Skip to main content
Erschienen in: Inflammation 3/2014

01.06.2014

Punicalagin Inhibits Inflammation in LPS-Induced RAW264.7 Macrophages via the Suppression of TLR4-Mediated MAPKs and NF-κB Activation

verfasst von: Xiaolong Xu, Peng Yin, Changrong Wan, Xinlu Chong, Mingjiang Liu, Peng Cheng, Jiajia Chen, Fenghua Liu, Jianqin Xu

Erschienen in: Inflammation | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

Punicalagin (2,3,hexahydroxydiphenoyl-gallagyl-d-glucose and referred to as PUN) is a bioactive ellagitannin isolated from pomegranate, which is widely used for the treatment of inflammatory bowel disease (IBD), diarrhea, and ulcers in Chinese traditional medicine. In this study, we detected the anti-inflammation potentials of PUN in lipopolysaccharide (LPS)-induced macrophages and tried to uncover the underlying mechanism. Results demonstrated that PUN (25, 50, or 100 μM) treatment could significantly decrease the LPS-induced production of nitric oxide), prostaglandin E2 (PGE2), interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in RAW264.7 cells. Molecular research showed that PUN inhibited the activation of upstream mediator nuclear factor-κB by suppressing the phosphorylation of IκBα and p65. Results also indicated that PUN could suppress the phosphorylation of mitogen-activated protein kinase including p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinase. In conclusion, we observed that PUN could inhibit LPS-induced inflammation, and it may be a potential choice for the treatment of inflammation diseases.
Literatur
2.
Zurück zum Zitat Hsu, C.C., J.C. Lien, C.H. Chang, S.C. Kuo, and T.F. Huang. 2013. Yuwen 02f1 suppresses LPS-induced endotoxemia and adjuvant-induced arthritis primarily through blockade of ROS formation, NF-κB and MAPK activation. Biochemical Pharmacology 85: 385–395.PubMedCrossRef Hsu, C.C., J.C. Lien, C.H. Chang, S.C. Kuo, and T.F. Huang. 2013. Yuwen 02f1 suppresses LPS-induced endotoxemia and adjuvant-induced arthritis primarily through blockade of ROS formation, NF-κB and MAPK activation. Biochemical Pharmacology 85: 385–395.PubMedCrossRef
3.
Zurück zum Zitat Zingarelli, B., M. Sheehan, and H.R. Wong. 2003. Nuclear factor-κB as a therapeutic target in critical care medicine. Critical Care Medicine 31: S105–S111.PubMedCrossRef Zingarelli, B., M. Sheehan, and H.R. Wong. 2003. Nuclear factor-κB as a therapeutic target in critical care medicine. Critical Care Medicine 31: S105–S111.PubMedCrossRef
4.
Zurück zum Zitat Heiss, E., C. Herhaus, K. Klimo, H. Bartsch, and C. Gerhauser. 2001. Nuclear factor Kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. Journal of Biological Chemistry 276: 32008–32015.PubMedCrossRef Heiss, E., C. Herhaus, K. Klimo, H. Bartsch, and C. Gerhauser. 2001. Nuclear factor Kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms. Journal of Biological Chemistry 276: 32008–32015.PubMedCrossRef
5.
Zurück zum Zitat Rim, H.K., W. Cho, S.H. Sung, and K.T. Lee. 2012. Nodakenin suppresses lipopolysaccharide induced inflammatory responses in macrophage cells by inhibiting tumor necrosis factor receptor -associated factor 6 and nuclear factor-κB pathways and protects mice from lethal endotoxin shock. Journal of Pharmacology and Experimental Therapeutics 342: 654–664.PubMedCrossRef Rim, H.K., W. Cho, S.H. Sung, and K.T. Lee. 2012. Nodakenin suppresses lipopolysaccharide induced inflammatory responses in macrophage cells by inhibiting tumor necrosis factor receptor -associated factor 6 and nuclear factor-κB pathways and protects mice from lethal endotoxin shock. Journal of Pharmacology and Experimental Therapeutics 342: 654–664.PubMedCrossRef
6.
