Skip to main content
Log in

Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function

  • Mini-Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycosphingolipids (GSLs) are a group of plasma-membrane lipids notable for their extremely diverse glycan head groups. The metabolic pathways for GSLs, including the identity of the biosynthetic enzymes needed for synthesis of their glycans, are now well understood. Many of their cellular functions, which include plasma-membrane organization, regulation of cell signaling, endocytosis, and serving as binding sites for pathogens and endogenous receptors, have also been established. However, an understanding of their functions in vivo had been lagging. Studies employing genetic manipulations of the GSL synthesis pathways in mice have been used to systematically reduce the large numbers and complexity of GSL glycan structures, allowing the in vivo functions of GSLs to be revealed from analysis of the resulting phenotypes. Findings from these studies have produced a clearer picture of the role of GSLs in mammalian physiology, which is the topic of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Merrill Jr., A.H.: Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111(10), 6387–6422 (2011). doi:10.1021/cr2002917

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  2. Kolter, T., Proia, R.L., Sandhoff, K.: Combinatorial ganglioside biosynthesis. J Biol Chem 277(29), 25859–25862 (2002). doi:10.1074/jbc.R200001200

    Article  PubMed  CAS  Google Scholar 

  3. Cantu, L., Del Favero, E., Sonnino, S., Prinetti, A.: Gangliosides and the multiscale modulation of membrane structure. Chem Phys Lipids 164(8), 796–810 (2011). doi:10.1016/j.chemphyslip.2011.09.005

    Article  PubMed  CAS  Google Scholar 

  4. D’Angelo, G., Capasso, S., Sticco, L., Russo, D.: Glycosphingolipids: synthesis and functions. FEBS J 280(24), 6338–6353 (2013). doi:10.1111/febs.12559

    Article  PubMed  CAS  Google Scholar 

  5. Yu, R.K., Tsai, Y.T., Ariga, T.: Functional roles of gangliosides in neurodevelopment: an overview of recent advances. Neurochem Res 37(6), 1230–1244 (2012). doi:10.1007/s11064-012-0744-y

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Sonnino, S., Mauri, L., Chigorno, V., Prinetti, A.: Gangliosides as components of lipid membrane domains. Glycobiology 17(1), 1R–13R (2007). doi:10.1093/glycob/cwl052

    Article  PubMed  Google Scholar 

  7. Schengrund, C.L.: “Multivalent” saccharides: development of new approaches for inhibiting the effects of glycosphingolipid-binding pathogens. Biochem Pharmacol 65(5), 699–707 (2003)

    Article  PubMed  CAS  Google Scholar 

  8. Schnaar, R.L.: Brain gangliosides in axon-myelin stability and axon regeneration. FEBS Lett 584(9), 1741–1747 (2010). doi:10.1016/j.febslet.2009.10.011

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  9. Yoon, S.J., Nakayama, K., Hikita, T., Handa, K., Hakomori, S.I.: Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc Natl Acad Sci U S A 103(50), 18987–18991 (2006). doi:10.1073/pnas.0609281103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Inokuchi, J.: GM3 and diabetes. Glycoconj J 31(3), 193–197 (2014). doi:10.1007/s10719-013-9516-4

    Article  PubMed  CAS  Google Scholar 

  11. Lakshminarayan, R., Wunder, C., Becken, U., Howes, M.T., Benzing, C., Arumugam, S., Sales, S., Ariotti, N., Chambon, V., Lamaze, C., Loew, D., Shevchenko, A., Gaus, K., Parton, R.G., Johannes, L.: Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat Cell Biol 16(6), 595–606 (2014). doi:10.1038/ncb2970

    Article  PubMed  CAS  Google Scholar 

  12. Ichikawa, S., Ozawa, K., Hirabayashi, Y.: Molecular cloning and expression of mouse ceramide glucosyltransferase. Biochem Mol Biol Int 44(6), 1193–1202 (1998)

