Skip to main content
Erschienen in: Inflammation 5/2014

01.10.2014

Geniposide Plays an Anti-inflammatory Role via Regulating TLR4 and Downstream Signaling Pathways in Lipopolysaccharide-Induced Mastitis in Mice

verfasst von: Xiaojing Song, Wen Zhang, Tiancheng Wang, Haichao Jiang, Zecai Zhang, Yunhe Fu, Zhengtao Yang, Yongguo Cao, Naisheng Zhang

Erschienen in: Inflammation | Ausgabe 5/2014

Einloggen, um Zugang zu erhalten

Abstract

Geniposide is a medicine isolated from Gardenia jasminoides Ellis, which is a traditional Chinese herb that is widely used in Asia for the treatment of inflammation, brain diseases, and hepatic disorders. Mastitis is a highly prevalent and important infectious disease. In this study, we used a lipopolysaccharide (LPS)-induced mouse mastitis model and LPS-stimulated primary mouse mammary epithelial cells (mMECs) to explore the anti-inflammatory effect and the mechanism of action of geniposide. Using intraductal injection of LPS as a mouse model of mastitis, we found that geniposide significantly reduced the infiltration of inflammatory cells and downregulated the production of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). To further investigate the anti-inflammatory mechanism, we used LPS-stimulated mMECs as an in vitro mastitis model. The results of enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR) showed that geniposide inhibited the expression of TNF-α, IL-1β, and IL-6 in a dose-dependent manner. Western blot analysis demonstrated that geniposide could suppress the phosphorylation of inhibitory kappa B (IκBα), nuclear factor-κB (NF-κB), p38, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Geniposide also inhibited the expression of toll-like receptor 4 (TLR4) in the LPS-stimulated mMECs. In conclusion, geniposide exerted its anti-inflammatory effect by regulating TLR4 expression, which affected the downstream NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways. Thus, geniposide may be a potential drug for mastitis therapy.
Literatur
1.
Zurück zum Zitat Bradley, A. 2002. Bovine mastitis: an evolving disease. Veterinary Journal 164(2): 116–128.CrossRef Bradley, A. 2002. Bovine mastitis: an evolving disease. Veterinary Journal 164(2): 116–128.CrossRef
2.
Zurück zum Zitat Viguier, C., S. Arora, N. Gilmartin, K. Welbeck, and R. O’Kennedy. 2009. Mastitis detection: current trends and future perspectives. Trends in Biotechnology 27(8): 486–493.PubMedCrossRef Viguier, C., S. Arora, N. Gilmartin, K. Welbeck, and R. O’Kennedy. 2009. Mastitis detection: current trends and future perspectives. Trends in Biotechnology 27(8): 486–493.PubMedCrossRef
3.
Zurück zum Zitat Bannerman, D.D., M.J. Paape, J.W. Lee, X. Zhao, J.C. Hope, and P. Rainard. 2004. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clinical and Diagnostic Laboratory Immunology 11(3): 463–472.PubMedPubMedCentral Bannerman, D.D., M.J. Paape, J.W. Lee, X. Zhao, J.C. Hope, and P. Rainard. 2004. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clinical and Diagnostic Laboratory Immunology 11(3): 463–472.PubMedPubMedCentral
4.
Zurück zum Zitat Opal, S.M., P.J. Scannon, J.L. Vincent, M. White, S.F. Carroll, J.E. Palardy, N.A. Parejo, J.P. Pribble, and J.H. Lemke. 1999. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. Journal of Infectious Diseases 180(5): 1584–1589.PubMedCrossRef Opal, S.M., P.J. Scannon, J.L. Vincent, M. White, S.F. Carroll, J.E. Palardy, N.A. Parejo, J.P. Pribble, and J.H. Lemke. 1999. Relationship between plasma levels of lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic shock. Journal of Infectious Diseases 180(5): 1584–1589.PubMedCrossRef
5.
Zurück zum Zitat Oliver, S., and L. Calvinho. 1995. Influence of inflammation on mammary gland metabolism and milk composition. Journal of Animal Science 73(suppl 2): 18–33. Oliver, S., and L. Calvinho. 1995. Influence of inflammation on mammary gland metabolism and milk composition. Journal of Animal Science 73(suppl 2): 18–33.
