem.178.1.187

    Article  PubMed  CAS  Google Scholar 

  • Ma ZC, Wei YM, Yan ZH, Zheng YL (2007) Characterization of α-gliadin genes from diploid wheats and the comparative analysis with those from polyploid wheats. Russ J Genet 43:1286–1293. doi:10.1134/S1022795407110117

    Article  CAS  Google Scholar 

  • Maiuri L, Troncone R, Mayer M, Coletta S, Picarelli A, De Vincenzi M, Pavone V, Auricchio S (1996) In vitro activities of A-gliadin related synthetic peptides: damaging effect on the atrophic coeliac mucosa and activation of mucosal immune response in the treated coeliac mucosa. Scand J Gastroenterol 31:247–253

    Article  PubMed  CAS  Google Scholar 

  • Mantzaris G, Jewell DP (1991) In vivo toxicity of a synthetic dodecapeptide from α-gliadin in patients with celiac-disease. Scand J Gastroenterol 26:392–398

    Article  PubMed  CAS  Google Scholar 

  • Martucci S, Fraser JS, Biagi F, Corazza GR, Ciclitira PJ, Ellis HJ (2003) Characterizing one of the DQ2 candidate epitopes in coeliac disease: a-gliadin 51-70 toxicity assessed using an organ culture system. Eur J Gastroen Hepat 15:1293–1298

    Article  CAS  Google Scholar 

  • Mazzarella G, Maglio M, Paparo F, Nardone G, Stefanile R, Greco L, van de Wal Y, Kooy Y, Koning F, Auricchio S, Troncone R (2003) An immunodominant DQ8 restricted gliadin peptide activates small intestinal immune response in in vitro cultured mucosa from HLA-DQ8 positive but not HLA-DQ8 negative coeliac patients. Gut 52:57–62. doi:10.1136/gut.52.1.57

    Article  PubMed  CAS  Google Scholar 

  • McManus R, Kelleher D (2003) Celiac disease-the villain unmasked? New Engl J Med 348:2573–2574

    Article  PubMed  Google Scholar 

  • Molberg Ø, Uhlen AK, Jensen T, Flæte NS, Fleckenstein B, Arentz-Hansen H, Raki M, Lundin KEA, Sollid LM (2005) Mapping of gluten T cell epitopes in the bread wheat ancestors: implications for celiac disease. Gastroenterology 128:393–401. doi:10.1053/j.gastro.2004.11.003

    Article  PubMed  CAS  Google Scholar 

  • Müller S, Wieser H (1995) The location of disulphide bonds in α-type gliadins. J Cereal Sci 22:21–27. doi:10.1016/S0733-5210(05)80004-9

    Article  Google Scholar 

  • Payne PI (1987) Genetics of wheat storage proteins and the effect of allelic variation on bread-making quality. Annu Rev Plant Physiol 38:141–153

    Article  CAS  Google Scholar 

  • Payne PI, Holt LM, Jackson EA, Law CN (1984) Wheat storage proteins: their genetics and potential for manipulation by plant breeding. Philos Trans R Soc Lond Ser B 304:359–371. doi:10.1098/rstb.1984.0031

    Article  CAS  Google Scholar 

  • Payne PI, Nightinglale MA, Krattiger AF, Holt LM (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric 40:51–65. doi:10.1002/jsfa.2740400108

    Article  CAS  Google Scholar 

  • Qi PF, Wei YM, Yue YW, Yan ZH, Zheng YL (2006) Biochemical and molecular characterization of gliadins. Mol Biol 40:713–723. doi:10.1134/S0026893306050050

    Article  CAS  Google Scholar 

  • Qi PF, Wei YM, Ouellet T, Chen Q, Tan X, Zheng YL (2009) The γ-gliadin multigene family in common wheat (Triticum aestivum) and its closely related species. BMC genomics 10:168. doi:10.1186/1471-2164-10-168

    Article  PubMed  Google Scholar 

  • Qi PF, Wei YM, Chen Q, Ouellet T, Ai J, Chen GY, Li W, Zheng YL (2011) Identification of novel α-gliadin genes. Genome 54:244–252. doi:10.1139/G10-114

    Article  PubMed  CAS  Google Scholar 

  • Qi PF, Wei YM, Chen GY, Jiang QT, Liu YX, Li W, Zheng YL (2012) Development of chromosome 6D-specific markers for α-gliadin genes and their use in assessing dynamic changes at the Gli-2 loci. Mol Breed 29:199–208. doi:10.1007/s11032-010-9539-5