    PubMed  CAS  Google Scholar 

  13. Ichikawa, S., Sakiyama, H., Suzuki, G., Hidari, K.I., Hirabayashi, Y.: Expression cloning of a cDNA for human ceramide glucosyltransferase that catalyzes the first glycosylation step of glycosphingolipid synthesis. Proc Natl Acad Sci U S A 93(10), 4638–4643 (1996)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Yamashita, T., Wada, R., Proia, R.L.: Early developmental expression of the gene encoding glucosylceramide synthase, the enzyme controlling the first committed step of glycosphingolipid synthesis. Biochim Biophys Acta 1573(3), 236–240 (2002)

    Article  PubMed  CAS  Google Scholar 

  15. Yamashita, T., Wada, R., Sasaki, T., Deng, C., Bierfreund, U., Sandhoff, K., Proia, R.L.: A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci U S A 96(16), 9142–9147 (1999)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  16. Kolter, T.: A view on sphingolipids and disease. Chem Phys Lipids 164(6), 590–606 (2011). doi:10.1016/j.chemphyslip.2011.04.013

    Article  PubMed  CAS  Google Scholar 

  17. Yamashita, T., Allende, M.L., Kalkofen, D.N., Werth, N., Sandhoff, K., Proia, R.L.: Conditional LoxP-flanked glucosylceramide synthase allele controlling glycosphingolipid synthesis. Genesis 43(4), 175–180 (2005). doi:10.1002/gene.20167

    Article  PubMed  CAS  Google Scholar 

  18. Jennemann, R., Sandhoff, R., Wang, S., Kiss, E., Gretz, N., Zuliani, C., Martin-Villalba, A., Jager, R., Schorle, H., Kenzelmann, M., Bonrouhi, M., Wiegandt, H., Grone, H.J.: Cell-specific deletion of glucosylceramide synthase in brain leads to severe neural defects after birth. Proc Natl Acad Sci U S A 102(35), 12459–12464 (2005). doi:10.1073/pnas.0500893102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Watanabe, S., Endo, S., Oshima, E., Hoshi, T., Higashi, H., Yamada, K., Tohyama, K., Yamashita, T., Hirabayashi, Y.: Glycosphingolipid synthesis in cerebellar Purkinje neurons: roles in myelin formation and axonal homeostasis. Glia 58(10), 1197–1207 (2010). doi:10.1002/glia.20999

    PubMed  Google Scholar 

  20. Nordstrom, V., Willershauser, M., Herzer, S., Rozman, J., von Bohlen Und Halbach, O., Meldner, S., Rothermel, U., Kaden, S., Roth, F.C., Waldeck, C., Gretz, N., de Angelis, M.H., Draguhn, A., Klingenspor, M., Grone, H.J., Jennemann, R.: Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis. PLoS Biol 11(3), e1001506 (2013)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Saadat, L., Dupree, J.L., Kilkus, J., Han, X., Traka, M., Proia, R.L., Dawson, G., Popko, B.: Absence of oligodendroglial glucosylceramide synthesis does not result in CNS myelin abnormalities or alter the dysmyelinating phenotype of CGT-deficient mice. Glia 58(4), 391–398 (2010). doi:10.1002/glia.20930

    Article  PubMed Central  PubMed  Google Scholar 

  22. Holleran, W.M., Takagi, Y., Uchida, Y.: Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett 580(23), 5456–5466 (2006). doi:10.1016/j.febslet.2006.08.039

    Article  PubMed  CAS  Google Scholar 

  23. Rabionet, M., Gorgas, K., Sandhoff, R.: Ceramide synthesis in the epidermis. Biochim Biophys Acta 1841(3), 422–434 (2014). doi:10.1016/j.bbalip.2013.08.011

    Article  PubMed  CAS  Google Scholar 

  24. Jennemann, R., Sandhoff, R., Langbein, L., Kaden, S., Rothermel, U., Gallala, H., Sandhoff, K., Wiegandt, H., Grone, H.J.: Integrity and barrier function of the epidermis critically depend on glucosylceramide synthesis. J Biol Chem 282(5), 3083–3094 (2007). doi:10.1074/jbc.M610304200

    Article  PubMed  CAS  Google Scholar 

  25. Amen, N., Mathow, D., Rabionet, M., Sandhoff, R., Langbein, L., Gretz, N., Jackel, C., Grone, H.J., Jennemann, R.: Differentiation of epidermal keratinocytes is dependent on glucosylceramide:ceramide processing. Hum Mol Genet 22(20), 4164–4179 (2013). doi:10.1093/hmg/ddt264