6.
Zurück zum Zitat De Schepper, S., A. De Ketelaere, D.D. Bannerman, M.J. Paape, L. Peelman, and C. Burvenich. 2008. The toll-like receptor-4 (TLR-4) pathway and its possible role in the pathogenesis of Escherichia coli mastitis in dairy cattle. Veterinary Research 39(1): 1–23.CrossRef De Schepper, S., A. De Ketelaere, D.D. Bannerman, M.J. Paape, L. Peelman, and C. Burvenich. 2008. The toll-like receptor-4 (TLR-4) pathway and its possible role in the pathogenesis of Escherichia coli mastitis in dairy cattle. Veterinary Research 39(1): 1–23.CrossRef
7.
Zurück zum Zitat J-h, Liu, F. Yin, L.-x. Guo, X.-h. Deng, and Y.-h. Hu. 2009. Neuroprotection of geniposide against hydrogen peroxide induced PC12 cells injury: involvement of PI3 kinase signal pathway. Acta Pharmacologica Sinica 30(2): 159–165.CrossRef J-h, Liu, F. Yin, L.-x. Guo, X.-h. Deng, and Y.-h. Hu. 2009. Neuroprotection of geniposide against hydrogen peroxide induced PC12 cells injury: involvement of PI3 kinase signal pathway. Acta Pharmacologica Sinica 30(2): 159–165.CrossRef
8.
Zurück zum Zitat Peng, C.H., C.N. Huang, S.P. Hsu, and C.J. Wang. 2007. Penta-acetyl geniposide-induced apoptosis involving transcription of NGF/p75 via MAPK-mediated AP-1 activation in C6 glioma cells. Toxicology 238(2–3): 130–139.PubMedCrossRef Peng, C.H., C.N. Huang, S.P. Hsu, and C.J. Wang. 2007. Penta-acetyl geniposide-induced apoptosis involving transcription of NGF/p75 via MAPK-mediated AP-1 activation in C6 glioma cells. Toxicology 238(2–3): 130–139.PubMedCrossRef
9.
Zurück zum Zitat Wu, S.Y., G.F. Wang, Z.Q. Liu, J.J. Rao, L. Lu, W. Xu, S.G. Wu, and J.J. Zhang. 2009. Effect of geniposide, a hypoglycemic glucoside, on hepatic regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin. Acta Pharmacologica Sinica 30(2): 202–208.PubMedCrossRefPubMedCentral Wu, S.Y., G.F. Wang, Z.Q. Liu, J.J. Rao, L. Lu, W. Xu, S.G. Wu, and J.J. Zhang. 2009. Effect of geniposide, a hypoglycemic glucoside, on hepatic regulating enzymes in diabetic mice induced by a high-fat diet and streptozotocin. Acta Pharmacologica Sinica 30(2): 202–208.PubMedCrossRefPubMedCentral
10.
Zurück zum Zitat Liu, H.T., J.L. He, W.M. Li, Z. Yang, Y.X. Wang, J. Yin, Y.G. Du, and C. Yu. 2010. Geniposide inhibits interleukin-6 and interleukin-8 production in lipopolysaccharide-induced human umbilical vein endothelial cells by blocking p38 and ERK1/2 signaling pathways. Inflammation Research : Official Journal of the European Histamine Research Society 59(6): 451–461.CrossRef Liu, H.T., J.L. He, W.M. Li, Z. Yang, Y.X. Wang, J. Yin, Y.G. Du, and C. Yu. 2010. Geniposide inhibits interleukin-6 and interleukin-8 production in lipopolysaccharide-induced human umbilical vein endothelial cells by blocking p38 and ERK1/2 signaling pathways. Inflammation Research : Official Journal of the European Histamine Research Society 59(6): 451–461.CrossRef
11.
Zurück zum Zitat Zhang, G., J.-L. He, X.-Y. Xie, and C. Yu. 2012. LPS-induced iNOS expression in N9 microglial cells is suppressed by geniposide via ERK, p38 and nuclear factor-κB signaling pathways. International Journal of Molecular Medicine 30(3): 561–568.PubMed Zhang, G., J.-L. He, X.-Y. Xie, and C. Yu. 2012. LPS-induced iNOS expression in N9 microglial cells is suppressed by geniposide via ERK, p38 and nuclear factor-κB signaling pathways. International Journal of Molecular Medicine 30(3): 561–568.PubMed
12.