    Article  CAS  Google Scholar 

  • Reeves CD, Okita TW (1987) Analysis of α/β-type gliadin genes from diploid and hexaploid wheats. Gene 52:257–266. doi:10.1016/0378-1119(87)90052-7

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X (2009) DOG1.0: illustrator of protein domain structures. Cell Res 19:271–273. doi:10.1038/cr.2009.6

    Article  PubMed  CAS  Google Scholar 

  • Shan L, Molberg ø, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for gluten intolerance in celiac disease. Science 297:2275–2279. doi:10.1126/science.1074129

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958. doi:10.1093/jexbot/53.370.947

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Tatham AS (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J 267:1–12

    PubMed  CAS  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–956. doi:10.1105/tpc.7.7.945

    PubMed  CAS  Google Scholar 

  • Spaenij-Dekking L, Kooy-Winkelaar Y, Van Veelen P, Drijfhout JW, Jonker H, Van Soest L, Smulders MJM, Bosch D, Gilissen L, Koning F (2005) Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology 129:797–806. doi:10.1053/j.gastro.2005.06.017

    Article  PubMed  CAS  Google Scholar 

  • Stern M, Ciclitira PJ, van Eckert R, Feighery C, Janssen FW, Méndez E, Mothes T, Troncone R, Wieser H (2001) Analysis and clinical effects of gluten in coeliac disease. Eur J Gastroen Hepat 13:741–747

    Article  CAS  Google Scholar 

  • Sturgess R, Day P, Ellis HJ, Lundin KEA, Gjertsen HA, Kontakou M, Ciclitira PJ (1994) Wheat peptide challenge in celiac-disease. Lancet 343:758–761. doi:10.1016/S0140-6736(94)91837-6

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed  CAS  Google Scholar 

  • Vaccino P, Becker H, Brandolini A, Salamini F, Kilian B (2009) A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients. Mol Genet Genomics 281:289–300. doi:10.1007/s00438-008-0412-8

    Article  PubMed  CAS  Google Scholar 

  • Vader W, Kooy Y, van Veelen P, De Ru A, Harris D, Benckhuijsen W, Pena S, Mearin L, Drijfhout JW, Koning F (2002) The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 122:1729–1737. doi:10.1053/gast.2002.33606

    Article  PubMed  CAS  Google Scholar 

  • van de Wal Y, Kooy YM, van Veelen PA, Pena SA, Mearin LM, Molberg O, Lundin KE, Sollid LM, Mutis T, Benckhuijsen WE, Drijfhout JW, Koning F (1998) Small intestinal T cells of celiac disease patients recognize a natural pepsin fragment of gliadin. Proc Natl Acad Sci USA 95:10050–10054. doi:10.1073/pnas.95.17.10050

    Article  PubMed  Google Scholar 

  • van Herpen TWJM, Goryunova SV, van der Schoot J, Mitreva M, Salentijn E, Vorst O, Schenk MF, van Veelen PA, Koning F, van Soest LJM, Vosman B, Bosch D, Hamer RJ, Gilissen LMWJ, Smulders MJM (2006) Alpha-gliadin genes from the A, B and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genomics 7:1. doi:10.1186/1471-2164-7-1

    Article  PubMed  Google Scholar 

  • Wang RRC, von Bothmer R, Dvorak J, Fedak G, Linde-Laursen I, Muramatsu M (1996) Genome symbols in the Triticeae (Poaceae). In: Wang RRC, Jensen KB, Jaussi C (eds) Proceedings of the 2nd international Triticeae Symposium. Logan, Utah, pp 29–34

  • Xie Z, Wang C, Wang K, Wang S, Li X, Zhang Z, Ma W, Yan Y (2010) Molecular characterization of the celiac disease epitope domains in α-gliadin genes in Aegilops tauschii and hexaploid wheats (Triticum aestivum L.). Theor Appl Genet 121:1239–1251. doi:10.1007/s00122-010-1384-8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors give special thanks to Prof. Yong-Hong Zhou and Deng-Cai Liu for providing the plant materials. The accessions with PI numbers were kindly provided by USDA-ARS (http://www.ars-grin.gov). The accessions with AS numbers were deposited at Triticeae Research Institute, Sichuan Agricultural University, China. This work was supported by the National Natural Science Foundation of China (31230053).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Ming Wei or You-Liang Zheng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 56 kb)

Supplementary material 2 (DOC 677 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, PF., Chen, Q., Ouellet, T. et al. The molecular diversity of α-gliadin genes in the tribe Triticeae . Genetica 141, 303–310 (2013). https://doi.org/10.1007/s10709-013-9729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-013-9729-2

Keywords

Navigation