Skip to main content
Log in

Glycosylation disorders of membrane trafficking

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

During evolution from prokaryotic to eukaryotic cells, compartmentalization of cellular functions has been achieved with a high degree of complexity. Notably, all secreted and transmembrane proteins travel through endoplasmic reticulum (ER) and Golgi apparatus, where they are synthesized, folded and subjected to covalent modifications, most particularly glycosylation. N-glycosylation begins in the ER with synthesis and transfer of glycan onto nascent protein and proceeds in Golgi apparatus where maturation occurs. This process not only requires the precise localization of glycosyltransferases, glycosidases and substrates but also an efficient, finely regulated and bidirectional vesicular trafficking among membrane-enclosed organelles. Basically, it is no surprise that alterations in membrane transport or related pathways can lead to glycosylation abnormalities. During the last few years, this has particularly been highlighted in genetic diseases called CDG (Congenital Disorders of Glycosylation). Alterations in mechanisms of vesicle formation due to COPII coat component SEC23B deficiency, or in vesicles tethering, caused by defects of the COG complex, but also impaired Golgi pH homeostasis due to ATP6V0A2 defects have been discovered in CDG patients. This mini review will summarize these fascinating discoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morré, D.J., Mollenhauer, H.H.: The Golgi Apparatus: The First 100 Years. Springer, New York (2009)

    Book  Google Scholar 

  2. Foulquier, F.: COG defects, birth and rise! Biochim. Biophys. Acta 1792, 896–902 (2009)

    Article  CAS  Google Scholar 

  3. Sztul, E., Lupashin, V.: Role of vesicle tethering factors in the ER-Golgi membrane traffic. FEBS Lett. 583, 3770–3783 (2009)

    Article  PubMed  CAS  Google Scholar 

  4. Helenius, A., Aebi, M.: Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001)

    Article  PubMed  CAS  Google Scholar 

  5. Torres, C.R., Hart, G.W.: Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308–3317 (1984)

    PubMed  CAS  Google Scholar 

  6. Weerapana, E., Imperiali, B.: Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 16, 91R–101R (2006)

    Article  PubMed  CAS  Google Scholar 

  7. Helenius, A., Aebi, M.: Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004)

    Article  PubMed  CAS  Google Scholar 

  8. Roth, J.: Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem. Rev. 102, 285–303 (2002)

    Article  PubMed  CAS  Google Scholar 

  9. Palade, G.: Intracellular aspects of the process of protein synthesis. Science 189, 347–358 (1975)

    Article  PubMed  CAS  Google Scholar 

  10. Bannykh, S.I., Balch, W.E.: Membrane dynamics at the endoplasmic reticulum-Golgi interface. J. Cell. Biol. 138, 1–4 (1997)

    Article  PubMed  CAS  Google Scholar 

  11. Martínez-Menárguez, J.A., Geuze, H.J., Slot, J.W., Klumperman, J.: Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell 98, 81–90 (1999)

    Article  PubMed  Google Scholar 

  12. Stinchcombe, J.C., Nomoto, H., Cutler, D.F., Hopkins, C.R.: Anterograde and retrograde traffic between the rough endoplasmic reticulum and the Golgi complex. J. Cell. Biol. 131, 1387–401 (1995)

    Article  PubMed  CAS  Google Scholar 

  13. Pelham, H.R., Rothman, J.E.: The debate about transport in the Golgi-two sides of the same coin? Cell 102, 713–719 (2000)

    Article  PubMed  CAS  Google Scholar 

  14. Elsner, M., Hashimoto, H., Nilsson, T.: Cisternal maturation and vesicle transport: join the band wagon! Mol. Membr. Biol. 20, 221–229 (2003)

    Article  PubMed  CAS  Google Scholar 

  15. Patterson, G.H., Hirschberg, K., Polishchuk, R.S., Gerlich, D., Phair, R.D., Lippincott-Schwartz, J.: Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133, 1055–1067 (2008)

    Article  PubMed  CAS  Google Scholar 

  16. Nakano, A., Luini, A.: Passage through the Golgi. Curr. Opin. Cell Biol. 22, 471–478 (2010)

    Article  PubMed  CAS  Google Scholar 

  17. Mollenhauer, H.H., Morré, D.J.: Perspectives on Golgi apparatus form and function. J. Electron Microsc. Tech. 17, 2–14 (1991)