Zurück zum Zitat Fu, Y., B. Liu, J. Liu, Z. Liu, D. Liang, F. Li, D. Li, Y. Cao, X. Zhang, N. Zhang, et al. 2012. Geniposide, from Gardenia jasminoides Ellis, inhibits the inflammatory response in the primary mouse macrophages and mouse models. International Immunopharmacology 14(4): 792–798.PubMedCrossRef Fu, Y., B. Liu, J. Liu, Z. Liu, D. Liang, F. Li, D. Li, Y. Cao, X. Zhang, N. Zhang, et al. 2012. Geniposide, from Gardenia jasminoides Ellis, inhibits the inflammatory response in the primary mouse macrophages and mouse models. International Immunopharmacology 14(4): 792–798.PubMedCrossRef
13.
Zurück zum Zitat Barham W, Sherrill T, Connelly L, Blackwell T, Yull F. 2012. Intraductal injection of LPS as a mouse model of mastitis: signaling visualized via an NF-κB reporter transgenic. Journal of visualized experiments: JoVE (67). Barham W, Sherrill T, Connelly L, Blackwell T, Yull F. 2012. Intraductal injection of LPS as a mouse model of mastitis: signaling visualized via an NF-κB reporter transgenic. Journal of visualized experiments: JoVE (67).
14.
Zurück zum Zitat Chandler, R.L. 1970. Experimental bacterial mastitis in the mouse. Journal of Medical Microbiology 3(2): 273–282.PubMedCrossRef Chandler, R.L. 1970. Experimental bacterial mastitis in the mouse. Journal of Medical Microbiology 3(2): 273–282.PubMedCrossRef
15.
Zurück zum Zitat Anderson, J.C. 1974. Experimental staphylococcal mastitis in the mouse: effects of extracellular products and whole bacterial cells from a high-virulence and a low-virulence strain of Staphylococcus aureus. Journal of Medical Microbiology 7(2): 205–212.PubMedCrossRef Anderson, J.C. 1974. Experimental staphylococcal mastitis in the mouse: effects of extracellular products and whole bacterial cells from a high-virulence and a low-virulence strain of Staphylococcus aureus. Journal of Medical Microbiology 7(2): 205–212.PubMedCrossRef
16.
Zurück zum Zitat Smalley, M.J., J. Titley, and M.J. O’Hare. 1998. Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In Vitro Cellular & Developmental Biology Animal 34(9): 711–721.CrossRef Smalley, M.J., J. Titley, and M.J. O’Hare. 1998. Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In Vitro Cellular & Developmental Biology Animal 34(9): 711–721.CrossRef
17.
Zurück zum Zitat Fu, Y., L. Bo, X. Feng, Z. Liu, D. Liang, F. Li, D. Li, Y. Cao, S. Feng, and X. Zhang. 2012. Lipopolysaccharide increases Toll-like receptor 4 and downstream Toll-like receptor signaling molecules expression in bovine endometrial epithelial cells. Veterinary Immunology and Immunopathology 151: 20–27.PubMedCrossRef Fu, Y., L. Bo, X. Feng, Z. Liu, D. Liang, F. Li, D. Li, Y. Cao, S. Feng, and X. Zhang. 2012. Lipopolysaccharide increases Toll-like receptor 4 and downstream Toll-like receptor signaling molecules expression in bovine endometrial epithelial cells. Veterinary Immunology and Immunopathology 151: 20–27.PubMedCrossRef
18.
Zurück zum Zitat Li, F., D. Liang, Z. Yang, T. Wang, W. Wang, X. Song, M. Guo, E. Zhou, D. Li, Y. Cao, et al. 2013. Astragalin suppresses inflammatory responses via down-regulation of NF-kappaB signaling pathway in lipopolysaccharide-induced mastitis in a murine model. International Immunopharmacology 17(2): 478–482.PubMedCrossRef Li, F., D. Liang, Z. Yang, T. Wang, W. Wang, X. Song, M. Guo, E. Zhou, D. Li, Y. Cao, et al. 2013. Astragalin suppresses inflammatory responses via down-regulation of NF-kappaB signaling pathway in lipopolysaccharide-induced mastitis in a murine model. International Immunopharmacology 17(2): 478–482.PubMedCrossRef
19.
