Skip to main content
Erschienen in: Inflammation 4/2013

01.08.2013

The Adenosine-Dependent Angiogenic Switch of Macrophages to an M2-Like Phenotype is Independent of Interleukin-4 Receptor Alpha (IL-4Rα) Signaling

verfasst von: Christopher James Ferrante, Grace Pinhal-Enfield, Genie Elson, Bruce Neil Cronstein, Gyorgy Hasko, Shalini Outram, Samuel Joseph Leibovich

Erschienen in: Inflammation | Ausgabe 4/2013

Einloggen, um Zugang zu erhalten

ABSTRACT

Murine macrophages are activated by interferon-γ (IFN-γ) and/or Toll-like receptor (TLR) agonists such as bacterial endotoxin (lipopolysaccharide [LPS]) to express an inflammatory (M1) phenotype characterized by the expression of nitric oxide synthase-2 (iNOS) and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin (IL)-12. In contrast, Th2 cytokines IL-4 and IL-13 activate macrophages by inducing the expression of arginase-1 and the anti-inflammatory cytokine IL-10 in an IL-4 receptor-α (IL-4Rα)-dependent manner. Macrophages activated in this way are designated as “alternatively activated” (M2a) macrophages. We have shown previously that adenosine A2A receptor (A2AR) agonists act synergistically with TLR2, TLR4, TLR7, and TLR9 agonists to switch macrophages into an “M2-like” phenotype that we have termed “M2d.” Adenosine signaling suppresses the TLR-dependent expression of TNF-α, IL-12, IFN-γ, and several other inflammatory cytokines by macrophages and induces the expression of vascular endothelial growth factor (VEGF) and IL-10. We show here using mice lacking a functional IL-4Rα gene (IL-4Rα−/− mice) that this adenosine-mediated switch does not require IL-4Rα-dependent signaling. M2d macrophages express high levels of VEGF, IL-10, and iNOS, low levels of TNF-α and IL-12, and mildly elevated levels of arginase-1. In contrast, M2d macrophages do not express Ym1, Fizz1 (RELM-α), or CD206 at levels greater than those induced by LPS, and dectin-1 expression is suppressed. The use of these markers in vivo to identify “M2” macrophages thus provides an incomplete picture of macrophage functional status and should be viewed with caution.
Literatur
1.
Zurück zum Zitat Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and functions. Immunity 32: 593–604.PubMedCrossRef Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: Mechanism and functions. Immunity 32: 593–604.PubMedCrossRef
2.
Zurück zum Zitat Leibovich, S.J., and R. Ross. 1975. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. American Journal of Pathology 78: 71–100.PubMed Leibovich, S.J., and R. Ross. 1975. The role of the macrophage in wound repair. A study with hydrocortisone and antimacrophage serum. American Journal of Pathology 78: 71–100.PubMed
3.
Zurück zum Zitat Lucas, T., et al. 2010. Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology 184: 3964–3977.CrossRef Lucas, T., et al. 2010. Differential roles of macrophages in diverse phases of skin repair. Journal of Immunology 184: 3964–3977.CrossRef
4.
Zurück zum Zitat Galli, S.J., et al. 2011. Phenotypic and functional plasticity of cells of innate immunity: Macrophages, mast cells and neutrophils. Nature Immunology 12: 1035–1044.PubMedCrossRef Galli, S.J., et al. 2011. Phenotypic and functional plasticity of cells of innate immunity: Macrophages, mast cells and neutrophils. Nature Immunology 12: 1035–1044.PubMedCrossRef
5.
Zurück zum Zitat Mosser, D.M., and J.P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nature Reviews Immunology 8: 958–969.PubMedCrossRef Mosser, D.M., and J.P. Edwards. 2008. Exploring the full spectrum of macrophage activation. Nature Reviews Immunology 8: 958–969.PubMedCrossRef
6.
Zurück zum Zitat Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nature Reviews Immunology 11: 750–761.PubMedCrossRef Lawrence, T., and G. Natoli. 2011. Transcriptional regulation of macrophage polarization: Enabling diversity with identity. Nature Reviews Immunology 11: 750–761.PubMedCrossRef