    Article  PubMed  CAS  Google Scholar 

  18. Becker, B., Melkonian, M.: The secretory pathway of protists: spatial and functional organization and evolution. Microbiol. Rev. 60, 697–721 (1996)

    PubMed  CAS  Google Scholar 

  19. Bonfanti, L., Mironov Jr., A.A., Martinez-Menarguez, J., Martella, O., Fusella, A., Baldassarre, M., Buccione, R., Geuze, H.J., Mironov, A.A., Luini, A.: Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95, 993–1003 (1998)

    Article  PubMed  CAS  Google Scholar 

  20. Bonifacino, J.S., Glick, B.S.: The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004)

    Article  PubMed  CAS  Google Scholar 

  21. Bonifacino, J.S., Lippincott-Schwartz, J.: Coat proteins: shaping membrane transport. Nat. Rev. Mol. Cell Biol. 4, 409–414 (2003)

    Article  PubMed  CAS  Google Scholar 

  22. Bielli, A., Haney, C.J., Gabreski, G., Watkins, S.C., Bannykh, S.I., Aridor, M.: Regulation of Sar1 NH2 terminus by GTP binding and hydrolysis promotes membrane deformation to control COPII vesicle fission. J. Cell. Biol. 171, 919–924 (2005)

    Article  PubMed  CAS  Google Scholar 

  23. Orci, L., Stamnes, M., Ravazzola, M., Amherdt, M., Perrelet, A., Söllner, T.H., Rothman, J.E.: Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90, 335–349 (1997)

    Article  PubMed  CAS  Google Scholar 

  24. Malsam, J., Satoh, A., Pelletier, L., Warren, G.: Golgin tethers define subpopulations of COPI vesicles. Science 307, 1095–1098 (2005)

    Article  PubMed  CAS  Google Scholar 

  25. Rabouille, C., Klumperman, J.: Opinion: The maturing role of COPI vesicles in intra-Golgi transport. Nat. Rev. Mol. Cell Biol. 6, 812–817 (2005)

    Article  PubMed  CAS  Google Scholar 

  26. Jena, B.P.: Membrane fusion: role of SNAREs and calcium. Protein Pept. Lett. 16, 712–717 (2009)

    Article  PubMed  CAS  Google Scholar 

  27. Grosshans, B.L., Ortiz, D., Novick, P.: Rabs and their effectors: achieving specificity in membrane traffic. Proc. Natl. Acad. Sci. U. S. A. 103, 11821–11827 (2006)

    Article  PubMed  CAS  Google Scholar 

  28. Smith, R.D., Lupashin, V.V.: Role of the conserved oligomeric Golgi (COG) complex in protein glycosylation. Carbohydr. Res. 343, 2024–2031 (2008)

    Article  PubMed  CAS  Google Scholar 

  29. Ungar, D., Oka, T., Krieger, M., Hughson, F.M.: Retrograde transport on the COG railway. Trends Cell Biol. 16, 113–120 (2006)

    Article  PubMed  CAS  Google Scholar 

  30. Ungar, D., Oka, T., Brittle, E.E., Vasile, E., Lupashin, V.V., Chatterton, J.E., Heuser, J.E., Krieger, M., Waters, M.G.: Characterization of a mammalian Golgi-localized protein complex, COG, that is required for normal Golgi morphology and function. J. Cell. Biol. 157, 405–415 (2002)

    Article  PubMed  CAS  Google Scholar 

  31. Wu, X., Steet, R.A., Bohorov, O., Bakker, J., Newell, J., Krieger, M., Spaapen, L., Kornfeld, S., Freeze, H.H.: Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat. Med. 10, 518–523 (2004)

    Article  PubMed  CAS  Google Scholar 

  32. Foulquier, F., Vasile, E., Schollen, E., Callewaert, N., Raemaekers, T., Quelhas, D., Jaeken, J., Mills, P., Winchester, B., Krieger, M., Annaert, W., Matthijs, G.: Conserved oligomeric Golgi complex subunit 1 deficiency reveals a previously uncharacterized congenital disorder of glycosylation type II. Proc. Natl. Acad. Sci. U. S. A. 103, 3764–3769 (2006)

    Article  PubMed  CAS  Google Scholar 

  33. Foulquier, F., Ungar, D., Reynders, E., Zeevaert, R., Mills, P., Garcia-Silva, M.T., Briones, P., Winchester, B., Morelle, W., Krieger, M., Annaert, W., Matthijs, G.: A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1-Cog8 interaction in COG complex formation. Hum. Mol. Genet. 16, 717–730 (2007)

