Skip to main content

Advertisement

Log in

Mass spectrometry of transferrin and apolipoprotein C-III for diagnosis and screening of congenital disorder of glycosylation

  • Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Congenital disorder of glycosylation (CDG), formerly representing a group of diseases due to defects in the biosynthetic pathway of protein N-glycosylation, currently covers a wide range of disorders affecting glycoconjugates. Since its first application to serum transferrin from a CDG patient with phosphomannomutase-2 deficiency in 1992, mass spectrometry (MS) has been playing a key role in identification and characterization of glycosylation defects affecting glycoproteins. MS of native transferrin detects a lack of glycans characteristic to the classical CDG-I type of molecular abnormality. Electrospray ionization MS of native transferrin, especially, allows glycoforms to be analyzed precisely but requires basic knowledge regarding deconvolution of multiply-charged ions which may generate ghost signals upon transformation into a singly-charged form. MS of glycopeptides from tryptic digestion of transferrin delineates site-specific glycoforms and reveals a delicate balance of donor/acceptor substrates or the conformational effect of nascent proteins in cells. Matrix-assisted laser desorption ionization MS of apolipoprotein C-III is a simple method of elucidating the profiles of mucin-type core 1 O-glycans including site occupancy and glycoforms. In this technological review, the principle and pitfalls of MS for CDG are discussed and mass spectra of various types of CDG are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wada Y., Nishikawa A., Okamoto N., Inui K., Tsukamoto H., Okada S., Taniguchi N.: Structure of serum transferrin in carbohydrate-deficient glycoprotein syndrome. Biochem. Biophys. Res. Commun. 189(2), 832–836 (1992)

    Article  CAS  PubMed  Google Scholar 

  2. Jaeken J., van Eijk H.G., van der Heul C., Corbeel L., Eeckels R., Eggermont E.: Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin. Chim. Acta. 144(2–3), 245–247 (1984)

    Article  CAS  PubMed  Google Scholar 

  3. Stibler H., Jaeken J.: Carbohydrate deficient serum transferrin in a new systemic hereditary syndrome. Arch. Dis. Child. 65(1), 107–111 (1990)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Babovic-Vuksanovic D., O'Brien J.F.: Laboratory diagnosis of congenital disorders of glycosylation type I by analysis of transferrin glycoforms. Mol. Diagn. Ther. 11(5), 303–311 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. Barone R., Sturiale L., Garozzo D.: Mass spectrometry in the characterization of human genetic N-glycosylation defects. Mass Spectrom. Rev. 28(3), 517–542 (2009). doi:10.1002/mas.20201

    Article  CAS  PubMed  Google Scholar 

  6. Faid V., Chirat F., Seta N., Foulquier F., Morelle W.: A rapid mass spectrometric strategy for the characterization of N- and O-glycan chains in the diagnosis of defects in glycan biosynthesis. Proteomics. 7(11), 1800–1813 (2007). doi:10.1002/pmic.200600977

    Article  CAS  PubMed  Google Scholar 

  7. Hennet T.: Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim. Biophys. Acta. 1820(9), 1306–1317 (2012). doi:10.1016/j.bbagen.2012.02.001

    Article  CAS  PubMed  Google Scholar 

  8. Jaeken J., Carchon H.: The carbohydrate-deficient glycoprotein syndromes: an overview. J. Inherit. Metab. Dis. 16(5), 813–820 (1993)

    Article  CAS  PubMed  Google Scholar 

  9. Scott K., Gadomski T., Kozicz T., Morava E.: Congenital disorders of glycosylation: new defects and still counting. J. Inherit. Metab. Dis. 37(4), 609–617 (2014). doi:10.1007/s10545-014-9720-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barone R., Fiumara A., Jaeken J.: Congenital disorders of glycosylation with emphasis on cerebellar involvement. Semin. Neurol. 34(3), 357–366 (2014). doi:10.1055/s-0034-1387197

    Article  PubMed  Google Scholar 

  11. Freeze H.H.: Congenital disorders of glycosylation: CDG-I, CDG-II, and beyond. Curr. Mol. Med. 7(4), 389–396 (2007)

    Article  CAS  PubMed  Google Scholar 

  12. Marquardt T., Denecke J.: Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur. J. Pediatr. 162(6), 359–379 (2003). doi:10.1007/s00431-002-1136-0

    CAS  PubMed  Google Scholar 

  13. Schachter H., Jaeken J.: Carbohydrate-deficient glycoprotein syndrome type II. Biochim. Biophys. Acta. 1455(2–3), 179–192 (1999)

    Article  CAS  PubMed  Google Scholar 

  14. Reynders E., Foulquier F., Annaert W., Matthijs G.: How golgi glycosylation meets and needs trafficking: the case of the COG complex. Glycobiology. 21(7), 853–863 (2011). doi:10.1093/glycob/cwq179

    Article  CAS  PubMed  Google Scholar 

  15. Lacey J.M., Bergen H.R., Magera M.J., Naylor S., O'Brien J.F.: Rapid determination of transferrin isoforms by immunoaffinity liquid chromatography and electrospray mass spectrometry. Clin. Chem. 47(3), 513–518 (2001)

