Skip to main content
Erschienen in: Inflammation 3/2015

01.06.2015

Piperine Suppresses the Expression of CXCL8 in Lipopolysaccharide-Activated SW480 and HT-29 Cells via Downregulating the Mitogen-Activated Protein Kinase Pathways

verfasst von: Xiao-Feng Hou, Hao Pan, Li-Hui Xu, Qing-Bing Zha, Xian-Hui He, Dong-Yun Ouyang

Erschienen in: Inflammation | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

The anti-inflammatory effect of piperine has been largely investigated in macrophages, but its activity on epithelial cells in inflammatory settings is unclear. The present study aimed to investigate the effect of piperine on the expression of inflammatory cytokines in lipopolysaccharide (LPS)-stimulated human epithelial-like SW480 and HT-29 cells. Our data showed that although piperine inhibited the proliferation of SW480 and HT-29 cells in a dose-dependent manner, it had low cytotoxicity on these cell lines with 50 % inhibiting concentration (IC50) values greater than 100 μM. As epithelial-like cells, SW480 and HT-29 cells secreted high levels of the chemokine CXCL8 upon LPS stimulation. Importantly, piperine dose-dependently suppressed LPS-induced secretion of CXCL8 and the expression of CXCL8 messenger RNA (mRNA). Although piperine failed to affect the critical inflammatory nuclear factor-κB pathway, it attenuated the c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) signaling. Consistent with previous reports, p38 signaling seemed to play a more pronounced role on the CXCL8 expression than JNK signaling since inhibition of p38, instead of JNK, greatly suppressed LPS-induced CXCL8 expression. Collectively, our results indicated that piperine could attenuate the inflammatory response in epithelial cells via downregulating the MAPK signaling and thus the expression of CXCL8, suggesting its potential application in anti-inflammation therapy.
Literatur
1.
Zurück zum Zitat Lee, E.B., K.H. Shin, and W.S. Woo. 1984. Pharmacological study on piperine. Archives of Pharmacal Research 7: 127–32.CrossRef Lee, E.B., K.H. Shin, and W.S. Woo. 1984. Pharmacological study on piperine. Archives of Pharmacal Research 7: 127–32.CrossRef
2.
Zurück zum Zitat Mehmood, M.H., and A.H. Gilani. 2010. Pharmacological basis for the medicinal use of black pepper and piperine in gastrointestinal disorders. Medicine Food 13: 1086–96.CrossRef Mehmood, M.H., and A.H. Gilani. 2010. Pharmacological basis for the medicinal use of black pepper and piperine in gastrointestinal disorders. Medicine Food 13: 1086–96.CrossRef
3.
Zurück zum Zitat Mao, Q.Q., Z. Huang, X.M. Zhong, et al. 2014. Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice. Behavioural Brain Research 261: 140–5.CrossRefPubMed Mao, Q.Q., Z. Huang, X.M. Zhong, et al. 2014. Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice. Behavioural Brain Research 261: 140–5.CrossRefPubMed
4.
Zurück zum Zitat Bai, Y.F., and H. Xu. 2000. Protective action of piperine against experimental gastric ulcer. Acta Pharmacologica Sinica 21: 356–9. Bai, Y.F., and H. Xu. 2000. Protective action of piperine against experimental gastric ulcer. Acta Pharmacologica Sinica 21: 356–9.
5.
Zurück zum Zitat Bang, J.S., H. da Oh, H.M. Choi, et al. 2009. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1 beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Research and Therapy 11: R49.CrossRefPubMedCentralPubMed Bang, J.S., H. da Oh, H.M. Choi, et al. 2009. Anti-inflammatory and antiarthritic effects of piperine in human interleukin 1 beta-stimulated fibroblast-like synoviocytes and in rat arthritis models. Arthritis Research and Therapy 11: R49.CrossRefPubMedCentralPubMed
6.
Zurück zum Zitat Sabina, E.P., S. Nagar, and M. Rasool. 2011. A role of piperine on monosodium urate crystal-induced inflammation—an experimental model of gouty arthritis. Inflammation 34: 184–92.CrossRefPubMed Sabina, E.P., S. Nagar, and M. Rasool. 2011. A role of piperine on monosodium urate crystal-induced inflammation—an experimental model of gouty arthritis. Inflammation 34: 184–92.CrossRefPubMed
7.
