Skip to main content
Log in

Muscle fiber type characteristics in females with chronic obstructive pulmonary disease. A preliminary study

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Chronic obstructive pulmonary disease (COPD) is known to elicit intrinsic abnormalities in male skeletal muscle. However, it is unclear to what extent these changes occur in women and whether they are fiber-type specific. We investigated fiber-type specific differences in selected histochemical properties in muscle obtained from women with moderate to severe COPD compared to healthy control (CON) women. Tissue was obtained from the vastus lateralis in five COPD patients (age 66.9 ± 2.6 years; FEV1 = 43 ± 7%) and eight CON (age 68 ± 4.9 years; FEV1 = 113 ± 4.2%). Compared to CON, the distribution (30.6 ± 5.2 vs. 57.9 ± 4.6%) and cross sectional area of type I (CSA, 5660 ± 329 vs. 3586 ± 257 μm2) and type IIA (2770 ± 302 vs. 2099 ± 206 μm2) were lower (P < 0.05) and higher (P < 0.05), respectively, in COPD. Disease state did not alter either the distribution or CSA of the IIA, IIAX or type X subtypes. Although differences were found between fiber types in the number of capillary contacts (n) (I > IIAX, IIX; IIA > IIX) and the capillaries per CSA (μm210−3) (I < IIA, IIAX, IIX), no differences were found between CON and COPD. Succinic dehydrogenase activity and sarcoplasmic reticulum (SR) Ca2+-ATPase activity, measured photometrically (OD units), were higher (P < 0.05), and lower (P < 0.05), respectively, in type I compared to the type II fiber subtypes. These properties were not altered with COPD. COPD in females is accompanied by a higher percent of type II fibers, a larger CSA of type I and type IIA fibers, both of which occur in the absence of differences in oxidative potential and the potential for SR Ca2+-sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson P, Henriksson J (1977) Capillary supply of the quadriceps femoris muscle of man. Adaptive response to exercise. J Physiol 270:677–690

    Google Scholar 

  • Bergström J (1962) Muscle electrolytes in man. Scand J Clin Lab Invest 68(Supp):1–10

    Google Scholar 

  • Bottinelli R, Reggiani C (2000) Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol 73:195–262. doi:10.1016/S0079-6107(00)00006-7

    Article  PubMed  CAS  Google Scholar 

  • Brooke MH, Kaiser KK (1970) Muscle fibre types. How many and what kind? Arch Neurol Chic 23:369–379

    CAS  Google Scholar 

  • Degens H, Always SE (2006) Control of muscle size during disuse, disease, and aging. Int J Sports Med 27:34–99. doi:10.1055/s-2005-837571

    Article  CAS  Google Scholar 

  • Ennion S, Periera JS, Sargent AJ, Young A, Goldspink G (1995) Characterization of human skeletal muscle fibres according to the myosin heavy chain they express. J Muscle Res Cell Motil 16:35–43. doi:10.1007/BF00125308

    Article  PubMed  CAS  Google Scholar 

  • Fontera WR, Suh D, Krivikas LS, Hughes VA, Goldstein R, Roubenoff R (2000) Skeletal muscle fiber quality in older men and women. Am J Physiol 279:C611–C618

    Google Scholar 

  • Gosker HR, Wouters EF, van der Vusse GJ, Schols AMWJ (2000) Skeletal muscle dysfunction in chronic obstructive pulmonary disease and chronic heart failure: underlying mechanisms and therapy perspectives. Am J Clin Nutr 71(5):1033–1047

    PubMed  CAS  Google Scholar 

  • Gosker HR, Engeler MPKJ, van Mameren H, Van Dijk H, van der Vusse GJ, Wouters EFM, Schols AMWJ (2002a) Muscle fiber type IIX atrophy is involved in the loss of fat-free mass in chronic obstructive lung disease. Am J Clin Nutr 76:113–119

    PubMed  CAS  Google Scholar 

  • Gosker HR, van Mameren H, van Dijk PJ, Engelen MPKJ, van der Vusse GJ, Wouters EFM, Schols AMWJ (2002b) Skeletal muscle fibre-type shifting and metabolic profile in patients with chronic obstructive pulmonary disease. Eur Respir J 19:617–625. doi:10.1183/09031936.02.00762001

    Article  PubMed  CAS  Google Scholar 

  • Gosker HR, Zeegers MP, Wouters EFM, Schols AMWJ (2007) Muscle fibre type shifting in the vastus lateralis of patients with COPD is associated with disease severity: a systemic review and meta-analysis. Thorax 62:944–949. doi:10.1136/thx.2007.078980