    Article  PubMed  CAS  Google Scholar 

  34. Morava, E., Zeevaert, R., Korsch, E., Huijben, K., Wopereis, S., Matthijs, G., Keymolen, K., Lefeber, D.J., De Meirleir, L., Wevers, R.A.: A common mutation in the COG7 gene with a consistent phenotype including microcephaly, adducted thumbs, growth retardation. VSD and episodes of hyperthermia. Eur. J. Hum. Genet. 15, 638–645 (2007)

    Article  PubMed  CAS  Google Scholar 

  35. Ng, B.G., Kranz, C., Hagebeuk, E.E.O., Duran, M., Abeling, N.G.G.M., Wuyts, B., Ungar, D., Lupashin, V., Hartdorff, C.M., Poll-The, B.T., Freeze, H.H.: Molecular and clinical characterization of a Moroccan Cog7 deficient patient. Mol. Genet. Metab. 91, 201–204 (2007)

    Article  PubMed  CAS  Google Scholar 

  36. Zeevaert, R., Foulquier, F., Jaeken, J., Matthijs, G.: Deficiencies in subunits of the Conserved Oligomeric Golgi (COG) complex define a novel group of Congenital Disorders of Glycosylation. Mol. Genet. Metab. 93, 15–21 (2008)

    Article  PubMed  CAS  Google Scholar 

  37. Zeevaert, R., Foulquier, F., Dimitrov, B., Reynders, E., Van Damme-Lombaerts, R., Simeonov, E., Annaert, W., Matthijs, G., Jaeken, J.: Cerebrocostomandibular-like syndrome and a mutation in the conserved oligomeric Golgi complex, subunit 1. Hum. Mol. Genet. 18, 517–524 (2009)

    Article  PubMed  CAS  Google Scholar 

  38. Zeevaert, R., Foulquier, F., Cheillan, D., Cloix, I., Guffon, N., Sturiale, L., Garozzo, D., Matthijs, G., Jaeken, J.: A new mutation in COG7 extends the spectrum of COG subunit deficiencies. Eur. J. Med. Genet. 52, 303–305 (2009)

    Article  PubMed  Google Scholar 

  39. Reynders, E., Foulquier, F., Teles, E.L., Quelhas, D., Morelle, W., Rabouille, C., Annaert, W., Matthijs, G.: Golgi function and dysfunction in the first COG4-deficient CDG type II patient. Hum. Mol. Genet. 18, 3244–3256 (2009)

    Article  PubMed  CAS  Google Scholar 

  40. Paesold-Burda, P., Maag, C., Troxler, H., Foulquier, F., Kleinert, P., Schnabel, S., Baumgartner, M., Hennet, T.: Deficiency in COG5 causes a moderate form of congenital disorders of glycosylation. Hum. Mol. Genet. 18, 4350–4356 (2009)

    Article  PubMed  CAS  Google Scholar 

  41. Lubbehusen, J., Thiel, C., Rind, N., Ungar, D., Prinsen, B.H.C.M.T., de Koning, T.J., van Hasselt, P.M., Körner, C.: Fatal outcome due to deficiency of subunit 6 of the conserved oligomeric Golgi complex leading to a new type of congenital disorders of glycosylation. Hum. Mol. Genet. 19, 3623–3633 (2010)

    Article  PubMed  Google Scholar 

  42. Ng, B.G., Sharma, V., Sun, L., Loh, E., Hong, W., Tay, S.K.H., Freeze, H.H.: Identification of the first COG-CDG patient of Indian origin. Mol. Genet. Metab. 102, 364–367 (2011)

    Article  PubMed  CAS  Google Scholar 

  43. Oka, T., Ungar, D., Hughson, F.M., Krieger, M.: The COG and COPI complexes interact to control the abundance of GEARs, a subset of Golgi integral membrane proteins. Mol. Biol. Cell. 15, 2423–2435 (2004)

