Skip to main content

Advertisement

Log in

The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction?

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Cholesterol is an essential component of eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The G-protein coupled receptors (GPCRs) are the largest class of molecules involved in signal transduction across membranes and constitute ~1–2% of the human genome. GPCRs have emerged as major targets for the development of novel drug candidates in all clinical areas due to their involvement in the generation of multitude of cellular responses. Membrane cholesterol has been reported to have a modulatory role in the function of a number of GPCRs. This effect could either be due to specific molecular interaction between cholesterol and GPCR, or due to alterations in the membrane physical properties induced by cholesterol. Alternatively, membrane cholesterol could modulate receptor function by occupying the ‘nonannular’ sites around the receptor. In this review, we have highlighted the nature of cholesterol dependence of GPCR function taking a few known examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5

Similar content being viewed by others

Abbreviations

5-HT:

5-Hydroxytryptamine

7-DHC:

7-Dehydrocholesterol

8-OH-DPAT:

8-Hydroxy-2(di-N-propylamino)tetralin

CCK:

Cholecystokinin

DPH:

1,6-Diphenyl-1,3,5-hexatriene

GPCR:

G-protein coupled receptor

FRET:

Fluorescence resonance energy transfer

MβCD:

Methyl-β-cyclodextrin

SLOS:

Smith–Lemli–Opitz syndrome

References

  1. Lee, A.G.: Lipid–protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612, 1–40 (2003). doi:10.1016/S0005-2736(03)00056-7

    Article  PubMed  CAS  Google Scholar 

  2. Palsdottir, H., Hunte, C.: Lipids in membrane protein structures. Biochim. Biophys. Acta 1666, 2–18 (2004). doi:10.1016/j.bbamem.2004.06.012

    Article  PubMed  CAS  Google Scholar 

  3. Lee, A.G.: How lipids affect the activities of integral membrane proteins. Biochim. Biophys. Acta 1666, 62–87 (2004). doi:10.1016/j.bbamem.2004.05.012

    Article  PubMed  CAS  Google Scholar 

  4. Liscum, L., Underwood, K.W.: Intracellular cholesterol transport and compartmentation. J. Biol. Chem. 270, 15443–15446 (1995). doi:10.1074/jbc.270.26.15443

    Article  PubMed  CAS  Google Scholar 

  5. Simons, K., Ikonen, E.: How cells handle cholesterol. Science 290, 1721–1725 (2000). doi:10.1126/science.290.5497.1721

    Article  PubMed  CAS  Google Scholar 

  6. Schroeder, F., Woodford, J.K., Kavecansky, J., Wood, W.G., Joiner, C.: Cholesterol domains in biological membranes. Mol. Membr. Biol. 12, 113–119 (1995). doi:10.3109/09687689509038505

    Article  PubMed  CAS  Google Scholar 

  7. Simons, K., Ikonen, E.: Functional rafts in cell membranes. Nature 387, 569–572 (1997). doi:10.1038/42408

    Article  PubMed  CAS  Google Scholar 

  8. Xu, X., London, E.: The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry 39, 843–849 (2000). doi:10.1021/bi992543v

    Article  PubMed  CAS  Google Scholar 

  9. Simons, K., van Meer, G.: Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202 (1988). doi:10.1021/bi00417a001

    Article  PubMed  CAS  Google Scholar 

  10. Simons, K., Toomre, D.: Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1, 31–39 (2000). doi:10.1038/35036052

    Article  PubMed  CAS  Google Scholar 

  11. Simons, K., Ehehalt, R.: Cholesterol, lipid rafts, and disease. J. Clin. Invest. 110, 597–603 (2002)

    PubMed  CAS  Google Scholar 

  12. Pucadyil, T.J., Chattopadhyay, A.: Cholesterol: a potential therapeutic target in Leishmania infection. Trends Parasitol. 23, 49–53 (2007). doi:10.1016/j.pt.2006.12.003

    Article  PubMed  CAS  Google Scholar 

  13. Burger, K., Gimpl, G., Fahrenholz, F.: Regulation of receptor function by cholesterol. Cell. Mol. Life Sci. 57, 1577–1592 (2000). doi:10.1007/PL00000643