    Article  PubMed  Google Scholar 

  • Green HJ, Morrissey M, Smith D, Fraser I (1985) Relationships between microphotometric determinations of succinic dehydrogenase activity in single fibers using kinetics and end point criteria. Med Sci Sports Exerc 17:192 (abstract)

    Google Scholar 

  • Green H, Goreham C, Ouyarg J, Ball-Burnett M, Ranney D (1998) Regulation of fiber size, oxidative potential, and capillarization in human muscle by resistance exercise. Am J Physiol 276:R591–R596

    Google Scholar 

  • Green HJ, Duscha BD, Kraus WE, Ketegian SJ, Sullivan MT (2000) Association of chronic hear failure in humans with an intrinsic up regulation in sarcoplasmic reticulum Ca2+-ATPase activity. Am J Cardiol 85:1498–1500. doi:10.1016/S0002-9149(00)00804-3

    Article  PubMed  CAS  Google Scholar 

  • Green HJ, Burnett M, D’Arsigny C, Iqbal S, O’Donnell DE, Ouyang J, Webb KW (2008a) Altered metabolic and transporter characteristics in vastus lateralis in chronic obstructive pulmonary disease. J Appl Physiol 105:879–896. doi:10.1152/japplphysiol.90458.2008

    Article  PubMed  CAS  Google Scholar 

  • Green HJ, Bombardier E, D’Arsigny C, O’Donnell D, Ouyang J (2008b) Organization of metabolic pathways on skeletal muscle of patients with chronic obstructive lung disease. Am J Physiol Regul Integr Comp Physiol 295:R935–R941. doi:10.1152/ajpregu.00167.2008

    PubMed  CAS  Google Scholar 

  • Green HJ, Burnett TA, Duhamel TA, Arsigny CD, O’Donnell DE, Ouyang J (2008c) Abnormal sarcoplasmic reticulum Ca2+-sequestering properties in skeletal muscle in chronic obstructive lung disease. Am J Physiol 295:C350–C357. doi:10.1152/ajpcell.00224.2008

    Article  CAS  Google Scholar 

  • Green HJ, Burnett M, D’Arsigny C, O’Donnell DE, McBride I, Ouyang J, Webb KA (2009) Vastus lateralis Na+-K+-ATPase activity, protein, and isoform distribution in chronic obstructive pulmonary disease. Muscle Nerve (in press)

  • Gregory CM, Vandenborne K, Dudley GA (2001) Metabolic enzymes and phenotypic expression among human locomotor muscles. Muscle Nerve 24:387–393. doi:10.1002/1097-4598(200103)24:3<387::AID-MUS1010>3.0.CO;2-M

    Google Scholar 

  • Hamilton AL, Killian KJ, Summers E, Jones NL (1995) Muscle strength, symptom intensity and exercise capacity in patients with cardiorespiratory disorders. Am J Respir Crit Care Med 152:2021–2031

    PubMed  CAS  Google Scholar 

  • Hepple RT (1997) A new measure of tissue capillarity. The capillary-to-fibre perimeter exchange index. Can J Appl Physiol 22:11–22

    PubMed  CAS  Google Scholar 

  • Inger F (1977) A method of correlating ultrastructural and histochemical data from individual muscle fibers. Histochemistry 54:169–172. doi:10.1007/BF00489675

    Article  Google Scholar 

  • Jakobsson P, Jorfeldt PL, Henriksson J (1995) Metabolic enzyme activity in the quadriceps femoris muscle in patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med 151:374–377

    PubMed  CAS  Google Scholar 

  • Jobin J, Maltais F, Doyen JF, Leblanc P, Simard PM, Simard AA, Simard C (1998) Chronic obstructive pulmonary disease: capillarity and fibre type characteristics of skeletal muscle. J Cardiopulm Rehabil 18:432–437. doi:10.1097/00008483-199811000-00005

    Article  PubMed  CAS  Google Scholar 

  • Lecker SH, Jagoe RT, Gilbert A, Gomas M, Baracos J, Bailer S, Price SR, Mitch WE, Goldberg AL (2004) Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 18:39–51. doi:10.1096/fj.03-0610com

    Article  PubMed  CAS  Google Scholar 

  • Loughlin M (1993) Muscle biopsy: a laboratory investigation. Cambridge University Press, Cambridge

    Google Scholar 

  • Mador MJ, Bozkanat E (2001) Skeletal muscle dysfunction in chronic obstructive pulmonary disease. Respir Res 2:216–224. doi:10.1186/rr60

    Article  PubMed  CAS  Google Scholar 

  • Maltais F, Sullivan MJ, Leblanc P, Duscha BD, Schachat FH, Simard C, Blank JM, Jobin J (1999) Altered expression of myosin heavy chain in vastus lateralis muscle in patients with COPD. Eur Respir J 13:850–854. doi:10.1034/j.1399-3003.1999.13d26.x