Zurück zum Zitat Liang, D., Y. Sun, Y. Shen, F. Li, X. Song, E. Zhou, F. Zhao, Z. Liu, Y. Fu, M. Guo, et al. 2013. Shikonin exerts anti-inflammatory effects in a murine model of lipopolysaccharide-induced acute lung injury by inhibiting the nuclear factor-kappaB signaling pathway. International Immunopharmacology 16(4): 475–480.PubMedCrossRef Liang, D., Y. Sun, Y. Shen, F. Li, X. Song, E. Zhou, F. Zhao, Z. Liu, Y. Fu, M. Guo, et al. 2013. Shikonin exerts anti-inflammatory effects in a murine model of lipopolysaccharide-induced acute lung injury by inhibiting the nuclear factor-kappaB signaling pathway. International Immunopharmacology 16(4): 475–480.PubMedCrossRef
20.
Zurück zum Zitat Notebaert, S., and E. Meyer. 2006. Mouse models to study the pathogenesis and control of bovine mastitis. A review. The Veterinary quarterly 28(1): 2–13.PubMedCrossRef Notebaert, S., and E. Meyer. 2006. Mouse models to study the pathogenesis and control of bovine mastitis. A review. The Veterinary quarterly 28(1): 2–13.PubMedCrossRef
21.
Zurück zum Zitat Rainard, P., and C. Riollet. 2006. Innate immunity of the bovine mammary gland. Veterinary Research 37(3): 369–400.PubMedCrossRef Rainard, P., and C. Riollet. 2006. Innate immunity of the bovine mammary gland. Veterinary Research 37(3): 369–400.PubMedCrossRef
22.
Zurück zum Zitat Schmitz, S., M.W. Pfaffl, H.H.D. Meyer, and R.M. Bruckmaier. 2004. Short-term changes of mRNA expression of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis. Domestic Animal Endocrinology 26(2): 111–126.PubMedCrossRef Schmitz, S., M.W. Pfaffl, H.H.D. Meyer, and R.M. Bruckmaier. 2004. Short-term changes of mRNA expression of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis. Domestic Animal Endocrinology 26(2): 111–126.PubMedCrossRef
23.
Zurück zum Zitat Copray, J.C.V.M., I. Mantingh, N. Brouwer, K. Biber, B.M. Kust, R.S.B. Liem, I. Huitinga, F.J.H. Tilders, A.M. Van Dam, and H.W.G.M. Boddeke. 2001. Expression of interleukin-1 beta in rat dorsal root ganglia. Journal of Neuroimmunology 118(2): 203–211.PubMedCrossRef Copray, J.C.V.M., I. Mantingh, N. Brouwer, K. Biber, B.M. Kust, R.S.B. Liem, I. Huitinga, F.J.H. Tilders, A.M. Van Dam, and H.W.G.M. Boddeke. 2001. Expression of interleukin-1 beta in rat dorsal root ganglia. Journal of Neuroimmunology 118(2): 203–211.PubMedCrossRef
24.
Zurück zum Zitat Heinrich, P.C., I. Behrmann, S. Haan, H.M. Hermanns, G. Muller-Newen, and F. Schaper. 2003. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochemical Journal 374(Pt 1): 1–20.PubMedCrossRefPubMedCentral Heinrich, P.C., I. Behrmann, S. Haan, H.M. Hermanns, G. Muller-Newen, and F. Schaper. 2003. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochemical Journal 374(Pt 1): 1–20.PubMedCrossRefPubMedCentral
25.
Zurück zum Zitat Boulanger, D., E. Brouillette, F. Jaspar, F. Malouin, J. Mainil, F. Bureau, and P. Lekeux. 2007. Helenalin reduces Staphylococcus aureus infection in vitro and in vivo. Veterinary Microbiology 119(2–4): 330–338.PubMedCrossRef Boulanger, D., E. Brouillette, F. Jaspar, F. Malouin, J. Mainil, F. Bureau, and P. Lekeux. 2007. Helenalin reduces Staphylococcus aureus infection in vitro and in vivo. Veterinary Microbiology 119(2–4): 330–338.PubMedCrossRef
26.