    CAS  PubMed  Google Scholar 

  16. Zuhlsdorf A., Park J.H., Wada Y., Rust S., Reunert J., DuChesne I., Gruneberg M., Marquardt T.: Transferrin variants: pitfalls in the diagnostics of congenital disorders of glycosylation. Clin. Biochem. 48(1–2), 11–13 (2015). doi:10.1016/j.clinbiochem.2014.09.022

    Article  PubMed  Google Scholar 

  17. Sturiale L., Barone R., Palmigiano A., Ndosimao C.N., Briones P., Adamowicz M., Jaeken J., Garozzo D.: Multiplexed glycoproteomic analysis of glycosylation disorders by sequential yolk immunoglobulins immunoseparation and MALDI-TOF MS. Proteomics. 8(18), 3822–3832 (2008). doi:10.1002/pmic.200700496

    Article  CAS  PubMed  Google Scholar 

  18. Wada Y., Gu J., Okamoto N., Inui K.: Diagnosis of carbohydrate-deficient glycoprotein syndrome by matrix-assisted laser desorption time-of-flight mass spectrometry. Biol. Mass. Spectrom. 23(2), 108–109 (1994). doi:10.1002/bms.1200230211

    Article  CAS  PubMed  Google Scholar 

  19. Burda P., Borsig L., de Rijk-van Andel J., Wevers R., Jaeken J., Carchon H., Berger E.G., Aebi M.: A novel carbohydrate-deficient glycoprotein syndrome characterized by a deficiency in glucosylation of the dolichol-linked oligosaccharide. J. Clin. Invest. 102(4), 647–652 (1998). doi:10.1172/JCI2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rymen D., Peanne R., Millon M.B., Race V., Sturiale L., Garozzo D., Mills P., Clayton P., Asteggiano C.G., Quelhas D., Cansu A., Martins E., Nassogne M.C., Goncalves-Rocha M., Topaloglu H., Jaeken J., Foulquier F., Matthijs G.: MAN1B1 deficiency: an unexpected CDG-II. PLoS Genet. 9(12), e1003989 (2013). doi:10.1371/journal.pgen.1003989

    Article  PubMed  PubMed Central  Google Scholar 

  21. Martinez-Duncker I., Dupre T., Piller V., Piller F., Candelier J.J., Trichet C., Tchernia G., Oriol R., Mollicone R.: Genetic complementation reveals a novel human congenital disorder of glycosylation of type II, due to inactivation of the golgi CMP-sialic acid transporter. Blood. 105(7), 2671–2676 (2005). doi:10.1182/blood-2004-09-3509

    Article  CAS  PubMed  Google Scholar 

  22. Charuk J.H., Tan J., Bernardini M., Haddad S., Reithmeier R.A., Jaeken J., Schachter H.: Carbohydrate-deficient glycoprotein syndrome type II. An autosomal recessive N-acetylglucosaminyltransferase II deficiency different from typical hereditary erythroblastic multinuclearity, with a positive acidified-serum lysis test (HEMPAS). Eur. J. Biochem. 230(2), 797–805 (1995)

    Article  CAS  PubMed  Google Scholar 

  23. De Praeter C.M., Gerwig G.J., Bause E., Nuytinck L.K., Vliegenthart J.F., Breuer W., Kamerling J.P., Espeel M.F., Martin J.J., De Paepe A.M., Chan N.W., Dacremont G.A., Van Coster R.N.: A novel disorder caused by defective biosynthesis of N-linked oligosaccharides due to glucosidase I deficiency. Am. J. Hum. Genet. 66(6), 1744–1756 (2000)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Peters V., Penzien J.M., Reiter G., Korner C., Hackler R., Assmann B., Fang J., Schaefer J.R., Hoffmann G.F., Heidemann P.H.: Congenital disorder of glycosylation IId (CDG-IId) – a new entity: clinical presentation with dandy-walker malformation and myopathy. Neuropediatrics. 33(1), 27–32 (2002). doi:10.1055/s-2002-23597

    Article  CAS  PubMed  Google Scholar 

  25. Ng B.G., Buckingham K.J., Raymond K., Kircher M., Turner E.H., He M., Smith J.D., Eroshkin A., Szybowska M., Losfeld M.E., Chong J.X., Kozenko M., Li C., Patterson M.C., Gilbert R.D., Nickerson D.A., Shendure J., Bamshad M.J.: University of Washington center for mendelian, G., freeze, H.H.: mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. Am. J. Hum. Genet. 92(4), 632–636 (2013). doi:10.1016/j.ajhg.2013.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tajiri M., Yoshida S., Wada Y.: Differential analysis of site-specific glycans on plasma and cellular fibronectins: application of a hydrophilic affinity method for glycopeptide enrichment. Glycobiology. 15(12), 1332–1340 (2005). doi:10.1093/glycob/cwj019