Zurück zum Zitat Murunikkara, V., S.J. Pragasam, G. Kodandaraman, et al. 2012. Anti-inflammatory effect of piperine in adjuvant-induced arthritic rats—a biochemical approach. Inflammation 35: 1348–56.CrossRefPubMed Murunikkara, V., S.J. Pragasam, G. Kodandaraman, et al. 2012. Anti-inflammatory effect of piperine in adjuvant-induced arthritic rats—a biochemical approach. Inflammation 35: 1348–56.CrossRefPubMed
8.
Zurück zum Zitat Rezaee, M.M., S. Kazemi, M.T. Kazemi, et al. 2014. The effect of piperine on midazolam plasma concentration in healthy volunteers, a research on the CYP3A-involving metabolism. Daru 22: 8.CrossRefPubMedCentralPubMed Rezaee, M.M., S. Kazemi, M.T. Kazemi, et al. 2014. The effect of piperine on midazolam plasma concentration in healthy volunteers, a research on the CYP3A-involving metabolism. Daru 22: 8.CrossRefPubMedCentralPubMed
9.
Zurück zum Zitat Bae, G.S., M.S. Kim, W.S. Jung, et al. 2010. Inhibition of lipopolysaccharide-induced inflammatory responses by piperine. European Journal Pharamacol 642: 154–62.CrossRef Bae, G.S., M.S. Kim, W.S. Jung, et al. 2010. Inhibition of lipopolysaccharide-induced inflammatory responses by piperine. European Journal Pharamacol 642: 154–62.CrossRef
10.
Zurück zum Zitat Hendrickson, B.A., R. Gokhale, and J.H. Cho. 2002. Clinical aspects and pathophysiology of inflammatory bowel disease. Clinical Microbiology Reviews 15: 79–94.CrossRefPubMedCentralPubMed Hendrickson, B.A., R. Gokhale, and J.H. Cho. 2002. Clinical aspects and pathophysiology of inflammatory bowel disease. Clinical Microbiology Reviews 15: 79–94.CrossRefPubMedCentralPubMed
11.
Zurück zum Zitat Fakhoury, M., R. Neqrulj, A. Mooranian, et al. 2014. Inflammatory bowel disease: Clinical aspects and treatments. Journal of Inflammation Research 7: 113–20.CrossRefPubMedCentralPubMed Fakhoury, M., R. Neqrulj, A. Mooranian, et al. 2014. Inflammatory bowel disease: Clinical aspects and treatments. Journal of Inflammation Research 7: 113–20.CrossRefPubMedCentralPubMed
12.
Zurück zum Zitat Pan, H., L.H. Xu, D.Y. Ouyang, et al. 2014. The second-generation mTOR kinase inhibitor INK128 exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW 264.7 cells. Inflammation 37: 756–65.CrossRefPubMed Pan, H., L.H. Xu, D.Y. Ouyang, et al. 2014. The second-generation mTOR kinase inhibitor INK128 exhibits anti-inflammatory activity in lipopolysaccharide-activated RAW 264.7 cells. Inflammation 37: 756–65.CrossRefPubMed
13.
Zurück zum Zitat He, J., Y. Wang, L.H. Xu, et al. 2013. Cucurbitacin IIa induces caspase-3-dependent apoptosis and enhances autophagy in lipopolysaccharide-stimulated RAW 264.7 macrophages. International Immunopharmacology 16: 27–34.CrossRefPubMed He, J., Y. Wang, L.H. Xu, et al. 2013. Cucurbitacin IIa induces caspase-3-dependent apoptosis and enhances autophagy in lipopolysaccharide-stimulated RAW 264.7 macrophages. International Immunopharmacology 16: 27–34.CrossRefPubMed
14.
Zurück zum Zitat Laegreid, A., L. Thommesen, T.G. Jahr, et al. 1995. Tumor necrosis factor induces lipopolysaccharide tolerance in a human adenocarcinoma cell line mainly through the TNF p55 receptor. Journal of Biological Chemistry 270: 25418–25.CrossRefPubMed Laegreid, A., L. Thommesen, T.G. Jahr, et al. 1995. Tumor necrosis factor induces lipopolysaccharide tolerance in a human adenocarcinoma cell line mainly through the TNF p55 receptor. Journal of Biological Chemistry 270: 25418–25.CrossRefPubMed
15.
