Skip to main content
Erschienen in: Inflammation 2/2015

01.04.2015

Aurora Kinase A Regulates M1 Macrophage Polarization and Plays a Role in Experimental Autoimmune Encephalomyelitis

verfasst von: Lixia Ding, Haijuan Gu, Xiaoming Gao, Sidong Xiong, Biao Zheng

Erschienen in: Inflammation | Ausgabe 2/2015

Einloggen, um Zugang zu erhalten

Abstract

Macrophage polarization is a dynamic and integral process of tissue inflammation and remodeling. Here we demonstrate an important role of Aurora kinase A in the regulation of inflammatory M1 macrophage polarization. We found that there was an elevated expression of Aurora-A in M1 macrophages and inhibition of Aurora-A by small molecules or specific siRNA selectively led to the suppression of M1 polarization, sparing over the M2 macrophage differentiation. At the molecular level, we found that the effects of Aurora-A in M1 macrophages were mediated through the down-regulation of NF-κB pathway and subsequent IRF5 expression. In an autoimmune disease model, experimental autoimmune encephalitis (EAE), treatment with Aurora kinase inhibitor blocked the disease development and shifted the macrophage phenotype from inflammatory M1 to anti-inflammatory M2. Thus, this study reveals a novel function of Aurora-A in controlling the polarization of macrophages, and modification of Aurora-A activity may lead to a new therapeutic approach for chronic inflammatory diseases.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Martinez, F.O., L. Helming, and S. Gordon. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology 27: 451–483.PubMedCrossRef Martinez, F.O., L. Helming, and S. Gordon. 2009. Alternative activation of macrophages: an immunologic functional perspective. Annual Review of Immunology 27: 451–483.PubMedCrossRef
2.
Zurück zum Zitat Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32: 593–604.PubMedCrossRef Gordon, S., and F.O. Martinez. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32: 593–604.PubMedCrossRef
3.
Zurück zum Zitat Mantovani, A., A. Sica, and M. Locati. 2005. Macrophage polarization comes of age. Immunity 23: 344–346.PubMedCrossRef Mantovani, A., A. Sica, and M. Locati. 2005. Macrophage polarization comes of age. Immunity 23: 344–346.PubMedCrossRef
4.
Zurück zum Zitat Stein, M., S. Keshav, N. Harris, and S. Gordon. 1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. Journal of Experimental Medicine 176: 287–292.PubMedCrossRef Stein, M., S. Keshav, N. Harris, and S. Gordon. 1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. Journal of Experimental Medicine 176: 287–292.PubMedCrossRef
5.
Zurück zum Zitat Martinez, F.O., S. Gordon, M. Locati, and A. Mantovani. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology 177: 7303–7311.CrossRef Martinez, F.O., S. Gordon, M. Locati, and A. Mantovani. 2006. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. Journal of Immunology 177: 7303–7311.CrossRef
6.
Zurück zum Zitat Biswas, S.K., and A. Mantovani. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology 11: 889–896.PubMedCrossRef Biswas, S.K., and A. Mantovani. 2010. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunology 11: 889–896.PubMedCrossRef
7.
Zurück zum Zitat Shimada, K. 2009. Immune system and atherosclerotic disease: heterogeneity of leukocyte subsets participating in the pathogenesis of atherosclerosis. Circulation Journal 73: 994–1001.PubMedCrossRef Shimada, K. 2009. Immune system and atherosclerotic disease: heterogeneity of leukocyte subsets participating in the pathogenesis of atherosclerosis. Circulation Journal 73: 994–1001.PubMedCrossRef
8.
Zurück zum Zitat Adamson, S., and N. Leitinger. 2011. Phenotypic modulation of macrophages in response to plaque lipids. Current Opinion in Lipidology 22: 335–342.PubMedCentralPubMedCrossRef Adamson, S., and N. Leitinger. 2011. Phenotypic modulation of macrophages in response to plaque lipids. Current Opinion in Lipidology 22: 335–342.PubMedCentralPubMedCrossRef
9.