Zurück zum Zitat Yona, S., and S. Jung. 2010. Monocytes: subsets, origins, fates and functions. Current Opinion in Hematology 17: 53–59.PubMedCrossRef Yona, S., and S. Jung. 2010. Monocytes: subsets, origins, fates and functions. Current Opinion in Hematology 17: 53–59.PubMedCrossRef
7.
Zurück zum Zitat Takeda, K., and S. Akira. 2005. Toll-like receptors in innate immunity. International Immunology 17: 1–14.PubMedCrossRef Takeda, K., and S. Akira. 2005. Toll-like receptors in innate immunity. International Immunology 17: 1–14.PubMedCrossRef
8.
Zurück zum Zitat Aderem, A., and R.J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406: 782–787.PubMedCrossRef Aderem, A., and R.J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406: 782–787.PubMedCrossRef
9.
Zurück zum Zitat Ci, X., R. Ren, K. Xu, H. Li, Q. Yu, Y. Song, D. Wang, R. Li, and X. Deng. 2010. Schisantherin A exhibits anti-inflammatory properties by down regulating NF-κB and MAPK signaling pathways in lipopolysaccharide-treated RAW264.7 cells. Inflammation 33: 126–136.PubMedCrossRef Ci, X., R. Ren, K. Xu, H. Li, Q. Yu, Y. Song, D. Wang, R. Li, and X. Deng. 2010. Schisantherin A exhibits anti-inflammatory properties by down regulating NF-κB and MAPK signaling pathways in lipopolysaccharide-treated RAW264.7 cells. Inflammation 33: 126–136.PubMedCrossRef
10.
Zurück zum Zitat Cerda, B., R. Llorach, J.J. Ceron, J.C. Espin, and F.A. Tomas-Barberan. 2003. Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. European Journal of Nutrition 42: 18–28.PubMedCrossRef Cerda, B., R. Llorach, J.J. Ceron, J.C. Espin, and F.A. Tomas-Barberan. 2003. Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. European Journal of Nutrition 42: 18–28.PubMedCrossRef
11.
Zurück zum Zitat Cerda, B., J.J. Ceron, F.A. Tomas-Barberan, and J.C. Espin. 2003. Repeated oral administration of high doses of pomegranate ellagitannin punicalagin to rats for 37 days is not toxic. Journal of Agricultural and Food Chemistry 51: 3493–3501.PubMedCrossRef Cerda, B., J.J. Ceron, F.A. Tomas-Barberan, and J.C. Espin. 2003. Repeated oral administration of high doses of pomegranate ellagitannin punicalagin to rats for 37 days is not toxic. Journal of Agricultural and Food Chemistry 51: 3493–3501.PubMedCrossRef
12.
Zurück zum Zitat Adams, L.S., N.P. Seeram, B.B. Aggarwal, Y. Takada, D. Sand, and D. Heber. 2006. Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells. Journal of Agricultural and Food Chemistry 54: 980–985.PubMedCrossRef Adams, L.S., N.P. Seeram, B.B. Aggarwal, Y. Takada, D. Sand, and D. Heber. 2006. Pomegranate juice, total pomegranate ellagitannins, and punicalagin suppress inflammatory cell signaling in colon cancer cells. Journal of Agricultural and Food Chemistry 54: 980–985.PubMedCrossRef
13.
Zurück zum Zitat Aqil, F., R. Munagala, M.V. Vadhanam, H. Kausar, J. Jeyabalan, D.J. Schultz, and R.C. Gupta. 2012. Anti-proliferative activity and protection against oxidative DNA damage by punicalagin isolated from pomegranate husk. Food Research International 49: 345–353.PubMedCentralPubMedCrossRef Aqil, F., R. Munagala, M.V. Vadhanam, H. Kausar, J. Jeyabalan, D.J. Schultz, and R.C. Gupta. 2012. Anti-proliferative activity and protection against oxidative DNA damage by punicalagin isolated from pomegranate husk. Food Research International 49: 345–353.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Zhang, X.H., H. Lei, A.J. Liu, Y.X. Zou, F.M. Shen, and D.F. Su. 2011. Increased oxidative stress is responsible for severer cerebral infarction in stroke-prone spontaneously hypertensive rats. CNS Neuroscience & Therapeutics 17: 590–598.CrossRef Zhang, X.H., H. Lei, A.J. Liu, Y.X. Zou, F.M. Shen, and D.F. Su. 2011. Increased oxidative stress is responsible for severer cerebral infarction in stroke-prone spontaneously hypertensive rats. CNS Neuroscience & Therapeutics 17: 590–598.CrossRef
15.