Zurück zum Zitat Tang, X., and Y. Zhu. 2012. TLR4 signaling promotes immune escape of human colon cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Oncology Research 20: 15–24.CrossRefPubMed Tang, X., and Y. Zhu. 2012. TLR4 signaling promotes immune escape of human colon cancer cells by inducing immunosuppressive cytokines and apoptosis resistance. Oncology Research 20: 15–24.CrossRefPubMed
16.
Zurück zum Zitat Hoffmann, E., O. Dittrich-Breiholz, H. Holtmann, et al. 2002. Multiple control of Interleukin-8 gene expression. Journal of Leukocyte Biology 72: 847–855.PubMed Hoffmann, E., O. Dittrich-Breiholz, H. Holtmann, et al. 2002. Multiple control of Interleukin-8 gene expression. Journal of Leukocyte Biology 72: 847–855.PubMed
17.
Zurück zum Zitat Umar, S., A.H. Golam Sarwar, K. Umar, et al. 2013. Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cellular Immunology 284: 51–9.CrossRefPubMed Umar, S., A.H. Golam Sarwar, K. Umar, et al. 2013. Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cellular Immunology 284: 51–9.CrossRefPubMed
18.
Zurück zum Zitat Shrivastava, P., K. Vaibhav, R. Tabassum, et al. 2013. Anti-apoptotic and anti-inflammatory effect of piperine on 6-OHDA induced Parkinson’s rat model. Journal of Nutrition and Biochemistry 24: 680–7.CrossRef Shrivastava, P., K. Vaibhav, R. Tabassum, et al. 2013. Anti-apoptotic and anti-inflammatory effect of piperine on 6-OHDA induced Parkinson’s rat model. Journal of Nutrition and Biochemistry 24: 680–7.CrossRef
19.
Zurück zum Zitat Ying, X., X. Chen, S. Cheng, et al. 2013. Piperine inhibits IL-1β induced expression of inflammatory mediators in human osteoarthritis chondrocyte. International Immunopharmacology 17: 293–9.CrossRefPubMed Ying, X., X. Chen, S. Cheng, et al. 2013. Piperine inhibits IL-1β induced expression of inflammatory mediators in human osteoarthritis chondrocyte. International Immunopharmacology 17: 293–9.CrossRefPubMed
20.
Zurück zum Zitat Jang, C.H., J.H. Choi, M.S. Byun, et al. 2006. Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology 45: 703–10.CrossRefPubMed Jang, C.H., J.H. Choi, M.S. Byun, et al. 2006. Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes. Rheumatology 45: 703–10.CrossRefPubMed
21.
Zurück zum Zitat Rossol, M., H. Heine, U. Meusch, et al. 2011. LPS-induced cytokine production in human monocytes and macrophages. Critical Reviews in Immunology 31: 379–446.CrossRefPubMed Rossol, M., H. Heine, U. Meusch, et al. 2011. LPS-induced cytokine production in human monocytes and macrophages. Critical Reviews in Immunology 31: 379–446.CrossRefPubMed
22.
Zurück zum Zitat Qureshi, A.A., J.C. Reis, C.J. Papasian, et al. 2010. Tocotrienols inhibit lipopolysaccharide-induced pro-inflammatory cytokines in macrophages of female mice. Lipids in Health and Disease 9: 143.CrossRefPubMedCentralPubMed Qureshi, A.A., J.C. Reis, C.J. Papasian, et al. 2010. Tocotrienols inhibit lipopolysaccharide-induced pro-inflammatory cytokines in macrophages of female mice. Lipids in Health and Disease 9: 143.CrossRefPubMedCentralPubMed
23.
Zurück zum Zitat Sakata, A., K. Yasuda, T. Ochiai, et al. 2007. Inhibition of lipopolysaccharide-induced release of interleukin-8 from intestinal epithelial cells by SMA, a novel inhibitor of sphingomyelinase and its therapeutic effect on dextran sulphate sodium-induced colitis in mice. Cellular Immunology 245: 24–31.CrossRefPubMed Sakata, A., K. Yasuda, T. Ochiai, et al. 2007. Inhibition of lipopolysaccharide-induced release of interleukin-8 from intestinal epithelial cells by SMA, a novel inhibitor of sphingomyelinase and its therapeutic effect on dextran sulphate sodium-induced colitis in mice. Cellular Immunology 245: 24–31.CrossRefPubMed
24.