    Article  PubMed  CAS  Google Scholar 

  26. Li, Z., Li, Y., Chakraborty, M., Fan, Y., Bui, H.H., Peake, D.A., Kuo, M.S., Xiao, X., Cao, G., Jiang, X.C.: Liver-specific deficiency of serine palmitoyltransferase subunit 2 decreases plasma sphingomyelin and increases apolipoprotein E levels. J Biol Chem 284(39), 27010–27019 (2009). doi:10.1074/jbc.M109.042028

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Jennemann, R., Rothermel, U., Wang, S., Sandhoff, R., Kaden, S., Out, R., van Berkel, T.J., Aerts, J.M., Ghauharali, K., Sticht, C., Grone, H.J.: Hepatic glycosphingolipid deficiency and liver function in mice. Hepatology 51(5), 1799–1809 (2010). doi:10.1002/hep.23545

    Article  PubMed  CAS  Google Scholar 

  28. Jennemann, R., Kaden, S., Sandhoff, R., Nordstrom, V., Wang, S., Volz, M., Robine, S., Amen, N., Rothermel, U., Wiegandt, H., Grone, H.J.: Glycosphingolipids are essential for intestinal endocytic function. J Biol Chem 287(39), 32598–32616 (2012). doi:10.1074/jbc.M112.371005

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Nishie, T., Hikimochi, Y., Zama, K., Fukusumi, Y., Ito, M., Yokoyama, H., Naruse, C., Asano, M.: Beta4-galactosyltransferase-5 is a lactosylceramide synthase essential for mouse extra-embryonic development. Glycobiology 20(10), 1311–1322 (2010). doi:10.1093/glycob/cwq098

    Article  PubMed  CAS  Google Scholar 

  30. Kumagai, T., Tanaka, M., Yokoyama, M., Sato, T., Shinkai, T., Furukawa, K.: Early lethality of beta-1,4-galactosyltransferase V-mutant mice by growth retardation. Biochem Biophys Res Commun 379(2), 456–459 (2009). doi:10.1016/j.bbrc.2008.12.078

    Article  PubMed  CAS  Google Scholar 

  31. Lutz, M.S., Jaskiewicz, E., Darling, D.S., Furukawa, K., Young Jr., W.W.: Cloned beta 1,4 N-acetylgalactosaminyltransferase synthesizes GA2 as well as gangliosides GM2 and GD2. GM3 synthesis has priority over GA2 synthesis for utilization of lactosylceramide substrate in vivo. J Biol Chem 269(46), 29227–29231 (1994)

    PubMed  CAS  Google Scholar 

  32. Takamiya, K., Yamamoto, A., Furukawa, K., Yamashiro, S., Shin, M., Okada, M., Fukumoto, S., Haraguchi, M., Takeda, N., Fujimura, K., Sakae, M., Kishikawa, M., Shiku, H., Aizawa, S.: Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. Proc Natl Acad Sci U S A 93(20), 10662–10667 (1996)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Sheikh, K.A., Sun, J., Liu, Y., Kawai, H., Crawford, T.O., Proia, R.L., Griffin, J.W., Schnaar, R.L.: Mice lacking complex gangliosides develop Wallerian degeneration and myelination defects. Proc Natl Acad Sci U S A 96(13), 7532–7537 (1999)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Chiavegatto, S., Sun, J., Nelson, R.J., Schnaar, R.L.: A functional role for complex gangliosides: motor deficits in GM2/GD2 synthase knockout mice. Exp Neurol 166(2), 227–234 (2000). doi:10.1006/exnr.2000.7504

    Article  PubMed  CAS  Google Scholar 

  35. Yin, X., Crawford, T.O., Griffin, J.W., Tu, P., Lee, V.M., Li, C., Roder, J., Trapp, B.D.: Myelin-associated glycoprotein is a myelin signal that modulates the caliber of myelinated axons. J Neurosci Off J Soc Neurosci 18(6), 1953–1962 (1998)