    Article  PubMed  CAS  Google Scholar 

  14. Pucadyil, T.J., Chattopadhyay, A.: Role of cholesterol in the function and organization of G-protein coupled receptors. Prog. Lipid Res. 45, 295–333 (2006). doi:10.1016/j.plipres.2006.02.002

    Article  PubMed  CAS  Google Scholar 

  15. Pierce, K.L., Premont, R.T., Lefkowitz, R.J.: Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002). doi:10.1038/nrm908

    Article  PubMed  CAS  Google Scholar 

  16. Kroeze, W.K., Sheffler, D.J., Roth, B.L.: G-protein-coupled receptors at a glance. J. Cell Sci. 116, 4867–4869 (2003). doi:10.1242/jcs.00902

    Article  PubMed  CAS  Google Scholar 

  17. Perez, D.M.: The evolutionarily triumphant G-protein-coupled receptor. Mol. Pharmacol. 63, 1202–1205 (2003). doi:10.1124/mol.63.6.1202

    Article  PubMed  CAS  Google Scholar 

  18. Gether, U.: Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr. Rev. 21, 90–113 (2000). doi:10.1210/er.21.1.90

    Article  PubMed  CAS  Google Scholar 

  19. Fredriksson, R., Schiöth, H.B.: The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol. Pharmacol. 67, 1414–1425 (2005). doi:10.1124/mol.104.009001

    Article  PubMed  CAS  Google Scholar 

  20. Nature reviews drug discovery GPCR questionnaire participants, The state of GPCR research in 2004. Nat. Rev. Drug Discov. 3, 577–626 (2004). doi:10.1038/nrd1458

  21. Schlyer, S., Horuk, R.: I want a new drug: G-protein-coupled receptors in drug development. Drug Discov. Today 11, 481–493 (2006). doi:10.1016/j.drudis.2006.04.008

    Article  PubMed  CAS  Google Scholar 

  22. Jacoby, E., Bouhelal, R., Gerspacher, M., Seuwen, K.: The 7TM G-protein-coupled receptor target family. ChemMedChem 1, 760–782 (2006). doi:10.1002/cmdc.200600134

    Article  CAS  Google Scholar 

  23. Insel, P.A., Tang, C.M., Hahntow, I., Michel, M.C.: Impact of GPCRs in clinical medicine: monogenic diseases, genetic variants and drug targets. Biochim. Biophys. Acta 1768, 994–1005 (2007). doi:10.1016/j.bbamem.2006.09.029

    Article  PubMed  CAS  Google Scholar 

  24. Lin, S.H., Civelli, O.: Orphan G protein-coupled receptors: targets for new therapeutic interventions. Ann. Med. 36, 204–214 (2004). doi:10.1080/07853890310024668

    Article  PubMed  CAS  Google Scholar 

  25. Straume, M., Litman, B.J.: Equilibrium and dynamic bilayer structural properties of unsaturated acyl chain phosphatidylcholine–cholesterol–rhodopsin recombinant vesicles and rod outer segment disk membranes as determined from higher order analysis of fluorescence anisotropy decay. Biochemistry 27, 7723–7733 (1988). doi:10.1021/bi00420a022

    Article  PubMed  CAS  Google Scholar 

  26. Mitchell, D.C., Straume, M., Miller, J.L., Litman, B.J.: Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry 29, 9143–9149 (1990). doi:10.1021/bi00491a007

    Article  PubMed  CAS  Google Scholar 

  27. Albert, A.D., Boesze-Battaglia, K.: The role of cholesterol in rod outer segment membranes. Prog. Lipid Res. 44, 99–124 (2005). doi:10.1016/j.plipres.2005.02.001

    Article  PubMed  CAS  Google Scholar 

  28. Gimpl, G., Burger, K., Fahrenholz, F.: Cholesterol as modulator of receptor function. Biochemistry 36, 10959–10974 (1997). doi:10.1021/bi963138w