7.
Zurück zum Zitat Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5: 953–964.PubMedCrossRef Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5: 953–964.PubMedCrossRef
8.
Zurück zum Zitat Mosser, D.M. 2003. The many faces of macrophage activation. Journal of Leukocyte Biology 73: 209–212.PubMedCrossRef Mosser, D.M. 2003. The many faces of macrophage activation. Journal of Leukocyte Biology 73: 209–212.PubMedCrossRef
9.
Zurück zum Zitat Stein, M., et al. 1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. The Journal of Experimental Medicine 176: 287–292.PubMedCrossRef Stein, M., et al. 1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: A marker of alternative immunologic macrophage activation. The Journal of Experimental Medicine 176: 287–292.PubMedCrossRef
10.
Zurück zum Zitat Willment, J.A., et al. 2003. Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide. Journal of Immunology 171: 4569–4573. Willment, J.A., et al. 2003. Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide. Journal of Immunology 171: 4569–4573.
11.
Zurück zum Zitat Kreider, T., et al. 2007. Alternatively activated macrophages in helminth infections. Current Opinion in Immunology 19: 448–453.PubMedCrossRef Kreider, T., et al. 2007. Alternatively activated macrophages in helminth infections. Current Opinion in Immunology 19: 448–453.PubMedCrossRef
12.
Zurück zum Zitat Martinez, F.O., et al. 2008. Macrophage activation and polarization. Frontiers in Bioscience 13: 453–461.PubMedCrossRef Martinez, F.O., et al. 2008. Macrophage activation and polarization. Frontiers in Bioscience 13: 453–461.PubMedCrossRef
13.
Zurück zum Zitat Pinhal-Enfield, G., et al. 2003. An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors. American Journal of Pathology 163: 711–721.PubMedCrossRef Pinhal-Enfield, G., et al. 2003. An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7, and 9 and adenosine A(2A) receptors. American Journal of Pathology 163: 711–721.PubMedCrossRef
14.
Zurück zum Zitat Ferrante, C.J., and S.J. Leibovich. 2012. Regulation of macrophage polarization and wound healing. Advances in Wound Care 1: 10–16.CrossRef Ferrante, C.J., and S.J. Leibovich. 2012. Regulation of macrophage polarization and wound healing. Advances in Wound Care 1: 10–16.CrossRef
15.
Zurück zum Zitat Csoka, B., et al. 2012. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. The FASEB Journal 26: 376–386.CrossRef Csoka, B., et al. 2012. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. The FASEB Journal 26: 376–386.CrossRef
16.
Zurück zum Zitat Murphree, L.J., et al. 2005. Lipopolysaccharide rapidly modifies adenosine receptor transcripts in murine and human macrophages: Role of NF-kappaB in A(2A) adenosine receptor induction. Biochemical Journal 391: 575–580.PubMedCrossRef Murphree, L.J., et al. 2005. Lipopolysaccharide rapidly modifies adenosine receptor transcripts in murine and human macrophages: Role of NF-kappaB in A(2A) adenosine receptor induction. Biochemical Journal 391: 575–580.PubMedCrossRef
17.
Zurück zum Zitat Ramanathan, M., et al. 2009. Differential regulation of HIF-1alpha isoforms in murine macrophages by TLR4 and adenosine A(2A) receptor agonists. Journal of Leukocyte Biology 86: 681–689.PubMedCrossRef Ramanathan, M., et al. 2009. Differential regulation of HIF-1alpha isoforms in murine macrophages by TLR4 and adenosine A(2A) receptor agonists. Journal of Leukocyte Biology 86: 681–689.PubMedCrossRef
18.
Zurück zum Zitat Ramanathan, M., et al. 2007. Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. Molecular Biology of the Cell 18: 14–23.PubMedCrossRef Ramanathan, M., et al. 2007. Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. Molecular Biology of the Cell 18: 14–23.PubMedCrossRef
19.