Zurück zum Zitat Gosselin, L.E., and K.M. McCormick. 2004. Targeting the immune system to improve ventilatory function in muscular dystrophy. Medicine and Science in Sports and Exercise 36: 44–51.PubMedCrossRef Gosselin, L.E., and K.M. McCormick. 2004. Targeting the immune system to improve ventilatory function in muscular dystrophy. Medicine and Science in Sports and Exercise 36: 44–51.PubMedCrossRef
10.
Zurück zum Zitat Mikita, J., N. Dubourdieu-Cassagno, M. S. Deloire, A. Vekris, M. Biran, G. Raffard, B. Brochet, M. H. Canron, J. M. Franconi, C. Boiziau, and K. G. Petry. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler 17:2–15. Mikita, J., N. Dubourdieu-Cassagno, M. S. Deloire, A. Vekris, M. Biran, G. Raffard, B. Brochet, M. H. Canron, J. M. Franconi, C. Boiziau, and K. G. Petry. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler 17:2–15.
11.
Zurück zum Zitat Weber, M.S., T. Prod'homme, S. Youssef, S.E. Dunn, C.D. Rundle, L. Lee, J.C. Patarroyo, O. Stuve, R.A. Sobel, L. Steinman, and S.S. Zamvil. 2007. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nature Medicine 13: 935–943.PubMedCrossRef Weber, M.S., T. Prod'homme, S. Youssef, S.E. Dunn, C.D. Rundle, L. Lee, J.C. Patarroyo, O. Stuve, R.A. Sobel, L. Steinman, and S.S. Zamvil. 2007. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nature Medicine 13: 935–943.PubMedCrossRef
12.
Zurück zum Zitat Dar, A.A., L.W. Goff, S. Majid, J. Berlin, and W. El-Rifai. 2010. Aurora kinase inhibitors—rising stars in cancer therapeutics? Molecular Cancer Therapeutics 9: 268–278.PubMedCentralPubMedCrossRef Dar, A.A., L.W. Goff, S. Majid, J. Berlin, and W. El-Rifai. 2010. Aurora kinase inhibitors—rising stars in cancer therapeutics? Molecular Cancer Therapeutics 9: 268–278.PubMedCentralPubMedCrossRef
13.
Zurück zum Zitat Carmena, M., S. Ruchaud, and W.C. Earnshaw. 2009. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Current Opinion in Cell Biology 21: 796–805.PubMedCentralPubMedCrossRef Carmena, M., S. Ruchaud, and W.C. Earnshaw. 2009. Making the Auroras glow: regulation of Aurora A and B kinase function by interacting proteins. Current Opinion in Cell Biology 21: 796–805.PubMedCentralPubMedCrossRef
14.
Zurück zum Zitat Macarulla, T., F.J. Ramos, and J. Tabernero. 2008. Aurora kinase family: a new target for anticancer drug. Recent Patents on Anti-Cancer Drug Discovery 3: 114–122.PubMedCrossRef Macarulla, T., F.J. Ramos, and J. Tabernero. 2008. Aurora kinase family: a new target for anticancer drug. Recent Patents on Anti-Cancer Drug Discovery 3: 114–122.PubMedCrossRef
15.
Zurück zum Zitat Mountzios, G., E. Terpos, and M.A. Dimopoulos. 2008. Aurora kinases as targets for cancer therapy. Cancer Treatment Reviews 34: 175–182.PubMedCrossRef Mountzios, G., E. Terpos, and M.A. Dimopoulos. 2008. Aurora kinases as targets for cancer therapy. Cancer Treatment Reviews 34: 175–182.PubMedCrossRef
16.
Zurück zum Zitat Katsha, A., M. Soutto, V. Sehdev, D. Peng, M. K. Washington, M. B. Piazuelo, M. N. Tantawy, H. C. Manning, P. Lu, Y. Shyr, J. Ecsedy, A. Belkhiri, and W. El-Rifai. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology 145:1312–1322 e1311-1318. Katsha, A., M. Soutto, V. Sehdev, D. Peng, M. K. Washington, M. B. Piazuelo, M. N. Tantawy, H. C. Manning, P. Lu, Y. Shyr, J. Ecsedy, A. Belkhiri, and W. El-Rifai. Aurora kinase A promotes inflammation and tumorigenesis in mice and human gastric neoplasia. Gastroenterology 145:1312–1322 e1311-1318.
17.
Zurück zum Zitat Glant, T. T., T. Besenyei, A. Kadar, J. Kurko, B. Tryniszewska, J. Gal, G. Soos, Z. Szekanecz, G. Hoffmann, J. A. Block, R. S. Katz, K. Mikecz, and T. A. Rauch. Differentially expressed epigenome modifiers, including aurora kinases A and B, in immune cells in rheumatoid arthritis in humans and mouse models. Arthritis Rheum 65:1725–1735. Glant, T. T., T. Besenyei, A. Kadar, J. Kurko, B. Tryniszewska, J. Gal, G. Soos, Z. Szekanecz, G. Hoffmann, J. A. Block, R. S. Katz, K. Mikecz, and T. A. Rauch. Differentially expressed epigenome modifiers, including aurora kinases A and B, in immune cells in rheumatoid arthritis in humans and mouse models. Arthritis Rheum 65:1725–1735.