Zurück zum Zitat Marin, M., R. Maria Giner, J.L. Rios, and M. Carmen Recio. 2013. Intestinalanti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis. Journal of Ethnopharmacology 150: 925–934.PubMedCrossRef Marin, M., R. Maria Giner, J.L. Rios, and M. Carmen Recio. 2013. Intestinalanti-inflammatory activity of ellagic acid in the acute and chronic dextrane sulfate sodium models of mice colitis. Journal of Ethnopharmacology 150: 925–934.PubMedCrossRef
16.
Zurück zum Zitat Arseculeratne, S.N., A.A. Gunatilaka, and R.G. Panabokke. 1985. Studies on medicinal plants of Sri Lanka: Part 14. Toxicity of some traditional medicinal herbs. Journal of Ethnopharmacology 13: 323–335.PubMedCrossRef Arseculeratne, S.N., A.A. Gunatilaka, and R.G. Panabokke. 1985. Studies on medicinal plants of Sri Lanka: Part 14. Toxicity of some traditional medicinal herbs. Journal of Ethnopharmacology 13: 323–335.PubMedCrossRef
17.
Zurück zum Zitat Saxena, A., and N.K. Vikram. 2004. Role of selected Indian plants in management of type 2 diabetes: a review. Journal of Alternative and Complementary Medicine 10: 369–378.CrossRef Saxena, A., and N.K. Vikram. 2004. Role of selected Indian plants in management of type 2 diabetes: a review. Journal of Alternative and Complementary Medicine 10: 369–378.CrossRef
18.
Zurück zum Zitat Aviram, M., L. Dornfield, M. Rosenblatt, N. Volkova, M. Kaplan, R. Coleman, T. Hayek, D. Presser, and B. Fuhrman. 2000. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. American Journal of Clinical Nutrition 71: 1062–1076.PubMed Aviram, M., L. Dornfield, M. Rosenblatt, N. Volkova, M. Kaplan, R. Coleman, T. Hayek, D. Presser, and B. Fuhrman. 2000. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. American Journal of Clinical Nutrition 71: 1062–1076.PubMed
19.
Zurück zum Zitat Kaplan, M., T. Hayek, A. Raz, R. Coleman, L. Dornfeld, J. Vaya, and M. Aviram. 2001. Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. Journal of Nutrition 131: 2082–2089.PubMed Kaplan, M., T. Hayek, A. Raz, R. Coleman, L. Dornfeld, J. Vaya, and M. Aviram. 2001. Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. Journal of Nutrition 131: 2082–2089.PubMed
20.
Zurück zum Zitat Gil, M.I., F.A. Tomas-Barberan, B. Hess-Pierce, D.M. Holcroft, and A.A. Kader. 2000. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry 48: 4581–4589.PubMedCrossRef Gil, M.I., F.A. Tomas-Barberan, B. Hess-Pierce, D.M. Holcroft, and A.A. Kader. 2000. Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. Journal of Agricultural and Food Chemistry 48: 4581–4589.PubMedCrossRef
21.
Zurück zum Zitat Lee, S.I., B.S. Kim, K.S. Kim, S. Lee, K.S. Shin, and J.S. Lim. 2008. Immune-suppressive activity of punicalagin via inhibition of NFAT activation. Biochemical and Biophysical Research Communications 371: 799–803.PubMedCrossRef Lee, S.I., B.S. Kim, K.S. Kim, S. Lee, K.S. Shin, and J.S. Lim. 2008. Immune-suppressive activity of punicalagin via inhibition of NFAT activation. Biochemical and Biophysical Research Communications 371: 799–803.PubMedCrossRef
22.