Zurück zum Zitat Angrisano, T., R. Pero, S. Peluso, et al. 2010. LPS-induced IL-8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes. BMC Microbiology 10: 172.CrossRefPubMedCentralPubMed Angrisano, T., R. Pero, S. Peluso, et al. 2010. LPS-induced IL-8 activation in human intestinal epithelial cells is accompanied by specific histone H3 acetylation and methylation changes. BMC Microbiology 10: 172.CrossRefPubMedCentralPubMed
25.
Zurück zum Zitat Bhattacharyya, S., A. Borthakur, N. Pant, et al. 2007. Bcl10 mediates LPS-induced activation of NF-κB and IL-8 in human intestinal epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology 293: G429–37.CrossRefPubMed Bhattacharyya, S., A. Borthakur, N. Pant, et al. 2007. Bcl10 mediates LPS-induced activation of NF-κB and IL-8 in human intestinal epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology 293: G429–37.CrossRefPubMed
26.
Zurück zum Zitat Hobbie, S., L.M. Chen, R.J. Davis, et al. 1997. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. Journal of Immunology 159: 5550–9. Hobbie, S., L.M. Chen, R.J. Davis, et al. 1997. Involvement of mitogen-activated protein kinase pathways in the nuclear responses and cytokine production induced by Salmonella typhimurium in cultured intestinal epithelial cells. Journal of Immunology 159: 5550–9.
27.
Zurück zum Zitat Tapping, R.I., S. Akashi, K. Miyake, et al. 2000. Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. Journal of Immunology 165: 5780–7.CrossRef Tapping, R.I., S. Akashi, K. Miyake, et al. 2000. Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. Journal of Immunology 165: 5780–7.CrossRef
28.
Zurück zum Zitat Holtmann, H., R. Winzen, P. Holland, et al. 1999. Induction of interleukin-8 synthesis integrates effects on transcription and mRNA degradation from at least three different cytokine- or stress-activated signal transduction pathways. Molecular and Cellular Biology 19: 6742–53.PubMedCentralPubMed Holtmann, H., R. Winzen, P. Holland, et al. 1999. Induction of interleukin-8 synthesis integrates effects on transcription and mRNA degradation from at least three different cytokine- or stress-activated signal transduction pathways. Molecular and Cellular Biology 19: 6742–53.PubMedCentralPubMed
29.
Zurück zum Zitat Winzen, R., M. Kracht, B. Ritter, et al. 1999. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO Journal 18: 4969–80.CrossRefPubMedCentralPubMed Winzen, R., M. Kracht, B. Ritter, et al. 1999. The p38 MAP kinase pathway signals for cytokine-induced mRNA stabilization via MAP kinase-activated protein kinase 2 and an AU-rich region-targeted mechanism. EMBO Journal 18: 4969–80.CrossRefPubMedCentralPubMed
30.
Zurück zum Zitat Olafsdottir, A., G.E. Thorlacius, S. Omarsdottir, et al. 2014. A heteroglycan from the cyanobacterium Nostoc commune modulates LPS-induced inflammatory cytokine secretion by THP-1 monocytes through phosphorylation of ERK1/2 and Akt. Phytomedicine 21: 1451–7.CrossRefPubMed Olafsdottir, A., G.E. Thorlacius, S. Omarsdottir, et al. 2014. A heteroglycan from the cyanobacterium Nostoc commune modulates LPS-induced inflammatory cytokine secretion by THP-1 monocytes through phosphorylation of ERK1/2 and Akt. Phytomedicine 21: 1451–7.CrossRefPubMed
31.
Zurück zum Zitat Crowe, S.E., L. Alvarez, M. Dytoc, et al. 1995. Expression of interleukin 8 and CD54 by human gastric epithelium after Helicobacter pylori infection in vitro. Gastroenterology 108: 65–74.CrossRefPubMed Crowe, S.E., L. Alvarez, M. Dytoc, et al. 1995. Expression of interleukin 8 and CD54 by human gastric epithelium after Helicobacter pylori infection in vitro. Gastroenterology 108: 65–74.CrossRefPubMed
32.