    Article  PubMed  CAS  Google Scholar 

  29. Harikumar, K.G., Puri, V., Singh, R.D., Hanada, K., Pagano, R.E., Miller, L.J.: Differential effects of modification of membrane cholesterol and sphingolipids on the conformation, function, and trafficking of the G protein-coupled cholecystokinin receptor. J. Biol. Chem. 280, 2176–2185 (2005). doi:10.1074/jbc.M410385200

    Article  PubMed  CAS  Google Scholar 

  30. Pang, L., Graziano, M., Wang, S.: Membrane cholesterol modulates galanin–GalR2 interaction. Biochemistry 38, 12003–12011 (1999). doi:10.1021/bi990227a

    Article  PubMed  CAS  Google Scholar 

  31. Pucadyil, T.J., Chattopadhyay, A.: Cholesterol modulates the ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim. Biophys. Acta 1663, 188–200 (2004). doi:10.1016/j.bbamem.2004.03.010

    Article  PubMed  CAS  Google Scholar 

  32. Pucadyil, T.J., Chattopadhyay, A.: Cholesterol modulates the antagonist-binding function of bovine hippocampal serotonin1A receptors. Biochim. Biophys. Acta 1714, 35–42 (2005). doi:10.1016/j.bbamem.2005.06.005

    Article  PubMed  CAS  Google Scholar 

  33. Paila, Y.D., Pucadyil, T.J., Chattopadhyay, A.: The cholesterol-complexing agent digitonin modulates ligand binding of the bovine hippocampal serotonin1A receptor. Mol. Membr. Biol. 22, 241–249 (2005). doi:10.1080/09687860500093453

    Article  PubMed  CAS  Google Scholar 

  34. Sjögren, B., Hamblin, M.W., Svenningsson, P.: Cholesterol depletion reduces serotonin binding and signaling via human 5-HT7(a) receptors. Eur. J. Pharmacol. 552, 1–10 (2006). doi:10.1016/j.ejphar.2006.08.069

    Article  PubMed  CAS  Google Scholar 

  35. Eroglu, C., Cronet, P., Panneels, V., Beaufils, P., Sinning, I.: Functional reconstitution of purified metabotropic glutamate receptor expressed in the fly eye. EMBO Rep. 3, 491–496 (2002). doi:10.1093/embo-reports/kvf088

    Article  PubMed  CAS  Google Scholar 

  36. Eroglu, C., Brugger, B., Wieland, F., Sinning, I.: Glutamate-binding affinity of Drosophila metabotropic glutamate receptor is modulated by association with lipid rafts. Proc. Natl. Acad. Sci. USA 100, 10219–10224 (2003). doi:10.1073/pnas.1737042100

    Article  PubMed  CAS  Google Scholar 

  37. Huang, P., Xu, W., Yoon, S.-I., Chen, C., Chong, P.L.-G., Liu-Chen, L.-Y.: Cholesterol reduction by methyl-β-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. Biochem. Pharmacol. 73, 534–549 (2007). doi:10.1016/j.bcp.2006.10.032

    Article  PubMed  CAS  Google Scholar 

  38. Xu, W., Yoon, S.-I., Huang, P., Wang, Y., Chen, C., Chong, P.L.-G., Liu-Chen, L.-Y.: Localization of the κ opioid receptor in lipid rafts. J. Pharmacol. Exp. Ther. 317, 1295–1306 (2006). doi:10.1124/jpet.105.099507

    Article  PubMed  CAS  Google Scholar 

  39. Lagane, B., Gaibelet, G., Meilhoc, E., Masson, J.-M., Cézanne, L., Lopez, A.: Role of sterols in modulating the human μ-opioid receptor function in Saccharomyces cerevisiae. J. Biol. Chem. 275, 33197–33200 (2000). doi:10.1074/jbc.C000576200

    Article  PubMed  CAS  Google Scholar 

  40. Gimpl, G., Klein, U., Reiländer, H., Fahrenholz, F.: Expression of the human oxytocin receptor in baculovirus-infected insect cells: high-affinity binding is induced by a cholesterol–cyclodextrin complex. Biochemistry 34, 13794–13801 (1995). doi:10.1021/bi00042a010