Zurück zum Zitat Jean-Gilles, D., L. Li, V.G. Vaidyanathan, R. King, B. Cho, D.R. Wortnen, C.O. Chichester, and N.P. Seeram. 2013. Inhibitory effects of polyphenol punicalagin on type-II collagen degradation in vitro and inflammation in vivo. Chemico-Biological Interactions 205: 90–99.PubMedCrossRef Jean-Gilles, D., L. Li, V.G. Vaidyanathan, R. King, B. Cho, D.R. Wortnen, C.O. Chichester, and N.P. Seeram. 2013. Inhibitory effects of polyphenol punicalagin on type-II collagen degradation in vitro and inflammation in vivo. Chemico-Biological Interactions 205: 90–99.PubMedCrossRef
23.
Zurück zum Zitat Laskin, D.L., and K.J. Pendino. 1995. Macrophages and inflammatory mediators in tissue injury. Annual Review of Pharmacology and Toxicology 35: 655–677.PubMedCrossRef Laskin, D.L., and K.J. Pendino. 1995. Macrophages and inflammatory mediators in tissue injury. Annual Review of Pharmacology and Toxicology 35: 655–677.PubMedCrossRef
24.
Zurück zum Zitat Sharma, J.N., O.A. Al, and S.S. Parvathy. 2007. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15: 252–259.PubMedCrossRef Sharma, J.N., O.A. Al, and S.S. Parvathy. 2007. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15: 252–259.PubMedCrossRef
25.
Zurück zum Zitat Yayeh, T., M. Hong, Q. Jia, Y.C. Lee, H.J. Kim, E. Hyun, T.W. Kim, and M.H. Rhee. 2012. Pistacia chinensis inhibits NO production and upregulates HO-1 induction via PI-3 K/Akt pathway in LPS stimulated macrophage cells. American Journal of Chinese Medicine 40: 1085–1097.PubMedCrossRef Yayeh, T., M. Hong, Q. Jia, Y.C. Lee, H.J. Kim, E. Hyun, T.W. Kim, and M.H. Rhee. 2012. Pistacia chinensis inhibits NO production and upregulates HO-1 induction via PI-3 K/Akt pathway in LPS stimulated macrophage cells. American Journal of Chinese Medicine 40: 1085–1097.PubMedCrossRef
26.
Zurück zum Zitat Han, S., J.H. Lee, C. Kim, D. Nam, W.S. Chung, S.G. Lee, K.S. Ahn, S.K. Cho, M. Cho, and K.S. Ahn. 2013. Capillarisin inhibits iNOS, COX-2 expression, and proinflammatory cytokines in LPS-induced RAW 264.7 macrophages via the suppression of ERK, JNK, and NF-κB activation. Immunopharmacology and Immunotoxicology 35: 34–42.PubMedCrossRef Han, S., J.H. Lee, C. Kim, D. Nam, W.S. Chung, S.G. Lee, K.S. Ahn, S.K. Cho, M. Cho, and K.S. Ahn. 2013. Capillarisin inhibits iNOS, COX-2 expression, and proinflammatory cytokines in LPS-induced RAW 264.7 macrophages via the suppression of ERK, JNK, and NF-κB activation. Immunopharmacology and Immunotoxicology 35: 34–42.PubMedCrossRef
27.
Zurück zum Zitat Turini, M.E., and R.N. DuBois. 2002. Cyclooxygenase-2: a therapeutic target. Annual Review of Medicine 53: 35–57.PubMedCrossRef Turini, M.E., and R.N. DuBois. 2002. Cyclooxygenase-2: a therapeutic target. Annual Review of Medicine 53: 35–57.PubMedCrossRef
28.
Zurück zum Zitat Rocca, B., and G.A. FitzGerald. 2002. Cyclooxygenases and prostaglandins: shaping up the immune response. International Immunopharmacology 2: 603–630.PubMedCrossRef Rocca, B., and G.A. FitzGerald. 2002. Cyclooxygenases and prostaglandins: shaping up the immune response. International Immunopharmacology 2: 603–630.PubMedCrossRef
29.