Zurück zum Zitat Baggiolini, M., and I. Clark-Lewis. 1992. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Letters 307: 97–101.CrossRefPubMed Baggiolini, M., and I. Clark-Lewis. 1992. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Letters 307: 97–101.CrossRefPubMed
33.
Zurück zum Zitat Baggiolini, M., A. Walz, and S.L. Kunkel. 1989. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. Journal of Clinical Investigation 84: 1045–9.CrossRefPubMedCentralPubMed Baggiolini, M., A. Walz, and S.L. Kunkel. 1989. Neutrophil-activating peptide-1/interleukin 8, a novel cytokine that activates neutrophils. Journal of Clinical Investigation 84: 1045–9.CrossRefPubMedCentralPubMed
34.
Zurück zum Zitat Wozniak, A., W.H. Betts, G.A. Murphy, et al. 1993. Interleukin-8 primes human neutrophils for enhanced superoxide anion production. Immunology 79: 608–15.PubMedCentralPubMed Wozniak, A., W.H. Betts, G.A. Murphy, et al. 1993. Interleukin-8 primes human neutrophils for enhanced superoxide anion production. Immunology 79: 608–15.PubMedCentralPubMed
35.
Zurück zum Zitat Peveri, P., A. Walz, B. Dewald, et al. 1988. A novel neutrophil-activating factor produced by human mononuclear phagocytes. Journal of Experimental Medicine 167: 1547–1559.CrossRefPubMed Peveri, P., A. Walz, B. Dewald, et al. 1988. A novel neutrophil-activating factor produced by human mononuclear phagocytes. Journal of Experimental Medicine 167: 1547–1559.CrossRefPubMed
36.
Zurück zum Zitat Schröder, J.M. 1989. The monocyte-derived neutrophil activating peptide (NAP/interleukin 8) stimulates human neutrophil arachidonate-5-lipoxygenase, but not the release of cellular arachidonate. Journal of Experimental Medicine 170: 847–63.CrossRefPubMed Schröder, J.M. 1989. The monocyte-derived neutrophil activating peptide (NAP/interleukin 8) stimulates human neutrophil arachidonate-5-lipoxygenase, but not the release of cellular arachidonate. Journal of Experimental Medicine 170: 847–63.CrossRefPubMed
37.
Zurück zum Zitat Detmers, P.A., S.K. Lo, E.E. Olsen, et al. 1990. Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. Journal of Experimental Medicine 171: 1155–62.CrossRefPubMed Detmers, P.A., S.K. Lo, E.E. Olsen, et al. 1990. Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. Journal of Experimental Medicine 171: 1155–62.CrossRefPubMed
38.
Zurück zum Zitat Paccaud, J.P., J.A. Shifferli, and M. Baggiolini. 1990. NAP-1/IL-8 induced up-regulation of CR1 receptors in human neutrophil leukocytes. Biochemical and Biophysical Research Communications 166: 187–92.CrossRefPubMed Paccaud, J.P., J.A. Shifferli, and M. Baggiolini. 1990. NAP-1/IL-8 induced up-regulation of CR1 receptors in human neutrophil leukocytes. Biochemical and Biophysical Research Communications 166: 187–92.CrossRefPubMed
39.
Zurück zum Zitat Harada, A., N. Sekido, T. Akahoshi, et al. 1994. Essential involvement of interleukin-8 (IL-8) in acute inflammation. Journal of Leukocyte Biology 56: 559–64.PubMed Harada, A., N. Sekido, T. Akahoshi, et al. 1994. Essential involvement of interleukin-8 (IL-8) in acute inflammation. Journal of Leukocyte Biology 56: 559–64.PubMed
40.
Zurück zum Zitat Larsen, C.G., A.G. Anderson, E. Appella, et al. 1989. The neutrophil-activating protein (NAP-I) is also chemotactic for T lymphocytes. Science 243: 1464–6.CrossRefPubMed Larsen, C.G., A.G. Anderson, E. Appella, et al. 1989. The neutrophil-activating protein (NAP-I) is also chemotactic for T lymphocytes. Science 243: 1464–6.CrossRefPubMed
41.