    Article  CAS  PubMed  Google Scholar 

  27. Wada Y., Azadi P., Costello C.E., Dell A., Dwek R.A., Geyer H., Geyer R., Kakehi K., Karlsson N.G., Kato K., Kawasaki N., Khoo K.H., Kim S., Kondo A., Lattova E., Mechref Y., Miyoshi E., Nakamura K., Narimatsu H., Novotny M.V., Packer N.H., Perreault H., Peter-Katalinic J., Pohlentz G., Reinhold V.N., Rudd P.M., Suzuki A., Taniguchi N.: Comparison of the methods for profiling glycoprotein glycans–HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology. 17(4), 411–422 (2007). doi:10.1093/glycob/cwl086

    Article  CAS  PubMed  Google Scholar 

  28. Wada Y., Tajiri M., Yoshida S.: Hydrophilic affinity isolation and MALDI multiple-stage tandem mass spectrometry of glycopeptides for glycoproteomics. Anal. Chem. 76(22), 6560–6565 (2004). doi:10.1021/ac049062o

    Article  CAS  PubMed  Google Scholar 

  29. Gill D.J., Chia J., Senewiratne J., Bard F.: Regulation of O-glycosylation through golgi-to-ER relocation of initiation enzymes. J. Cell Biol. 189(5), 843–858 (2010). doi:10.1083/jcb.201003055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wopereis S., Grunewald S., Morava E., Penzien J.M., Briones P., Garcia-Silva M.T., Demacker P.N., Huijben K.M., Wevers R.A.: Apolipoprotein C-III isofocusing in the diagnosis of genetic defects in O-glycan biosynthesis. Clin. Chem. 49(11), 1839–1845 (2003)

    Article  CAS  PubMed  Google Scholar 

  31. Wada Y., Kadoya M., Okamoto N.: Mass spectrometry of apolipoprotein C-III, a simple analytical method for mucin-type O-glycosylation and its application to an autosomal recessive cutis laxa type-2 (ARCL2) patient. Glycobiology. 22(8), 1140–1144 (2012). doi:10.1093/glycob/cws086

    Article  CAS  PubMed  Google Scholar 

  32. Yen-Nicolay S., Boursier C., Rio M., Lefeber D.J., Pilon A., Seta N., Bruneel A.: MALDI-TOF MS applied to apoC-III glycoforms of patients with congenital disorders affecting O-glycosylation. Comparison with two-dimensional electrophoresis. Proteomics Clin. Appl. 9(7–8), 787–793 (2015). doi:10.1002/prca.201400187

    Article  CAS  PubMed  Google Scholar 

  33. Morava E., Wopereis S., Coucke P., Gillessen-Kaesbach G., Voit T., Smeitink J., Wevers R., Grunewald S.: Defective protein glycosylation in patients with cutis laxa syndrome. Eur. J. Hum. Genet. 13(4), 414–421 (2005). doi:10.1038/sj.ejhg.5201361

    Article  CAS  PubMed  Google Scholar 

  34. Kornak U., Reynders E., Dimopoulou A., van Reeuwijk J., Fischer B., Rajab A., Budde B., Nurnberg P., Foulquier F.: Group, a.D.-t.S., lefeber, D., urban, Z., gruenewald, S., annaert, W., brunner, H.G., van bokhoven, H., wevers, R., morava, E., matthijs, G., van maldergem, L., mundlos, S.: impaired glycosylation and cutis laxa caused by mutations in the vesicular H + −ATPase subunit ATP6V0A2. Nat. Genet. 40(1), 32–34 (2008). doi:10.1038/ng.2007.45

    Article  CAS  PubMed  Google Scholar 

  35. Wada Y., Dell A., Haslam S.M., Tissot B., Canis K., Azadi P., Backstrom M., Costello C.E., Hansson G.C., Hiki Y., Ishihara M., Ito H., Kakehi K., Karlsson N., Hayes C.E., Kato K., Kawasaki N., Khoo K.H., Kobayashi K., Kolarich D., Kondo A., Lebrilla C., Nakano M., Narimatsu H., Novak J., Novotny M.V., Ohno E., Packer N.H., Palaima E., Renfrow M.B., Tajiri M., Thomsson K.A., Yagi H., Yu S.Y., Taniguchi N.: Comparison of methods for profiling O-glycosylation: Human Proteome Organisation Human Disease Glycomics/Proteome Initiative multi-institutional study of IgA1. Mol. Cell. Proteomics. 9(4), 719–727 (2010). doi:10.1074/mcp.M900450-MCP200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author thanks Prof Marquardt (University of Münster), Dr. Yuasa (Tottori University) and Dr. Okamoto (Osaka Medical Center and Research Institute for Maternal and Child Health) for providing serum samples from CDG patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinao Wada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, Y. Mass spectrometry of transferrin and apolipoprotein C-III for diagnosis and screening of congenital disorder of glycosylation. Glycoconj J 33, 297–307 (2016). https://doi.org/10.1007/s10719-015-9636-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-015-9636-0

Keywords

Navigation