Zurück zum Zitat Singh, V.P., C.S. Patil, N.K. Jain, and S.K. Kulkarni. 2004. Aggravation of inflammatory bowel disease by cyclooxygenase-2 inhibitors in rats. Pharmacology 72: 77–84.PubMedCrossRef Singh, V.P., C.S. Patil, N.K. Jain, and S.K. Kulkarni. 2004. Aggravation of inflammatory bowel disease by cyclooxygenase-2 inhibitors in rats. Pharmacology 72: 77–84.PubMedCrossRef
30.
Zurück zum Zitat Kim, S.J., H.J. Jeong, P.D. Moon, H.M. Lee, H.J. Jung, S.K. Jung, H.K. Rhee, D.C. Yang, S.H. Hong, and H.M. Kim. 2005. Anti-inflammatory activity of gumiganghwaltang through the inhibition of nuclear factor-kappa B activation in peritoneal macrophages. Biological & Pharmaceutical Bulletin 28: 233–237.CrossRef Kim, S.J., H.J. Jeong, P.D. Moon, H.M. Lee, H.J. Jung, S.K. Jung, H.K. Rhee, D.C. Yang, S.H. Hong, and H.M. Kim. 2005. Anti-inflammatory activity of gumiganghwaltang through the inhibition of nuclear factor-kappa B activation in peritoneal macrophages. Biological & Pharmaceutical Bulletin 28: 233–237.CrossRef
31.
Zurück zum Zitat Ling, M., Y. Li, Y. Xu, Y. Pang, L. Shen, R. Jiang, Y. Zhao, X. Yang, J. Zhang, J. Zhou, X. Wang, and Q. Liu. 2012. Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation. Free Radical Biology and Medicine 52: 1508–1518.PubMedCrossRef Ling, M., Y. Li, Y. Xu, Y. Pang, L. Shen, R. Jiang, Y. Zhao, X. Yang, J. Zhang, J. Zhou, X. Wang, and Q. Liu. 2012. Regulation of miRNA-21 by reactive oxygen species-activated ERK/NF-κB in arsenite-induced cell transformation. Free Radical Biology and Medicine 52: 1508–1518.PubMedCrossRef
32.
Zurück zum Zitat Han, D.W., M.H. Lee, H.H. Kim, S.H. Hyon, and J.C. Park. 2011. Epigallocatechin-3-gallate regulates cell growth, cell cycle and phosphorylated nuclear factor-κB in human dermal fibroblasts. Acta Pharmacologica Sinica 32: 637–646.PubMedCrossRef Han, D.W., M.H. Lee, H.H. Kim, S.H. Hyon, and J.C. Park. 2011. Epigallocatechin-3-gallate regulates cell growth, cell cycle and phosphorylated nuclear factor-κB in human dermal fibroblasts. Acta Pharmacologica Sinica 32: 637–646.PubMedCrossRef
33.
Zurück zum Zitat Checker, R., R.S. Patwardhan, D. Sharma, J. Menon, M. Thoh, H.N. Bhilwade, T. Konishi, and S.K. Sandur. 2012. Schisandrin B exhibits anti-inflammatory activity through modulation of the redox-sensitive transcription factors Nrf2 and NF-κB. Free Radical Biology and Medicine 53: 1421–1430.PubMedCrossRef Checker, R., R.S. Patwardhan, D. Sharma, J. Menon, M. Thoh, H.N. Bhilwade, T. Konishi, and S.K. Sandur. 2012. Schisandrin B exhibits anti-inflammatory activity through modulation of the redox-sensitive transcription factors Nrf2 and NF-κB. Free Radical Biology and Medicine 53: 1421–1430.PubMedCrossRef
34.
Zurück zum Zitat Dai, J.N., Y. Zong, L.M. Zhong, Y.M. Li, W. Zhang, L.G. Bian, Q.L. Ai, Y.D. Liu, J. Sun, and D. Lu. 2011. Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PloS One 6: e21891.PubMedCentralPubMedCrossRef Dai, J.N., Y. Zong, L.M. Zhong, Y.M. Li, W. Zhang, L.G. Bian, Q.L. Ai, Y.D. Liu, J. Sun, and D. Lu. 2011. Gastrodin inhibits expression of inducible NO synthase, cyclooxygenase-2 and proinflammatory cytokines in cultured LPS-stimulated microglia via MAPK pathways. PloS One 6: e21891.PubMedCentralPubMedCrossRef
35.