    Article  PubMed  CAS  Google Scholar 

  • Mathieu-Costello O (1993) Comparative aspects of muscle capillary supply. Annu Rev Physiol 55:503–526. doi:10.1146/annurev.ph.55.030193.002443

    Article  PubMed  CAS  Google Scholar 

  • O’Neill DE, Noble EG (2004) Constitutive expression of inducible HSP70 is linked to natural shifts in skeletal muscle phenotype. Acta Physiol Scand 181:35–41. doi:10.1111/j.1365-201X.2004.01276.x

    Article  PubMed  CAS  Google Scholar 

  • O’Neill DET, Aubrey FK, Zelden DA, Michel RN, Noble EG (2006) Slower skeletal muscle phenotypes are critical for constitutive expression of HSP70 in overload rat plantaris muscle. J Appl Physiol 100:981–987. doi:10.1152/japplphysiol.00831.2005

    Article  PubMed  Google Scholar 

  • Parsons DB, McIntyre K, Schulz W, Stray-Gunderson J (1993) Capillarity of elite cross-country skiiers. A lectin (Ulex europeaus 1) marker. Scand J Med Sci Sports 3:89–98

    Article  Google Scholar 

  • Pette D (1981) Microphotometric measurement of initial reaction rates in quantitative enzyme histochemistry in situ. Histochem J 13:319–327. doi:10.1007/BF01006885

    Article  PubMed  CAS  Google Scholar 

  • Pette D, Staron RS (1997) Mammalian skeletal muscle fiber type transitions. Int Rev Cytol 170:143–223. doi:10.1016/S0074-7696(08)61622-8

    Article  PubMed  CAS  Google Scholar 

  • Proctor DN, Sinning WE, Waldro JM, Sieck GC, Lemon PW (1995) Oxidative capacity of human muscle fiber types: effects of age and training status. J Appl Physiol 78:2033–2038

    PubMed  CAS  Google Scholar 

  • Saltin B, Gollnick PD (1983) Skeletal muscle adaptability: significance for metabolism and performance. In: Peachy LD, Adrian RH, Geiger SR (eds) Handbook of physiology. Skeletal muscle. Williams and Wilkins, Baltimore, pp 551–631

    Google Scholar 

  • Satta A, Migliori GB, Spanevello A, Neri M, Bottinelli R, Canepari M, Pellegrino MA, Reggiani C (1997) Fibre types in skeletal muscles of chronic obstructive pulmonary disease patients related to respiratory function and exercise tolerance. Eur Respir J 10:2857–2860. doi:10.1183/09031936.97.10122853

    Article  Google Scholar 

  • Sauleda J, Garcia-Palmer F, Wiesner RJ, Tarraga S, Harting I, Tomás P, Gomez C, Saus C, Palace A, Agustí AGN (1998) Cytochrome oxidase activity and mitochondrial gene expression in skeletal muscle of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 157:1413–1417

    PubMed  CAS  Google Scholar 

  • Sjogaard G (1982) Capillary supply and cross-sectional area of slow and fast twitch muscle fibres in man. Histochem 76:547–555. doi:10.1007/BF00489909

    Article  CAS  Google Scholar 

  • Staron RS, Hikida RS, Hagerman FC (1983) Re-evaluation of human skeletal muscle fast-twitch subtypes: evidence for continuum. Histochem 78:33–39. doi:10.1007/BF00491109

    Article  Google Scholar 

  • Van Der Laarse WJ, Van Nocrt P, Simonides WS, Diegerback PC, Lee-De Groot MBE, van Hardeveld C (1995) Histochemistry of sarcoplasmic reticulum Ca-ATPase using dysprosiom as capturing reagent. Histochem J 27:702–714

    PubMed  Google Scholar 

  • Wagner PD (2008) Possible mechanisms underlying the development of cachexia in COPD. Eur Respir J 31:492–501. doi:10.1183/09031936.00074807

    Article  PubMed  CAS  Google Scholar 

  • Whittom F, Jobin J, Simard PM, Leblanc P, Simard C, Bernard J, Belleau R, Maltais F (1998) Histochemical and morphological characteristics of the vastus lateralis in patients with chronic obstructive pulmonary disease. Med Sci Sports 30:1467–1474

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance provided by the Department of Medicine Research Award (Queen’s University) and the Natural Sciences and Engineering Research Council (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard J. Green.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Green, H.J., Burnett, M.E., D’Arsigny, C. et al. Muscle fiber type characteristics in females with chronic obstructive pulmonary disease. A preliminary study. J Mol Hist 40, 41–51 (2009). https://doi.org/10.1007/s10735-009-9211-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-009-9211-8

Keywords

Navigation