    CAS  Google Scholar 

  36. Sha, S., Zhou, L., Yin, J., Takamiya, K., Furukawa, K., Sokabe, M., Chen, L.: Deficits in cognitive function and hippocampal plasticity in GM2/GD2 synthase knockout mice. Hippocampus 24(4), 369–382 (2014)

    Article  PubMed  CAS  Google Scholar 

  37. Takamiya, K., Yamamoto, A., Furukawa, K., Zhao, J., Fukumoto, S., Yamashiro, S., Okada, M., Haraguchi, M., Shin, M., Kishikawa, M., Shiku, H., Aizawa, S.: Complex gangliosides are essential in spermatogenesis of mice: possible roles in the transport of testosterone. Proc Natl Acad Sci U S A 95(21), 12147–12152 (1998)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Sandhoff, R., Geyer, R., Jennemann, R., Paret, C., Kiss, E., Yamashita, T., Gorgas, K., Sijmonsma, T.P., Iwamori, M., Finaz, C., Proia, R.L., Wiegandt, H., Grone, H.J.: Novel class of glycosphingolipids involved in male fertility. J Biol Chem 280(29), 27310–27318 (2005). doi:10.1074/jbc.M502775200

    Article  PubMed  CAS  Google Scholar 

  39. Yamashita, T., Hashiramoto, A., Haluzik, M., Mizukami, H., Beck, S., Norton, A., Kono, M., Tsuji, S., Daniotti, J.L., Werth, N., Sandhoff, R., Sandhoff, K., Proia, R.L.: Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc Natl Acad Sci U S A 100(6), 3445–3449 (2003). doi:10.1073/pnas.0635898100

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Wang, X.Q., Lee, S., Wilson, H., Seeger, M., Iordanov, H., Gatla, N., Whittington, A., Bach, D., Lu, J.Y., Paller, A.S.: Ganglioside GM3 depletion reverses impaired wound healing in diabetic mice by activating IGF-1 and insulin receptors. J Invest Dermatol 134(5), 1446–1455 (2014). doi:10.1038/jid.2013.532

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Yoshikawa, M., Go, S., Takasaki, K., Kakazu, Y., Ohashi, M., Nagafuku, M., Kabayama, K., Sekimoto, J., Suzuki, S., Takaiwa, K., Kimitsuki, T., Matsumoto, N., Komune, S., Kamei, D., Saito, M., Fujiwara, M., Iwasaki, K., Inokuchi, J.: Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc Natl Acad Sci U S A 106(23), 9483–9488 (2009). doi:10.1073/pnas.0903279106

    Article  PubMed Central  PubMed  Google Scholar 

  42. Okada, M., Itoh Mi, M., Haraguchi, M., Okajima, T., Inoue, M., Oishi, H., Matsuda, Y., Iwamoto, T., Kawano, T., Fukumoto, S., Miyazaki, H., Furukawa, K., Aizawa, S.: b-series Ganglioside deficiency exhibits no definite changes in the neurogenesis and the sensitivity to Fas-mediated apoptosis but impairs regeneration of the lesioned hypoglossal nerve. J Biol Chem 277(3), 1633–1636 (2002). doi:10.1074/jbc.C100395200

    Article  PubMed  CAS  Google Scholar 

  43. Kawai, H., Allende, M.L., Wada, R., Kono, M., Sango, K., Deng, C., Miyakawa, T., Crawley, J.N., Werth, N., Bierfreund, U., Sandhoff, K., Proia, R.L.: Mice expressing only monosialoganglioside GM3 exhibit lethal audiogenic seizures. J Biol Chem 276(10), 6885–6888 (2001). doi:10.1074/jbc.C000847200

    Article  PubMed  CAS  Google Scholar 

  44. Handa, Y., Ozaki, N., Honda, T., Furukawa, K., Tomita, Y., Inoue, M., Okada, M., Sugiura, Y.: GD3 synthase gene knockout mice exhibit thermal hyperalgesia and mechanical allodynia but decreased response to formalin-induced prolonged noxious stimulation. Pain 117(3), 271–279 (2005). doi:10.1016/j.pain.2005.06.016