Zurück zum Zitat Elson, G., et al. 2013. Induction of murine adenosine A(2A) receptor expression by LPS: Analysis of the 5′ upstream promoter. Genes Immunology. doi:10.1038/gene.2012.60. Elson, G., et al. 2013. Induction of murine adenosine A(2A) receptor expression by LPS: Analysis of the 5′ upstream promoter. Genes Immunology. doi:10.​1038/​gene.​2012.​60.
20.
Zurück zum Zitat Komohara, Y., et al. 2011. M2 macrophage/microglial cells induce activation of Stat3 in primary central nervous system lymphoma. Journal of Clinical and Experimental Hematopathology 51: 93–99.PubMedCrossRef Komohara, Y., et al. 2011. M2 macrophage/microglial cells induce activation of Stat3 in primary central nervous system lymphoma. Journal of Clinical and Experimental Hematopathology 51: 93–99.PubMedCrossRef
21.
Zurück zum Zitat Kurahara, H., et al. 2012. M2-polarized tumor-associated macrophage infiltration of regional lymph nodes is associated with nodal lymphangiogenesis and occult nodal involvement in pN0 pancreatic cancer. Pancreas 42: 155–159.CrossRef Kurahara, H., et al. 2012. M2-polarized tumor-associated macrophage infiltration of regional lymph nodes is associated with nodal lymphangiogenesis and occult nodal involvement in pN0 pancreatic cancer. Pancreas 42: 155–159.CrossRef
22.
Zurück zum Zitat Niino, D., et al. 2010. Ratio of M2 macrophage expression is closely associated with poor prognosis for angioimmunoblastic T-cell lymphoma (AITL). Pathology International 60: 278–283.PubMedCrossRef Niino, D., et al. 2010. Ratio of M2 macrophage expression is closely associated with poor prognosis for angioimmunoblastic T-cell lymphoma (AITL). Pathology International 60: 278–283.PubMedCrossRef
23.
Zurück zum Zitat Prokop, S., et al. 2011. M2 polarized macrophages and giant cells contribute to myofibrosis in neuromuscular sarcoidosis. American Journal of Pathology 178: 1279–1286.PubMedCrossRef Prokop, S., et al. 2011. M2 polarized macrophages and giant cells contribute to myofibrosis in neuromuscular sarcoidosis. American Journal of Pathology 178: 1279–1286.PubMedCrossRef
24.
Zurück zum Zitat Ruffell, D., et al. 2009. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proceedings of the National Academy of Sciences of the United States of America 106: 17475–17480.PubMedCrossRef Ruffell, D., et al. 2009. A CREB-C/EBPbeta cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proceedings of the National Academy of Sciences of the United States of America 106: 17475–17480.PubMedCrossRef
25.
Zurück zum Zitat Hasko, G., et al. 2008. Adenosine receptors: Therapeutic aspects for inflammatory and immune diseases. Nature Reviews. Drug Discovery 7: 759–770.PubMedCrossRef Hasko, G., et al. 2008. Adenosine receptors: Therapeutic aspects for inflammatory and immune diseases. Nature Reviews. Drug Discovery 7: 759–770.PubMedCrossRef
26.
Zurück zum Zitat Linden, J. 2001. Molecular approach to adenosine receptors: Receptor-mediated mechanisms of tissue protection. Annual Review of Pharmacology and Toxicology 41: 775–787.PubMedCrossRef Linden, J. 2001. Molecular approach to adenosine receptors: Receptor-mediated mechanisms of tissue protection. Annual Review of Pharmacology and Toxicology 41: 775–787.PubMedCrossRef
27.
Zurück zum Zitat Greenhalgh, D.G. 1998. The role of apoptosis in wound healing. The International Journal of Biochemistry & Cell Biology 30: 1019–1030.CrossRef Greenhalgh, D.G. 1998. The role of apoptosis in wound healing. The International Journal of Biochemistry & Cell Biology 30: 1019–1030.CrossRef
28.
Zurück zum Zitat Rai, N.K., et al. 2005. Apoptosis: A basic physiologic process in wound healing. The International Journal of Lower Extremity Wounds 4: 138–144.PubMedCrossRef Rai, N.K., et al. 2005. Apoptosis: A basic physiologic process in wound healing. The International Journal of Lower Extremity Wounds 4: 138–144.PubMedCrossRef
30.
Zurück zum Zitat Csoka, B., et al. 2007. A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood 110: 2685–2695.PubMedCrossRef Csoka, B., et al. 2007. A2A adenosine receptors and C/EBPbeta are crucially required for IL-10 production by macrophages exposed to Escherichia coli. Blood 110: 2685–2695.PubMedCrossRef