Zurück zum Zitat Liu, H.T., P. Huang, P. Ma, Q.S. Liu, C. Yu, and Y.G. Du. 2011. Chitosan oligosaccharides suppress LPS-induced IL-8 expression in human umbilical vein endothelial cells through blockade of p38 and Akt protein kinases. Acta Pharmacologica Sinica 32: 478–486.PubMedCrossRef Liu, H.T., P. Huang, P. Ma, Q.S. Liu, C. Yu, and Y.G. Du. 2011. Chitosan oligosaccharides suppress LPS-induced IL-8 expression in human umbilical vein endothelial cells through blockade of p38 and Akt protein kinases. Acta Pharmacologica Sinica 32: 478–486.PubMedCrossRef
36.
Zurück zum Zitat Liu, C., X. Zhang, J.X. Zhou, W. Wei, D.H. Liu, P. Ke, G.F. Zhang, G.J. Cai, and D.F. Su. 2013. The protective action of ketanserin against lipopolysaccharide induced shock in mice is mediated by inhibiting inducible NO synthase expression via the MEK/ERK pathway. Free Radical Biology and Medicine 65: 658–666.PubMedCrossRef Liu, C., X. Zhang, J.X. Zhou, W. Wei, D.H. Liu, P. Ke, G.F. Zhang, G.J. Cai, and D.F. Su. 2013. The protective action of ketanserin against lipopolysaccharide induced shock in mice is mediated by inhibiting inducible NO synthase expression via the MEK/ERK pathway. Free Radical Biology and Medicine 65: 658–666.PubMedCrossRef
37.
Zurück zum Zitat Choi, Y., M.K. Lee, S.Y. Lim, S.H. Sung, and Y.C. Kim. 2009. Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1beta by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells. British Journal of Pharmacology 156: 933–940.PubMedCentralPubMedCrossRef Choi, Y., M.K. Lee, S.Y. Lim, S.H. Sung, and Y.C. Kim. 2009. Inhibition of inducible NO synthase, cyclooxygenase-2 and interleukin-1beta by torilin is mediated by mitogen-activated protein kinases in microglial BV2 cells. British Journal of Pharmacology 156: 933–940.PubMedCentralPubMedCrossRef
38.
Zurück zum Zitat Kawasaki, K., S. Akashi, R. Shimazu, T. Yoshida, K. Miyake, and M. Nishijima. 2001. Involvement of TLR4/MD-2 complex in species-specific lipopolysaccharide-mimetic signal transduction by taxol. Journal of Endotoxin Research 7: 232–236.PubMedCrossRef Kawasaki, K., S. Akashi, R. Shimazu, T. Yoshida, K. Miyake, and M. Nishijima. 2001. Involvement of TLR4/MD-2 complex in species-specific lipopolysaccharide-mimetic signal transduction by taxol. Journal of Endotoxin Research 7: 232–236.PubMedCrossRef
40.
Zurück zum Zitat Theoharides, T.C., D. Kempuraj, M. Tagen, P. Conti, and D. Kalogeromitros. 2007. Differential release of mast cell mediators and the pathogenesis of inflammation. Immunological Reviews 217: 65–78.PubMedCrossRef Theoharides, T.C., D. Kempuraj, M. Tagen, P. Conti, and D. Kalogeromitros. 2007. Differential release of mast cell mediators and the pathogenesis of inflammation. Immunological Reviews 217: 65–78.PubMedCrossRef
Metadaten
Titel
Punicalagin Inhibits Inflammation in LPS-Induced RAW264.7 Macrophages via the Suppression of TLR4-Mediated MAPKs and NF-κB Activation
verfasst von
Xiaolong Xu
Peng Yin
Changrong Wan
Xinlu Chong
Mingjiang Liu
Peng Cheng
Jiajia Chen
Fenghua Liu
Jianqin Xu
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2014
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-9816-2

Weitere Artikel der Ausgabe 3/2014

Inflammation 3/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.