    Article  PubMed  CAS  Google Scholar 

  45. Tajima, O., Egashira, N., Ohmi, Y., Fukue, Y., Mishima, K., Iwasaki, K., Fujiwara, M., Inokuchi, J., Sugiura, Y., Furukawa, K.: Reduced motor and sensory functions and emotional response in GM3-only mice: emergence from early stage of life and exacerbation with aging. Behav Brain Res 198(1), 74–82 (2009). doi:10.1016/j.bbr.2008.10.024

    Article  PubMed  Google Scholar 

  46. Inoue, M., Fujii, Y., Furukawa, K., Okada, M., Okumura, K., Hayakawa, T., Sugiura, Y.: Refractory skin injury in complex knock-out mice expressing only the GM3 ganglioside. J Biol Chem 277(33), 29881–29888 (2002). doi:10.1074/jbc.M201631200

    Article  PubMed  CAS  Google Scholar 

  47. Yamashita, T., Wu, Y.P., Sandhoff, R., Werth, N., Mizukami, H., Ellis, J.M., Dupree, J.L., Geyer, R., Sandhoff, K., Proia, R.L.: Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions. Proc Natl Acad Sci U S A 102(8), 2725–2730 (2005). doi:10.1073/pnas.0407785102

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Okuda, T., Tokuda, N., Numata, S., Ito, M., Ohta, M., Kawamura, K., Wiels, J., Urano, T., Tajima, O., Furukawa, K.: Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem 281(15), 10230–10235 (2006). doi:10.1074/jbc.M600057200

    Article  PubMed  CAS  Google Scholar 

  49. Porubsky, S., Speak, A.O., Luckow, B., Cerundolo, V., Platt, F.M., Grone, H.J.: Normal development and function of invariant natural killer T cells in mice with isoglobotrihexosylceramide (iGb3) deficiency. Proc Natl Acad Sci U S A 104(14), 5977–5982 (2007). doi:10.1073/pnas.0611139104

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Zhou, D., Mattner, J., Cantu 3rd, C., Schrantz, N., Yin, N., Gao, Y., Sagiv, Y., Hudspeth, K., Wu, Y.P., Yamashita, T., Teneberg, S., Wang, D., Proia, R.L., Levery, S.B., Savage, P.B., Teyton, L., Bendelac, A.: Lysosomal glycosphingolipid recognition by NKT cells. Science 306(5702), 1786–1789 (2004). doi:10.1126/science.1103440

    Article  PubMed  CAS  Google Scholar 

  51. Biellmann, F., Hulsmeier, A.J., Zhou, D., Cinelli, P., Hennet, T.: The Lc3-synthase gene B3gnt5 is essential to pre-implantation development of the murine embryo. BMC Dev Biol 8, 109 (2008). doi:10.1186/1471-213X-8-109

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  52. Togayachi, A., Kozono, Y., Ikehara, Y., Ito, H., Suzuki, N., Tsunoda, Y., Abe, S., Sato, T., Nakamura, K., Suzuki, M., Goda, H.M., Ito, M., Kudo, T., Takahashi, S., Narimatsu, H.: Lack of lacto/neolacto-glycolipids enhances the formation of glycolipid-enriched microdomains, facilitating B cell activation. Proc Natl Acad Sci U S A 107(26), 11900–11905 (2010). doi:10.1073/pnas.0914298107

    Article  PubMed Central  PubMed  Google Scholar 

  53. Kuan, C.T., Chang, J., Mansson, J.E., Li, J., Pegram, C., Fredman, P., McLendon, R.E., Bigner, D.D.: Multiple phenotypic changes in mice after knockout of the B3gnt5 gene, encoding Lc3 synthase–a key enzyme in lacto-neolacto ganglioside synthesis. BMC Dev Biol 10, 114 (2010). doi:10.1186/1471-213X-10-114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Schulte, S., Stoffel, W.: Ceramide UDPgalactosyltransferase from myelinating rat brain: purification, cloning, and expression. Proc Natl Acad Sci U S A 90(21), 10265–10269 (1993)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Coetzee, T., Fujita, N., Dupree, J., Shi, R., Blight, A., Suzuki, K., Popko, B.: Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86(2), 209–219 (1996)