    Article  PubMed  CAS  Google Scholar 

  41. Fahrenholz, F., Klein, U., Gimpl, G.: Conversion of the myometrial oxytocin receptor from low to high affinity state by cholesterol. Adv. Exp. Med. Biol. 395, 311–319 (1995)

    PubMed  CAS  Google Scholar 

  42. Klein, U., Gimpl, G., Fahrenholz, F.: Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry 34, 13784–13793 (1995). doi:10.1021/bi00042a009

    Article  PubMed  CAS  Google Scholar 

  43. Gimpl, G., Wiegand, V., Burger, K., Fahrenholz, F.: Cholesterol and steroid hormones: modulators of oxytocin receptor function. Prog. Brain Res. 139, 43–55 (2002). doi:10.1016/S0079-6123(02)39006-X

    Article  PubMed  CAS  Google Scholar 

  44. Kirilovsky, J., Schramm, M.: Delipidation of a β-adrenergic receptor preparation and reconstitution by specific lipids. J. Biol. Chem. 258, 6841–6849 (1983)

    PubMed  CAS  Google Scholar 

  45. Kirilovsky, J., Eimerl, S., Steiner-Mordoch, S., Schramm, M.: Function of the delipidated β-adrenergic receptor appears to require a fatty acid or a neutral lipid in addition to phospholipids. Eur. J. Biochem. 166, 221–228 (1987). doi:10.1111/j.1432-1033.1987.tb13505.x

    Article  PubMed  CAS  Google Scholar 

  46. Ben-Arie, N., Gileadi, C., Schramm, M.: Interaction of the β-adrenergic receptor with Gs following delipidation. Specific lipid requirements for Gs activation and GTPase function. Eur. J. Biochem. 176, 649–654 (1988). doi:10.1111/j.1432-1033.1988.tb14326.x

    Article  PubMed  CAS  Google Scholar 

  47. Nguyen, D.H., Taub, D.: CXCR4 function requires membrane cholesterol: implications for HIV infection. J. Immunol. 168, 4121–4126 (2002)

    PubMed  CAS  Google Scholar 

  48. Nguyen, D.H., Taub, D.: Cholesterol is essential for macrophage inflammatory protein 1 beta binding and conformational integrity of CC chemokine receptor 5. Blood 99, 4298–4306 (2002). doi:10.1182/blood-2001-11-0087

    Article  PubMed  CAS  Google Scholar 

  49. Nguyen, D.H., Taub, D.D.: Inhibition of chemokine receptor function by membrane cholesterol oxidation. Exp. Cell Res. 291, 36–45 (2003). doi:10.1016/S0014-4827(03)00345-8

    Article  PubMed  CAS  Google Scholar 

  50. Monastyrskaya, K., Hostettler, A., Buergi, S., Draeger, A.: The NK1 receptor localizes to the plasma membrane microdomains, and its activation is dependent on lipid raft integrity. J. Biol. Chem. 280, 7135–7146 (2005). doi:10.1074/jbc.M405806200

    Article  PubMed  CAS  Google Scholar 

  51. Meyer, B.H., Segura, J.-M., Martinez, K.L., Hovius, R., George, N., Johnsson, K., Vogel, H.: FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl. Acad. Sci. USA 103, 2138–2143 (2006). doi:10.1073/pnas.0507686103

    Article  PubMed  CAS  Google Scholar 

  52. Bari, M., Battista, N., Fezza, F., Finazzi-Agrò, A., Maccarrone, M.: Lipid rafts control signaling of type-1 cannabinoid receptors in neuronal cells. Implications for anandamide-induced apoptosis. J. Biol. Chem. 280, 12212–12220 (2005). doi:10.1074/jbc.M411642200

    Article  PubMed  CAS  Google Scholar 

  53. Bari, M., Paradisi, A., Pasquariello, N., Maccarrone, M.: Cholesterol-dependent modulation of type 1 cannabinoid receptors in nerve cells. J. Neurosci. Res. 81, 275–283 (2005). doi:10.1002/jnr.20546