31.
Zurück zum Zitat Nemeth, Z.H., et al. 2005. Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. Journal of Immunology 175: 8260–8270. Nemeth, Z.H., et al. 2005. Adenosine augments IL-10 production by macrophages through an A2B receptor-mediated posttranscriptional mechanism. Journal of Immunology 175: 8260–8270.
32.
Zurück zum Zitat Macedo, L., et al. 2007. Wound healing is impaired in MyD88-deficient mice: A role for MyD88 in the regulation of wound healing by adenosine A2A receptors. American Journal of Pathology 171: 1774–1788.PubMedCrossRef Macedo, L., et al. 2007. Wound healing is impaired in MyD88-deficient mice: A role for MyD88 in the regulation of wound healing by adenosine A2A receptors. American Journal of Pathology 171: 1774–1788.PubMedCrossRef
33.
Zurück zum Zitat Grinberg, S., et al. 2009. Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. American Journal of Pathology 175: 2439–2453.PubMedCrossRef Grinberg, S., et al. 2009. Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. American Journal of Pathology 175: 2439–2453.PubMedCrossRef
34.
Zurück zum Zitat Arnold, L., et al. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. The Journal of Experimental Medicine 204: 1057–1069.PubMedCrossRef Arnold, L., et al. 2007. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. The Journal of Experimental Medicine 204: 1057–1069.PubMedCrossRef
35.
Zurück zum Zitat Ricardo, S.D., et al. 2008. Macrophage diversity in renal injury and repair. The Journal of Clinical Investigation 118: 3522–3530.PubMedCrossRef Ricardo, S.D., et al. 2008. Macrophage diversity in renal injury and repair. The Journal of Clinical Investigation 118: 3522–3530.PubMedCrossRef
36.
Zurück zum Zitat Wynn, T.A., and L. Barron. 2010. Macrophages: Master regulators of inflammation and fibrosis. Seminars in Liver Disease 30: 245–257.PubMedCrossRef Wynn, T.A., and L. Barron. 2010. Macrophages: Master regulators of inflammation and fibrosis. Seminars in Liver Disease 30: 245–257.PubMedCrossRef
37.
Zurück zum Zitat Willenborg, S., et al. 2012. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120: 613–625.PubMedCrossRef Willenborg, S., et al. 2012. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120: 613–625.PubMedCrossRef
38.
Zurück zum Zitat Zhang, X., and D.M. Mosser. 2008. Macrophage activation by endogenous danger signals. The Journal of Pathology 214: 161–178.PubMedCrossRef Zhang, X., and D.M. Mosser. 2008. Macrophage activation by endogenous danger signals. The Journal of Pathology 214: 161–178.PubMedCrossRef
39.
Zurück zum Zitat Brancato, S.K., and J.E. Albina. 2011. Wound macrophages as key regulators of repair: Origin, phenotype, and function. American Journal of Pathology 178: 19–25.PubMedCrossRef Brancato, S.K., and J.E. Albina. 2011. Wound macrophages as key regulators of repair: Origin, phenotype, and function. American Journal of Pathology 178: 19–25.PubMedCrossRef
40.
Zurück zum Zitat Daley, J.M., et al. 2010. The phenotype of murine wound macrophages. Journal of Leukocyte Biology 87: 59–67.PubMedCrossRef Daley, J.M., et al. 2010. The phenotype of murine wound macrophages. Journal of Leukocyte Biology 87: 59–67.PubMedCrossRef
Metadaten
Titel
The Adenosine-Dependent Angiogenic Switch of Macrophages to an M2-Like Phenotype is Independent of Interleukin-4 Receptor Alpha (IL-4Rα) Signaling
verfasst von
Christopher James Ferrante
Grace Pinhal-Enfield
Genie Elson
Bruce Neil Cronstein
Gyorgy Hasko
Shalini Outram
Samuel Joseph Leibovich
Publikationsdatum
01.08.2013
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2013
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-013-9621-3

Weitere Artikel der Ausgabe 4/2013

Inflammation 4/2013 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.