    Article  PubMed  CAS  Google Scholar 

  56. Bosio, A., Binczek, E., Stoffel, W.: Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc Natl Acad Sci U S A 93(23), 13280–13285 (1996)

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  57. Zoller, I., Bussow, H., Gieselmann, V., Eckhardt, M.: Oligodendrocyte-specific ceramide galactosyltransferase (CGT) expression phenotypically rescues CGT-deficient mice and demonstrates that CGT activity does not limit brain galactosylceramide level. Glia 52(3), 190–198 (2005). doi:10.1002/glia.20230

    Article  PubMed  Google Scholar 

  58. Hirahara, Y., Tsuda, M., Wada, Y., Honke, K.: cDNA cloning, genomic cloning, and tissue-specific regulation of mouse cerebroside sulfotransferase. Eur J Biochem FEBS 267(7), 1909–1917 (2000)

    Article  CAS  Google Scholar 

  59. Eckhardt, M.: The role and metabolism of sulfatide in the nervous system. Mol Neurobiol 37(2–3), 93–103 (2008). doi:10.1007/s12035-008-8022-3

    Article  PubMed  CAS  Google Scholar 

  60. Takahashi, T., Suzuki, T.: Role of sulfatide in normal and pathological cells and tissues. J Lipid Res 53(8), 1437–1450 (2012). doi:10.1194/jlr.R026682

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Ishizuka, I.: Chemistry and functional distribution of sulfoglycolipids. Prog Lipid Res 36(4), 245–319 (1997)

    Article  PubMed  CAS  Google Scholar 

  62. Honke, K., Hirahara, Y., Dupree, J., Suzuki, K., Popko, B., Fukushima, K., Fukushima, J., Nagasawa, T., Yoshida, N., Wada, Y., Taniguchi, N.: Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci U S A 99(7), 4227–4232 (2002). doi:10.1073/pnas.032068299

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  63. Hoshi, T., Suzuki, A., Hayashi, S., Tohyama, K., Hayashi, A., Yamaguchi, Y., Takeuchi, K., Baba, H.: Nodal protrusions, increased Schmidt-Lanterman incisures, and paranodal disorganization are characteristic features of sulfatide-deficient peripheral nerves. Glia 55(6), 584–594 (2007). doi:10.1002/glia.20487

    Article  PubMed  Google Scholar 

  64. Ishibashi, T., Dupree, J.L., Ikenaka, K., Hirahara, Y., Honke, K., Peles, E., Popko, B., Suzuki, K., Nishino, H., Baba, H.: A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci Off J Soc Neurosci 22(15), 6507–6514 (2002)

    CAS  Google Scholar 

  65. Hayashi, A., Kaneko, N., Tomihira, C., Baba, H.: Sulfatide decrease in myelin influences formation of the paranodal axo-glial junction and conduction velocity in the sciatic nerve. Glia 61(4), 466–474 (2013). doi:10.1002/glia.22447

    Article  PubMed  Google Scholar 

  66. Lullmann-Rauch, R., Matzner, U., Franken, S., Hartmann, D., Gieselmann, V.: Lysosomal sulfoglycolipid storage in the kidneys of mice deficient for arylsulfatase A (ASA) and of double-knockout mice deficient for ASA and galactosylceramide synthase. Histochem Cell Biol 116(2), 161–169 (2001). doi:10.1007/s004180100286

    PubMed  CAS  Google Scholar 

  67. Sandhoff, R., Hepbildikler, S.T., Jennemann, R., Geyer, R., Gieselmann, V., Proia, R.L., Wiegandt, H., Grone, H.J.: Kidney sulfatides in mouse models of inherited glycosphingolipid disorders: determination by nano-electrospray ionization tandem mass spectrometry. J Biol Chem 277(23), 20386–20398 (2002). doi:10.1074/jbc.M110641200

    Article  PubMed  CAS  Google Scholar 

  68. Stettner, P., Bourgeois, S., Marsching, C., Traykova-Brauch, M., Porubsky, S., Nordstrom, V., Hopf, C., Koesters, R., Sandhoff, R., Wiegandt, H., Wagner, C.A., Grone, H.J., Jennemann, R.: Sulfatides are required for renal adaptation to chronic metabolic acidosis. Proc Natl Acad Sci U S A 110(24), 9998–10003 (2013). doi:10.1073/pnas.1217775110