    Article  PubMed  CAS  Google Scholar 

  54. Colozo, A.T., Park, P.S.-H., Sum, C.S., Pisterzi, L.F., Wells, J.W.: Cholesterol as a determinant of cooperativity in the M2 muscarinic cholinergic receptor. Biochem. Pharmacol. 74, 236–255 (2007). doi:10.1016/j.bcp.2007.04.009

    Article  PubMed  CAS  Google Scholar 

  55. Gimpl, G., Burger, K., Fahrenholz, F.: A closer look at the cholesterol sensor. Trends Biochem. Sci. 27, 596–599 (2002). doi:10.1016/S0968-0004(02)02224-7

    Article  PubMed  CAS  Google Scholar 

  56. Ohvo-Rekilä, H., Ramstedt, B., Leppimäki, P., Slotte, J.P.: Cholesterol interactions with phospholipids in membranes. Prog. Lipid Res. 41, 66–97 (2002). doi:10.1016/S0163-7827(01)00020-0

    Article  PubMed  Google Scholar 

  57. Jones, O.T., McNamee, M.G.: Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry 27, 2364–2374 (1988). doi:10.1021/bi00407a018

    Article  PubMed  CAS  Google Scholar 

  58. Simmonds, A.C., East, J.M., Jones, O.T., Rooney, E.K., McWhirter, J., Lee, A.G.: Annular and non-annular binding sites on the (Ca2+ + Mg2+)–ATPase. Biochim. Biophys. Acta 693, 398–406 (1982). doi:10.1016/0005-2736(82)90447-3

    Article  PubMed  CAS  Google Scholar 

  59. Lee, A.G., East, J.M., Jones, O.T., McWhirter, J., Rooney, E.K., Simmonds, A.C.: Interaction of fatty acids with the calcium–magnesium ion dependent adenosinetriphosphatase from sarcoplasmic reticulum. Biochemistry 21, 6441–6446 (1982). doi:10.1021/bi00268a019

    Article  PubMed  CAS  Google Scholar 

  60. Park, P.S., Filipek, S., Wells, J.W., Palczewski, K.: Oligomerization of G protein-coupled receptors: past, present, and future. Biochemistry 43, 15643–15656 (2004). doi:10.1021/bi047907k

    Article  PubMed  CAS  Google Scholar 

  61. Yao, Z., Kobilka, B.: Using synthetic lipids to stabilize purified β2 adrenoceptor in detergent micelles. Anal. Biochem. 343, 344–346 (2005). doi:10.1016/j.ab.2005.05.002

    Article  PubMed  CAS  Google Scholar 

  62. Cherezov, V., Rosenbaum, D.M., Hanson, M.A., Rasmussen, S.G.F., Thian, F.S., Kobilka, T.S., Choi, H.-J., Kuhn, P., Weis, W.I., Kobilka, B.K., Stevens, R.C.: High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007). doi:10.1126/science.1150577

    Article  PubMed  CAS  Google Scholar 

  63. Albert, A.D., Young, J.E., Yeagle, P.L.: Rhodopsin–cholesterol interactions in bovine rod outer segment disk membranes. Biochim. Biophys. Acta 1285, 47–55 (1996). doi:10.1016/S0005-2736(96)00145-9

    Article  PubMed  Google Scholar 

  64. Bennett, M.P., Mitchell, D.C.: Regulation of membrane proteins by dietary lipids: effects of cholesterol and docosahexaenoic acid acyl chain-containing phospholipids on rhodopsin stability and function. Biophys. J. 95, 1206–1216 (2008). doi:10.1529/biophysj.107.122788

    Article  PubMed  CAS  Google Scholar 

  65. Attwood, P.V., Gutfreund, H.: The application of pressure relaxation to the study of the equilibrium between metarhodopsin I and II from bovine retinas. FEBS Lett. 119, 323–326 (1980). doi:10.1016/0014-5793(80)80281-X

    Article  PubMed  CAS  Google Scholar 

  66. Niu, S.L., Mitchell, D.C., Litman, B.J.: Manipulation of cholesterol levels in rod disk membranes by methyl-β-cyclodextrin: effects on receptor activation. J. Biol. Chem. 277, 20139–20145 (2002). doi:10.1074/jbc.M200594200