Zurück zum Zitat White, M.V., T. Yoshimura, W. Hook, et al. 1989. Neutrophil attractant/activation protein-1 (NAP-I) causes human basophil histamine release. Immunology Letters 22: 151–4.CrossRefPubMed White, M.V., T. Yoshimura, W. Hook, et al. 1989. Neutrophil attractant/activation protein-1 (NAP-I) causes human basophil histamine release. Immunology Letters 22: 151–4.CrossRefPubMed
42.
Zurück zum Zitat Seitz, M., B. Dewald, N. Gerber, et al. 1991. Enhanced production of neutrophil-activating peptide-1/interleukin-8 in rheumatoid arthritis. Journal of Clinical Investigation 87: 463–9.CrossRefPubMedCentralPubMed Seitz, M., B. Dewald, N. Gerber, et al. 1991. Enhanced production of neutrophil-activating peptide-1/interleukin-8 in rheumatoid arthritis. Journal of Clinical Investigation 87: 463–9.CrossRefPubMedCentralPubMed
44.
Zurück zum Zitat Kaser, A., S. Zeissig, and R.S. Blumberg. 2010. Inflammatory bowel disease. Annual Review of Immunology 28: 573–621.CrossRefPubMed Kaser, A., S. Zeissig, and R.S. Blumberg. 2010. Inflammatory bowel disease. Annual Review of Immunology 28: 573–621.CrossRefPubMed
45.
Zurück zum Zitat Huai, J.P., J. Ding, X.H. Ye, et al. 2014. Inflammatory bowel disease and risk of cholangiocarcinoma: Evidence from a meta-analysis of population-based studies. Asian Pacific Journal of Cancer Prevention 15: 3477–82.CrossRefPubMed Huai, J.P., J. Ding, X.H. Ye, et al. 2014. Inflammatory bowel disease and risk of cholangiocarcinoma: Evidence from a meta-analysis of population-based studies. Asian Pacific Journal of Cancer Prevention 15: 3477–82.CrossRefPubMed
46.
Zurück zum Zitat Huang, W.S., C.H. Tseng, P.C. Chen, et al. 2014. Inflammatory bowel diseases increase future Ischemic Stroke risk: A Taiwanese population-based retrospective cohort study. European Journal of Internal Medicine 25: 561–565.CrossRefPubMed Huang, W.S., C.H. Tseng, P.C. Chen, et al. 2014. Inflammatory bowel diseases increase future Ischemic Stroke risk: A Taiwanese population-based retrospective cohort study. European Journal of Internal Medicine 25: 561–565.CrossRefPubMed
47.
Zurück zum Zitat Konidari, A., and W.E. Matary. 2014. Use of thiopurines in inflammatory bowel disease: Safety issues. World J Gastrointest Pharmacol Ther 5: 63–76.PubMedCentralPubMed Konidari, A., and W.E. Matary. 2014. Use of thiopurines in inflammatory bowel disease: Safety issues. World J Gastrointest Pharmacol Ther 5: 63–76.PubMedCentralPubMed
48.
Zurück zum Zitat Papa, A., G. Mocci, F. Scaldaferri, M. Bonizzi, et al. 2009. New therapeutic approach in inflammatory bowel disease. European Review for Medical and Pharmacological Sciences 1: 33–5. Papa, A., G. Mocci, F. Scaldaferri, M. Bonizzi, et al. 2009. New therapeutic approach in inflammatory bowel disease. European Review for Medical and Pharmacological Sciences 1: 33–5.
49.
Zurück zum Zitat Rutgeerts, P. 2002. A critical assessment of new therapies in inflammatory bowel disease. Journal of Gastroenterology and Hepatology 17: S176–85.CrossRefPubMed Rutgeerts, P. 2002. A critical assessment of new therapies in inflammatory bowel disease. Journal of Gastroenterology and Hepatology 17: S176–85.CrossRefPubMed
Metadaten
Titel
Piperine Suppresses the Expression of CXCL8 in Lipopolysaccharide-Activated SW480 and HT-29 Cells via Downregulating the Mitogen-Activated Protein Kinase Pathways
verfasst von
Xiao-Feng Hou
Hao Pan
Li-Hui Xu
Qing-Bing Zha
Xian-Hui He
Dong-Yun Ouyang
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2015
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-0075-z

Weitere Artikel der Ausgabe 3/2015

Inflammation 3/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.