18.
Zurück zum Zitat Walter, A.O., W. Seghezzi, W. Korver, J. Sheung, and E. Lees. 2000. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene 19: 4906–4916.PubMedCrossRef Walter, A.O., W. Seghezzi, W. Korver, J. Sheung, and E. Lees. 2000. The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation. Oncogene 19: 4906–4916.PubMedCrossRef
19.
Zurück zum Zitat Garuti, L., M. Roberti, and G. Bottegoni. 2009. Small molecule aurora kinases inhibitors. Current Medicinal Chemistry 16: 1949–1963.PubMedCrossRef Garuti, L., M. Roberti, and G. Bottegoni. 2009. Small molecule aurora kinases inhibitors. Current Medicinal Chemistry 16: 1949–1963.PubMedCrossRef
20.
Zurück zum Zitat Cheung, C.H., M.S. Coumar, J.Y. Chang, and H.P. Hsieh. 2011. Aurora kinase inhibitor patents and agents in clinical testing: an update (2009–10). Expert Opinion on Therapeutic Patents 21: 857–884.PubMedCrossRef Cheung, C.H., M.S. Coumar, J.Y. Chang, and H.P. Hsieh. 2011. Aurora kinase inhibitor patents and agents in clinical testing: an update (2009–10). Expert Opinion on Therapeutic Patents 21: 857–884.PubMedCrossRef
21.
Zurück zum Zitat Kollareddy, M., D. Zheleva, P. Dzubak, P.S. Brahmkshatriya, M. Lepsik, and M. Hajduch. 2012. Aurora kinase inhibitors: progress towards the clinic. Investigational New Drugs 30: 2411–2432.PubMedCentralPubMedCrossRef Kollareddy, M., D. Zheleva, P. Dzubak, P.S. Brahmkshatriya, M. Lepsik, and M. Hajduch. 2012. Aurora kinase inhibitors: progress towards the clinic. Investigational New Drugs 30: 2411–2432.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Wang, Z., J. Hong, W. Sun, G. Xu, N. Li, X. Chen, A. Liu, L. Xu, B. Sun, and J.Z. Zhang. 2006. Role of IFN-gamma in induction of Foxp3 and conversion of CD4+ CD25- T cells to CD4+ Tregs. Journal of Clinical Investigation 116: 2434–2441.PubMedCentralPubMed Wang, Z., J. Hong, W. Sun, G. Xu, N. Li, X. Chen, A. Liu, L. Xu, B. Sun, and J.Z. Zhang. 2006. Role of IFN-gamma in induction of Foxp3 and conversion of CD4+ CD25- T cells to CD4+ Tregs. Journal of Clinical Investigation 116: 2434–2441.PubMedCentralPubMed
23.
Zurück zum Zitat Okuda, Y., S. Sakoda, H. Fujimura, and T. Yanagihara. 2000. The effect of apoptosis inhibitors on experimental autoimmune encephalomyelitis: apoptosis as a regulatory factor. Biochemical and Biophysical Research Communications 267: 826–830.PubMedCrossRef Okuda, Y., S. Sakoda, H. Fujimura, and T. Yanagihara. 2000. The effect of apoptosis inhibitors on experimental autoimmune encephalomyelitis: apoptosis as a regulatory factor. Biochemical and Biophysical Research Communications 267: 826–830.PubMedCrossRef
24.
Zurück zum Zitat Zappia, E., S. Casazza, E. Pedemonte, F. Benvenuto, I. Bonanni, E. Gerdoni, D. Giunti, A. Ceravolo, F. Cazzanti, F. Frassoni, G. Mancardi, and A. Uccelli. 2005. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106: 1755–1761.PubMedCrossRef Zappia, E., S. Casazza, E. Pedemonte, F. Benvenuto, I. Bonanni, E. Gerdoni, D. Giunti, A. Ceravolo, F. Cazzanti, F. Frassoni, G. Mancardi, and A. Uccelli. 2005. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 106: 1755–1761.PubMedCrossRef
25.
Zurück zum Zitat Davis, M.J., T.M. Tsang, Y. Qiu, J.K. Dayrit, J.B. Freij, G.B. Huffnagle, and M.A. Olszewski. 2013. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio 4: e00264–00213.PubMedCentralPubMedCrossRef Davis, M.J., T.M. Tsang, Y. Qiu, J.K. Dayrit, J.B. Freij, G.B. Huffnagle, and M.A. Olszewski. 2013. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. MBio 4: e00264–00213.PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, H. Lockstone, N. Sahgal, T. Hussell, M. Feldmann, and I.A. Udalova. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238.PubMedCrossRef Krausgruber, T., K. Blazek, T. Smallie, S. Alzabin, H. Lockstone, N. Sahgal, T. Hussell, M. Feldmann, and I.A. Udalova. 2011. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nature Immunology 12: 231–238.PubMedCrossRef