    Article  PubMed  CAS  Google Scholar 

  44. Zolov, S.N., Lupashin, V.V.: Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J. Cell. Biol. 168, 747–759 (2005)

    Article  PubMed  CAS  Google Scholar 

  45. Shestakova, A., Zolov, S., Lupashin, V.: COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7, 191–204 (2006)

    Article  PubMed  CAS  Google Scholar 

  46. Pokrovskaya, I.D., Willett, R., Smith, R.D., Morelle, W., Kudlyk, T., Lupashin, V.V.: Conserved oligomeric Golgi complex specifically regulates the maintenance of Golgi glycosylation machinery. Glycobiology 21, 1554–1569 (2011)

    Article  PubMed  CAS  Google Scholar 

  47. Peanne, R., Legrand, D., Duvet, S., Mir, A.M., Matthijs, G., Rohrer, J., Foulquier, F.: Differential effects of lobe A and lobe B of the Conserved Oligomeric Golgi complex on the stability of {beta}1,4-galactosyltransferase 1 and {alpha}2,6-sialyltransferase 1. Glycobiology 21, 864–876 (2011)

    Article  PubMed  CAS  Google Scholar 

  48. Schwarz, K., Iolascon, A., Verissimo, F., Trede, N.S., Horsley, W., Chen, W., Paw, B.H., Hopfner, K.P., Holzmann, K., Russo, R., Esposito, M.R., Spano, D., De Falco, L., Heinrich, K., Joggerst, B., Rojewski, M.T., Perrotta, S., Denecke, J., Pannicke, U., Delaunay, J., Pepperkok, R., Heimpel, H.: Mutations affecting the secretory COPII coat component SEC23B cause congenital dyserythropoietic anemia type II. Nat. Genet. 41, 936–940 (2009)

    Article  PubMed  CAS  Google Scholar 

  49. Bianchi, P., Fermo, E., Vercellati, C., Boschetti, C., Barcellini, W., Iurlo, A., Marcello, A.P., Righetti, P.G., Zanella, A.: Congenital dyserythropoietic anemia type II (CDAII) is caused by mutations in the SEC23B gene. Hum. Mutat. 30, 1292–1298 (2009)

    Article  PubMed  CAS  Google Scholar 

  50. Denecke, J., Kranz, C., Nimtz, M., Conradt, H.S., Brune, T., Heimpel, H., Marquardt, T.: Characterization of the N-glycosylation phenotype of erythrocyte membrane proteins in congenital dyserythropoietic anemia type II (CDA II/HEMPAS). Glycoconj. J. 25, 375–382 (2008)

    Article  PubMed  CAS  Google Scholar 

  51. Kornak, U., Reynders, E., Dimopoulou, A., van Reeuwijk, J., Fischer, R.J., Rajab, A., Budde, B., Nurnberg, P., Foulquier, F., Lefeber, D., Urban, Z., Gruenewald, S., Annaert, W., Brunner, H.G., van Bokhoven, H., Wevers, R., Morava, E., Matthijs, G., Van, M.L., Mundlos, S.: Impaired glycosylation and cutis laxa caused by mutations in the vesicular H + −ATPase subunit ATP6V0A2. Nat. Genet. 40, 32–34 (2008)

    Article  PubMed  CAS  Google Scholar 

  52. Morava, E., Wopereis, S., Coucke, P., Gillessen-Kaesbach, G., Voit, T., Smeitink, J., Wevers, R., Grunewald, S.: Defective protein glycosylation in patients with cutis laxa syndrome. Europ. J. Hum. Genet. 13, 414–421 (2005)

    Article  PubMed  CAS  Google Scholar 

  53. Finbow, M.E., Harrison, M.A.: The vacuolar H + −ATPase: a universal proton pump of eukaryotes. Biochem. J. 324, 697–712 (1997)

    PubMed  CAS  Google Scholar 

  54. Strasser, B., Iwaszkiewicz, J., Michielin, O., Mayer, A.: The V-ATPase proteolipid cylinder promotes the lipid-mixing stage of SNARE-dependent fusion of yeast vacuoles. EMBO J. 30, 4126–4141 (2011)

    Article  PubMed  CAS  Google Scholar 

  55. Glick, S.G., Nakano, A.: Mmebrane traffic within the Golgi apparatus. Annu Rev Cell Dev Biol. 25, 113–132 (2009)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Foulquier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosnoblet, C., Peanne, R., Legrand, D. et al. Glycosylation disorders of membrane trafficking. Glycoconj J 30, 23–31 (2013). https://doi.org/10.1007/s10719-012-9389-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-012-9389-y

Keywords

Navigation