    Article  PubMed  CAS  Google Scholar 

  67. Polozova, A., Litman, B.J.: Cholesterol dependent recruitment of di22:6-PC by a G protein-coupled receptor into lateral domains. Biophys. J. 79, 2632–2643 (2000)

    Article  PubMed  CAS  Google Scholar 

  68. Pitman, M.C., Grossfield, A., Suits, F., Feller, S.E.: Role of cholesterol and polyunsaturated chains in lipid–protein interactions: molecular dynamics simulation of rhodopsin in a realistic membrane environment. J. Am. Chem. Soc. 127, 4576–4577 (2005). doi:10.1021/ja042715y

    Article  PubMed  CAS  Google Scholar 

  69. Politowska, E., Kazmierkiewicz, R., Wiegand, V., Fahrenholz, F., Ciarkowski, J.: Molecular modelling study of the role of cholesterol in the stimulation of the oxytocin receptor. Acta Biochim. Pol. 48, 83–93 (2001)

    PubMed  CAS  Google Scholar 

  70. Gimpl, G., Fahrenholz, F.: Cholesterol as stabilizer of the oxytocin receptor. Biochim. Biophys. Acta 1564, 384–392 (2002). doi:10.1016/S0005-2736(02)00475-3

    Article  PubMed  CAS  Google Scholar 

  71. Pucadyil, T.J., Kalipatnapu, S., Chattopadhyay, A.: The serotonin1A receptor: a representative member of the serotonin receptor family. Cell. Mol. Neurobiol. 25, 553–580 (2005). doi:10.1007/s10571-005-3969-3

    Article  PubMed  CAS  Google Scholar 

  72. Hoyer, D., Hannon, J.P., Martin, G.R.: Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav. 71, 533–554 (2002). doi:10.1016/S0091-3057(01)00746-8

    Article  PubMed  CAS  Google Scholar 

  73. Kobilka, B.K., Frielle, T., Collins, S., Yang-Feng, T., Kobilka, T.S., Francke, U., Lefkowitz, R.J., Caron, M.G.: An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature 329, 75–79 (1987). doi:10.1038/329075a0

    Article  PubMed  CAS  Google Scholar 

  74. Fargin, A., Raymond, J.R., Lohse, M.J., Kobilka, B.K., Caron, M.G., Lefkowitz, R.J.: The genomic clone G-21 which resembles a β-adrenergic receptor sequence encodes the 5-HT1A receptor. Nature 335, 358–360 (1988). doi:10.1038/335358a0

    Article  PubMed  CAS  Google Scholar 

  75. Gingrich, J.A., Hen, R.: Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology (Berl.) 155, 1–10 (2001). doi:10.1007/s002130000573

    Article  CAS  Google Scholar 

  76. Toth, M.: 5-HT1A receptor knockout mouse as a genetic model of anxiety. Eur. J. Pharmacol. 463, 177–184 (2003). doi:10.1016/S0014-2999(03)01280-9

    Article  PubMed  CAS  Google Scholar 

  77. Pucadyil, T.J., Shrivastava, S., Chattopadhyay, A.: The sterol-binding antibiotic nystatin differentially modulates ligand binding of the bovine hippocampal serotonin1A receptor. Biochem. Biophys. Res. Commun. 320, 557–562 (2004). doi:10.1016/j.bbrc.2004.06.004

    Article  PubMed  CAS  Google Scholar 

  78. Pucadyil, T.J., Shrivastava, S., Chattopadhyay, A.: Membrane cholesterol oxidation inhibits ligand binding function of hippocampal serotonin1A receptors. Biochem. Biophys. Res. Commun. 331, 422–427 (2005). doi:10.1016/j.bbrc.2005.03.178

    Article  PubMed  CAS  Google Scholar 

  79. Paila, Y.D., Murty, M.R.V.S., Vairamani, M., Chattopadhyay, A.: Signaling by the human serotonin1A receptor is impaired in cellular model of Smith–Lemli–Opitz Syndrome. Biochim. Biophys. Acta 1778, 1508–1516 (2008). doi:10.1016/j.bbamem.2008.03.002