27.
Zurück zum Zitat Harrington, E.A., D. Bebbington, J. Moore, R.K. Rasmussen, A.O. Ajose-Adeogun, T. Nakayama, J.A. Graham, C. Demur, T. Hercend, A. Diu-Hercend, M. Su, J.M. Golec, and K.M. Miller. 2004. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nature Medicine 10: 262–267.PubMedCrossRef Harrington, E.A., D. Bebbington, J. Moore, R.K. Rasmussen, A.O. Ajose-Adeogun, T. Nakayama, J.A. Graham, C. Demur, T. Hercend, A. Diu-Hercend, M. Su, J.M. Golec, and K.M. Miller. 2004. VX-680, a potent and selective small-molecule inhibitor of the Aurora kinases, suppresses tumor growth in vivo. Nature Medicine 10: 262–267.PubMedCrossRef
28.
Zurück zum Zitat Sehdev, V., D. Peng, M. Soutto, M. K. Washington, F. Revetta, J. Ecsedy, A. Zaika, T. T. Rau, R. Schneider-Stock, A. Belkhiri, and W. El-Rifai. The aurora kinase A inhibitor MLN8237 enhances cisplatin-induced cell death in esophageal adenocarcinoma cells. Mol Cancer Ther 11:763–774. Sehdev, V., D. Peng, M. Soutto, M. K. Washington, F. Revetta, J. Ecsedy, A. Zaika, T. T. Rau, R. Schneider-Stock, A. Belkhiri, and W. El-Rifai. The aurora kinase A inhibitor MLN8237 enhances cisplatin-induced cell death in esophageal adenocarcinoma cells. Mol Cancer Ther 11:763–774.
29.
Zurück zum Zitat Karin, M. 2006. Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436.PubMedCrossRef Karin, M. 2006. Nuclear factor-kappaB in cancer development and progression. Nature 441: 431–436.PubMedCrossRef
30.
Zurück zum Zitat Dar, A.A., A. Zaika, M.B. Piazuelo, P. Correa, T. Koyama, A. Belkhiri, K. Washington, A. Castells, M. Pera, and W. El-Rifai. 2008. Frequent overexpression of Aurora kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer 112: 1688–1698.PubMedCentralPubMedCrossRef Dar, A.A., A. Zaika, M.B. Piazuelo, P. Correa, T. Koyama, A. Belkhiri, K. Washington, A. Castells, M. Pera, and W. El-Rifai. 2008. Frequent overexpression of Aurora kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer 112: 1688–1698.PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Madrid, L.V., M.W. Mayo, J.Y. Reuther, and A.S. Baldwin Jr. 2001. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. Journal of Biological Chemistry 276: 18934–18940.PubMedCrossRef Madrid, L.V., M.W. Mayo, J.Y. Reuther, and A.S. Baldwin Jr. 2001. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. Journal of Biological Chemistry 276: 18934–18940.PubMedCrossRef
32.
Zurück zum Zitat Yao, J.E., M. Yan, Z. Guan, C.B. Pan, L.P. Xia, C.X. Li, L.H. Wang, Z.J. Long, Y. Zhao, M.W. Li, F.M. Zheng, J. Xu, D.J. Lin, and Q. Liu. 2009. Aurora-A down-regulates IkappaBalpha via Akt activation and interacts with insulin-like growth factor-1 induced phosphatidylinositol 3-kinase pathway for cancer cell survival. Molecular Cancer 8: 95.PubMedCentralPubMedCrossRef Yao, J.E., M. Yan, Z. Guan, C.B. Pan, L.P. Xia, C.X. Li, L.H. Wang, Z.J. Long, Y. Zhao, M.W. Li, F.M. Zheng, J. Xu, D.J. Lin, and Q. Liu. 2009. Aurora-A down-regulates IkappaBalpha via Akt activation and interacts with insulin-like growth factor-1 induced phosphatidylinositol 3-kinase pathway for cancer cell survival. Molecular Cancer 8: 95.PubMedCentralPubMedCrossRef
33.
Zurück zum Zitat Song, J., S. Salek-Ardakani, T. So, and M. Croft. 2007. The kinases aurora B and mTOR regulate the G1-S cell cycle progression of T lymphocytes. Nature Immunology 8: 64–73.PubMedCrossRef Song, J., S. Salek-Ardakani, T. So, and M. Croft. 2007. The kinases aurora B and mTOR regulate the G1-S cell cycle progression of T lymphocytes. Nature Immunology 8: 64–73.PubMedCrossRef
Metadaten
Titel
Aurora Kinase A Regulates M1 Macrophage Polarization and Plays a Role in Experimental Autoimmune Encephalomyelitis
verfasst von
Lixia Ding
Haijuan Gu
Xiaoming Gao
Sidong Xiong
Biao Zheng
Publikationsdatum
01.04.2015
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2015
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-9990-2

Weitere Artikel der Ausgabe 2/2015

Inflammation 2/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.