Zurück zum Zitat Notebaert, S., D. Demon, T. Vanden Berghe, P. Vandenabeele, and E. Meyer. 2008. Inflammatory mediators in Escherichia coli-induced mastitis in mice. Comparative Immunology, Microbiology and Infectious Diseases 31(6): 551–565.PubMedCrossRef Notebaert, S., D. Demon, T. Vanden Berghe, P. Vandenabeele, and E. Meyer. 2008. Inflammatory mediators in Escherichia coli-induced mastitis in mice. Comparative Immunology, Microbiology and Infectious Diseases 31(6): 551–565.PubMedCrossRef
27.
Zurück zum Zitat Lu, Y.C., W.C. Yeh, and P.S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokines 42(2): 145–151.CrossRef Lu, Y.C., W.C. Yeh, and P.S. Ohashi. 2008. LPS/TLR4 signal transduction pathway. Cytokines 42(2): 145–151.CrossRef
28.
Zurück zum Zitat Chen, Z., J. Hagler, V.J. Palombella, F. Melandri, D. Scherer, D. Ballard, and T. Maniatis. 1995. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes & Development 9(13): 1586–1597.CrossRef Chen, Z., J. Hagler, V.J. Palombella, F. Melandri, D. Scherer, D. Ballard, and T. Maniatis. 1995. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes & Development 9(13): 1586–1597.CrossRef
29.
Zurück zum Zitat Guo, M.Y., N.S. Zhang, D.P. Li, D.J. Liang, Z.C. Liu, F.Y. Li, Y.H. Fu, Y.G. Cao, X.M. Deng, and Z.T. Yang. 2013. Baicalin plays an anti-inflammatory role through reducing nuclear factor-kappa B and p38 phosphorylation in S. aureus-induced mastitis. International Immunopharmacology 16(2): 125–130.PubMedCrossRef Guo, M.Y., N.S. Zhang, D.P. Li, D.J. Liang, Z.C. Liu, F.Y. Li, Y.H. Fu, Y.G. Cao, X.M. Deng, and Z.T. Yang. 2013. Baicalin plays an anti-inflammatory role through reducing nuclear factor-kappa B and p38 phosphorylation in S. aureus-induced mastitis. International Immunopharmacology 16(2): 125–130.PubMedCrossRef
30.
Zurück zum Zitat Notebaert, S., L. Duchateau, and E. Meyer. 2005. NF-kappaB inhibition accelerates apoptosis of bovine neutrophils. Veterinary Research 36(2): 229–240.PubMedCrossRef Notebaert, S., L. Duchateau, and E. Meyer. 2005. NF-kappaB inhibition accelerates apoptosis of bovine neutrophils. Veterinary Research 36(2): 229–240.PubMedCrossRef
31.
Zurück zum Zitat Demeyere, K., Q. Remijsen, D. Demon, K. Breyne, S. Notebaert, F. Boyen, C.J. Guérin, P. Vandenabeele, and E. Meyer. 2013. Escherichia coli induces bovine neutrophil cell death independent from caspase-3/-7/-1, but with phosphatidylserine exposure prior to membrane rupture. Veterinary Immunology and Immunopathology 153(1): 45–56.PubMedCrossRef Demeyere, K., Q. Remijsen, D. Demon, K. Breyne, S. Notebaert, F. Boyen, C.J. Guérin, P. Vandenabeele, and E. Meyer. 2013. Escherichia coli induces bovine neutrophil cell death independent from caspase-3/-7/-1, but with phosphatidylserine exposure prior to membrane rupture. Veterinary Immunology and Immunopathology 153(1): 45–56.PubMedCrossRef
32.
Zurück zum Zitat Zhong, W.T., G.F. Chi, L.X. Jiang, L.W. Soromou, N. Chen, M.X. Huo, W.X. Guo, X.M. Deng, and H.H. Feng. 2013. p-Cymene modulates in vitro and in vivo cytokine production by inhibiting MAPK and NF-kappa B activation. Inflammation 36(3): 529–537.PubMedCrossRef Zhong, W.T., G.F. Chi, L.X. Jiang, L.W. Soromou, N. Chen, M.X. Huo, W.X. Guo, X.M. Deng, and H.H. Feng. 2013. p-Cymene modulates in vitro and in vivo cytokine production by inhibiting MAPK and NF-kappa B activation. Inflammation 36(3): 529–537.PubMedCrossRef
33.