    Article  PubMed Central  PubMed  Google Scholar 

  69. Schulze, H., Sandhoff, K.: Sphingolipids and lysosomal pathologies. Biochim Biophys Acta 1841(5), 799–810 (2014). doi:10.1016/j.bbalip.2013.10.015

    Article  PubMed  CAS  Google Scholar 

  70. Farukhi, F., Dakkouri, C., Wang, H., Wiztnitzer, M., Traboulsi, E.I.: Etiology of vision loss in ganglioside GM3 synthase deficiency. Ophthalmic Genet 27(3), 89–91 (2006). doi:10.1080/13816810600862626

    Article  PubMed  CAS  Google Scholar 

  71. Wang, H., Bright, A., Xin, B., Bockoven, J.R., Paller, A.S.: Cutaneous dyspigmentation in patients with ganglioside GM3 synthase deficiency. Am J Med Genet A 161A(4), 875–879 (2013). doi:10.1002/ajmg.a.35826

    Article  PubMed  CAS  Google Scholar 

  72. Simpson, M.A., Cross, H., Proukakis, C., Priestman, D.A., Neville, D.C., Reinkensmeier, G., Wang, H., Wiznitzer, M., Gurtz, K., Verganelaki, A., Pryde, A., Patton, M.A., Dwek, R.A., Butters, T.D., Platt, F.M., Crosby, A.H.: Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat Genet 36(11), 1225–1229 (2004). doi:10.1038/ng1460

    Article  PubMed  CAS  Google Scholar 

  73. Harlalka, G.V., Lehman, A., Chioza, B., Baple, E.L., Maroofian, R., Cross, H., Sreekantan-Nair, A., Priestman, D.A., Al-Turki, S., McEntagart, M.E., Proukakis, C., Royle, L., Kozak, R.P., Bastaki, L., Patton, M., Wagner, K., Coblentz, R., Price, J., Mezei, M., Schlade-Bartusiak, K., Platt, F.M., Hurles, M.E., Crosby, A.H.: Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. Brain J Neurol 136(Pt 12), 3618–3624 (2013). doi:10.1093/brain/awt270

    Article  Google Scholar 

  74. Natoli, T.A., Husson, H., Rogers, K.A., Smith, L.A., Wang, B., Budman, Y., Bukanov, N.O., Ledbetter, S.R., Klinger, K.W., Leonard, J.P., Ibraghimov-Beskrovnaya, O.: Loss of GM3 synthase gene, but not sphingosine kinase 1, is protective against murine nephronophthisis-related polycystic kidney disease. Hum Mol Genet 21(15), 3397–3407 (2012). doi:10.1093/hmg/dds172

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Natoli, T.A., Smith, L.A., Rogers, K.A., Wang, B., Komarnitsky, S., Budman, Y., Belenky, A., Bukanov, N.O., Dackowski, W.R., Husson, H., Russo, R.J., Shayman, J.A., Ledbetter, S.R., Leonard, J.P., Ibraghimov-Beskrovnaya, O.: Inhibition of glucosylceramide accumulation results in effective blockade of polycystic kidney disease in mouse models. Nat Med 16(7), 788–792 (2010). doi:10.1038/nm.2171

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. McDonald, G., Deepak, S., Miguel, L., Hall, C.J., Isenberg, D.A., Magee, A.I., Butters, T., Jury, E.C.: Normalizing glycosphingolipids restores function in CD4+ T cells from lupus patients. J Clin Invest 124(2), 712–724 (2014). doi:10.1172/JCI69571

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Intramural Research Program of the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases.

Conflict of interest

The authors declare that they are free from conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard L. Proia.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allende, M.L., Proia, R.L. Simplifying complexity: genetically resculpting glycosphingolipid synthesis pathways in mice to reveal function. Glycoconj J 31, 613–622 (2014). https://doi.org/10.1007/s10719-014-9563-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-014-9563-5

Keywords

Navigation