Skip to main content
Log in

Artemisinin suppresses sympathetic hyperinnervation following myocardial infarction via anti-inflammatory effects

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Inflammation plays an important role in sympathetic remodeling after myocardial infarction (MI), and the inhibition of inflammation has therapeutic benefits that could alleviate the progression of sympathetic remodeling. Recent studies have indicated that the antimalarial agent artemisinin has the ability to inhibit inflammation. In this study, the inhibitory effects of artemisinin on the production of proinflammatory mediators and the number of macrophages were investigated 4 weeks after MI. Our results show that artemisinin significantly inhibited IL-1β and TNF-α protein expression and the infiltration of macrophages. Artemisinin significantly decreased the protein expression of NGF, GAP43, and TH compared with the control group, which was related to sympathetic nerve remodeling. Interestingly, a clear positive correlation was observed between the expression of NGF and GAP43 in our study, and a similar correlation was revealed between NGF and TH. In addition, the densities of both GAP-43- and TH-immunoreactive nerves in the peri-infarct zone were significantly attenuated by artemisinin treatment. Our results suggest that artemisinin is able to inhibit sympathetic remodeling after MI, possibly through an anti-inflammatory effect. The data provide direct evidence of the potential application of artemisinin for the treatment of sympathetic remodeling after MI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aldieri E, Atragene D, Bergandi L et al (2003) Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-κB activation. FEBS Lett 552:141–144

    Article  PubMed  CAS  Google Scholar 

  • Anton ES, Weskamp G, Reichardt LF et al (1994) Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc Natl Acad Sci U S A 91:2795–2799

    Article  PubMed  CAS  Google Scholar 

  • Cao J-M, Fishbein MC, Han JB et al (2000a) Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101:1960–1969

    Article  PubMed  CAS  Google Scholar 

  • Cao J-M, Chen LS, KenKnight BH et al (2000b) Nerve sprouting and sudden cardiac death. Circ Res 86:816–821

    Article  PubMed  CAS  Google Scholar 

  • Edwards RH, Rutter WJ, Hanahan D (1989) Directed expression of NGF to pancreatic beta cells in transgenic mice leads to selective hyperinnervation of the islets. Cell 58:161–170

    Article  PubMed  CAS  Google Scholar 

  • Efferth T, Romero MR, Wolf DG et al (2008) The antiviral activities of artemisinin and artesunate. Clin Infect Dis 47:804–811

    Article  PubMed  CAS  Google Scholar 

  • El-Bassiouni EA, Helmy MH, Sad EI et al (2007) Modulation of the antioxidant defence in different developmental stages of Schistosoma mansoni by praziquantel and artemether. Br J Biomed Sci 64:168–174

    PubMed  CAS  Google Scholar 

  • El-Helou Viviane, Proulx Cindy, Gosselin Hugues et al (2008) Dexamethasone treatment of post-MI rats attenuates sympathetic innervation of the infarct region. J Appl Physiol 104:150–156

    Article  PubMed  CAS  Google Scholar 

  • Hasan W, Jama A, Donohue T et al (2006) Sympathetic hyperinnervation and inflammatory cell NGF synthesis following myocardial infarction in rats. Brain Res 1124:142–154

    Article  PubMed  CAS  Google Scholar 

  • Hassankhani A, Steinhelper ME, Soonpaa MH et al (1995) Overexpression of NGF within the heart of transgenic mice causes hyperinnervation, cardiac enlargement, and hyperplasia of ectopic cells. Dev Biol 169:309–321

    Article  PubMed  CAS  Google Scholar 

  • Hou JM, Wang DS, Zhang RW et al (2008) Experimental therapy of hepatoma with artemisinin and its derivatives: in vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 14:5519–5530

    Article  PubMed  CAS  Google Scholar 

  • Huang CX, Yuan MJ, Huang H, Wu G, Liu Y, Yu SB, Li HT, Wang T (2009) Ghrelin inhibits post-infarct myocardial remodeling and improves cardiac function through anti-inflammation effect. Peptides 30:2286–2291

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Lu Z, Yu Y et al (2007) Relationship between sympathetic nerve sprouting and repolarization dispersion at peri-infarct zone after myocardial infarction. Auton Neurosci 134:18–25

    Article  PubMed  Google Scholar 

  • Krishna S, Bustamante L, Haynes RK et al (2008) Artemisinins: their growing importance in medicine. Trends Pharmacol Sci 29:520–527

    Article  PubMed  CAS  Google Scholar 

  • Li WD, Dong YJ, Tu YY et al (2006) Dihydroarteannuin ameliorates lupus symptom of BXSB mice by inhibiting production of TNF-a and blocking the signaling pathway NF-kB translocation. Int Immunopharmacol 6:1243–1250