    Article  PubMed  CAS  Google Scholar 

  80. Porter, F.D.: Smith–Lemli–Opitz syndrome: pathogenesis, diagnosis and management. Eur. J. Hum. Genet. 16, 535–541 (2008). doi:10.1038/ejhg.2008.10

    Article  PubMed  CAS  Google Scholar 

  81. Singh, P., Paila, Y.D., Chattopadhyay, A.: Differential effects of cholesterol and 7-dehydrocholesterol on the ligand binding activity of the hippocampal serotonin1A receptors: implications in SLOS. Biochem. Biophys. Res. Commun. 358, 495–499 (2007). doi:10.1016/j.bbrc.2007.04.135

    Article  PubMed  CAS  Google Scholar 

  82. Chattopadhyay, A., Paila, Y.D., Jafurulla, Md., Chaudhuri, A., Singh, P., Murty, M.R.V.S., Vairamani, M.: Differential effects of cholesterol and 7-dehydrocholesterol on ligand binding of solubilized hippocampal serotonin1A receptors: implications in SLOS. Biochem. Biophys. Res. Commun. 363, 800–805 (2007). doi:10.1016/j.bbrc.2007.09.040

    Article  PubMed  CAS  Google Scholar 

  83. Shrivastava, S., Paila, Y.D., Dutta, A., Chattopadhyay, A.: Differential effects of cholesterol and its immediate biosynthetic precursors on membrane organization. Biochemistry 47, 5668–5677 (2008). doi:10.1021/bi8001677

    Article  PubMed  CAS  Google Scholar 

  84. Brown, R.E.: Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J. Cell Sci. 111, 1–9 (1998)

    PubMed  CAS  Google Scholar 

  85. Hoetzl, S., Sprong, H., van Meer, G.: The way we view cellular (glyco)sphingolipids. J. Neurochem. 103, 3–13 (2007). doi:10.1111/j.1471-4159.2007.04721.x

    Article  PubMed  CAS  Google Scholar 

  86. Yamashita, T., Wada, R., Sasaki, T., Deng, C., Bierfreund, U., Sandhoff, K., Proia, R.L.: A vital role for glycosphingolipid synthesis during development and differentiation. Proc. Natl. Acad. Sci. USA 96, 9142–9147 (1999). doi:10.1073/pnas.96.16.9142

    Article  PubMed  CAS  Google Scholar 

  87. Kalipatnapu, S., Chattopadhyay, A.: Membrane protein solubilization: recent advances and challenges in solubilization of serotonin1A receptors. IUBMB Life 57, 505–512 (2005). doi:10.1080/15216540500167237

    Article  PubMed  CAS  Google Scholar 

  88. Paila, Y.D., Chattopadhyay, A.: The human serotonin1A receptor expressed in neuronal cells: toward a native environment for neuronal receptors. Cell. Mol. Neurobiol. 26, 925–942 (2006). doi:10.1007/s10571-006-9098-9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work in A.C.’s laboratory was supported by the Council of Scientific and Industrial Research, Department of Biotechnology, Life Sciences Research Board, and the International Society for Neurochemistry. Y.D.P. thanks the Council of Scientific and Industrial Research for the award of a Senior Research Fellowship. A.C. is an Adjunct Professor at the Special Centre for Molecular Medicine of Jawaharlal Nehru University (New Delhi, India), and Honorary Professor of the Jawaharlal Nehru Centre for Advanced Scientific Research, (Bangalore, India). We gratefully acknowledge Roopali Saxena for her help in generating Fig. 1. We thank Drs. Thomas J. Pucadyil and Shanti Kalipatnapu for helpful discussions, and members of our laboratory for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paila, Y.D., Chattopadhyay, A. The function of G-protein coupled receptors and membrane cholesterol: specific or general interaction?. Glycoconj J 26, 711–720 (2009). https://doi.org/10.1007/s10719-008-9218-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9218-5

Keywords

Navigation