Zurück zum Zitat Chang, L., and M. Karin. 2001. Mammalian MAP kinase signalling cascades. Nature 410(6824): 37–40.PubMedCrossRef Chang, L., and M. Karin. 2001. Mammalian MAP kinase signalling cascades. Nature 410(6824): 37–40.PubMedCrossRef
34.
Zurück zum Zitat Muzio, M., J. Ni, P. Feng, and V.M. Dixit. 2013. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling (reprinted from Science, vol 278, pg 1612-1615, 1997). Journal of Immunology 190(1): 16–19. Muzio, M., J. Ni, P. Feng, and V.M. Dixit. 2013. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling (reprinted from Science, vol 278, pg 1612-1615, 1997). Journal of Immunology 190(1): 16–19.
35.
Zurück zum Zitat McDermott, E.P., and L.A.J. O’Neill. 2002. Ras participates in the activation of p38 MAPK by interleukin-1 by associating with IRAK, IRAK2, TRAF6, and TAK-1. Journal of Biological Chemistry 277(10): 7808–7815.PubMedCrossRef McDermott, E.P., and L.A.J. O’Neill. 2002. Ras participates in the activation of p38 MAPK by interleukin-1 by associating with IRAK, IRAK2, TRAF6, and TAK-1. Journal of Biological Chemistry 277(10): 7808–7815.PubMedCrossRef
36.
Zurück zum Zitat Miller, S.I., R.K. Ernst, and M.W. Bader. 2005. LPS, TLR4 and infectious disease diversity. Nature Reviews Microbiology 3(1): 36–46.PubMedCrossRef Miller, S.I., R.K. Ernst, and M.W. Bader. 2005. LPS, TLR4 and infectious disease diversity. Nature Reviews Microbiology 3(1): 36–46.PubMedCrossRef
37.
Zurück zum Zitat Triantafilou, M., and K. Triantafilou. 2005. The dynamics of LPS recognition: complex orchestration of multiple receptors. Journal of Endotoxin Research 11(1): 5–11.PubMed Triantafilou, M., and K. Triantafilou. 2005. The dynamics of LPS recognition: complex orchestration of multiple receptors. Journal of Endotoxin Research 11(1): 5–11.PubMed
38.
Zurück zum Zitat Goldammer, T., H. Zerbe, A. Molenaar, H.-J. Schuberth, R. Brunner, S. Kata, and H.-M. Seyfert. 2004. Mastitis increases mammary mRNA abundance of β-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clinical and Diagnostic Laboratory Immunology 11(1): 174–185.PubMedPubMedCentral Goldammer, T., H. Zerbe, A. Molenaar, H.-J. Schuberth, R. Brunner, S. Kata, and H.-M. Seyfert. 2004. Mastitis increases mammary mRNA abundance of β-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Clinical and Diagnostic Laboratory Immunology 11(1): 174–185.PubMedPubMedCentral
39.
Zurück zum Zitat Wang, J., J. Hou, P. Zhang, D. Li, C. Zhang, and J. Liu. 2012. Geniposide reduces inflammatory responses of oxygen-glucose deprived rat microglial cells via inhibition of the TLR4 signaling pathway. Neurochemical Research 37(10): 2235–2248.PubMedCrossRef Wang, J., J. Hou, P. Zhang, D. Li, C. Zhang, and J. Liu. 2012. Geniposide reduces inflammatory responses of oxygen-glucose deprived rat microglial cells via inhibition of the TLR4 signaling pathway. Neurochemical Research 37(10): 2235–2248.PubMedCrossRef
Metadaten
Titel
Geniposide Plays an Anti-inflammatory Role via Regulating TLR4 and Downstream Signaling Pathways in Lipopolysaccharide-Induced Mastitis in Mice
verfasst von
Xiaojing Song
Wen Zhang
Tiancheng Wang
Haichao Jiang
Zecai Zhang
Yunhe Fu
Zhengtao Yang
Yongguo Cao
Naisheng Zhang
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2014
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-9885-2

Weitere Artikel der Ausgabe 5/2014

Inflammation 5/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.