    Article  PubMed  CAS  Google Scholar 

  • Li B, Zhang R, Li J et al (2008) Antimalarial artesunate protects sepsis model mice against heat-killed Escherichia coli challenge by decreasing TLR4, TLR9 mRNA expressions and transcription factor NF-kB activation. Int Immunopharmacol 8:379–389

    Article  PubMed  CAS  Google Scholar 

  • Lindholm D, Heumann R, Meyer M et al (1987) Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 330:658–659

    Article  PubMed  CAS  Google Scholar 

  • Liu YB, Wu CC, Lu LS et al (2003) Sympathetic nerve sprouting, electrical remodeling, and increased vulnerability to ventricular fibrillation in hypercholesterolemic rabbits. Circ Res 92:1145–1152

    Article  PubMed  CAS  Google Scholar 

  • Lockhart ST, Turrigiano GG, Birren SJ (1997) Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. J Neurosci 17:9573–9582

    PubMed  CAS  Google Scholar 

  • Rosenthal PJ (2008) Artesunate for the treatment of severe falciparum malaria. N Engl J Med 358:1829–1836

    Article  PubMed  CAS  Google Scholar 

  • Rush RA (1984) Immunohistochemical localization of endogenous nerve growth factor. Nature 312:364–367

    Article  PubMed  CAS  Google Scholar 

  • Snider WD (1994) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell 77:627–638

    Article  PubMed  Google Scholar 

  • Wang ZJ, Qiu J, Guo TB et al (2007) Anti-inflammatory properties and regulatory mechanism of a novel derivative of artemisinin in experimental autoimmune encephalomyelitis. J Immunol 79:5958–5965

    Google Scholar 

  • Wernli G, Hasan W, Bhattacherjee A et al (2009) Macrophage depletion suppresses sympathetic hyperinnervation following myocardial infarction. Basic Res Cardiol 104:681–693

    Article  PubMed  Google Scholar 

  • Woodrow CJ, Haynes RK, Krishna S (2005) Artemisinins. Postgrad Med J 81:71–78

    Article  PubMed  CAS  Google Scholar 

  • Xin Ping, Pan Yesheng, Zhu Wei et al (2010) Favorable effects of resveratrol on sympathetic neural remodeling in rats following myocardial infarction. Eur. J. Pharmacology 649:293–300

    Article  CAS  Google Scholar 

  • Xiong Zhaojun, Sun Gang, Zhu Cansheng et al (2010) Artemisinin, an anti-malarial agent, inhibits rat cardiac hypertrophy via inhibition of NF-κB signaling. Eur J Pharmacology 649:277–284

    Article  CAS  Google Scholar 

  • Xu H, He Y, Yang X et al (2007) Anti-malarial agent artesunate inhibits TNF-a-induced production of proinflammatory cytokines via inhibition of NF-kB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology 46:920–926

    Article  PubMed  CAS  Google Scholar 

  • Yang Shu-sen, Han Wei, Cao Yong et al (2011) Effects of high thoracic epidural anesthesia on atrial electrophysiological characteristics and sympathetic nerve sprouting in a canine model of atrial fibrillation. Basic Res Cardiol 106:495–506

    Article  PubMed  CAS  Google Scholar 

  • Yuan Ming-Jie, Huang Cong-Xin, Tang Yan-Hong et al (2009) A novel peptide ghrelin inhibits neural remodeling after myocardial infarction in rats. Eur J Pharmacology 15:52–57

    Article  CAS  Google Scholar 

  • Zhou S, Cao JM, Tebb ZD et al (2001) Modulation of QT interval by cardiac sympathetic nerve sprouting and the mechanisms of ventricular arrhythmia in a canine model of sudden cardiac death. J Cardiovasc Electrophysiol 12:1068–1073

    Article  PubMed  CAS  Google Scholar 

  • Zhou S, Chen LS, Miyauchi Y et al (2004) Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 95:76–83

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Fundamental Research Funds for the Central Universities (No. 201130202020003), (No. 2012302020205) and by the Natural Science Foundation of Hubei province, China (No. 2011CHB034).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congxin Huang.

Additional information

Yongwei Gu and Xi Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Y., Wang, X., Wu, G. et al. Artemisinin suppresses sympathetic hyperinnervation following myocardial infarction via anti-inflammatory effects. J Mol Hist 43, 737–743 (2012). https://doi.org/10.1007/s10735-012-9440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-012-9440-0

Keywords

Navigation