Skip to main content
Erschienen in: Inflammation 1/2016

01.02.2016

Functional Effects of WNT1-Inducible Signaling Pathway Protein-1 on Bronchial Smooth Muscle Cell Migration and Proliferation in OVA-Induced Airway Remodeling

verfasst von: Mingjin Yang, Yuejun Du, Zhibo Xu, Youfan Jiang

Erschienen in: Inflammation | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

Upregulation of WISP1 has been demonstrated in lung remodeling. Moreover, it has been recently found that some signaling components of WNT pathway can activate GSK3β signaling to mediate remodeling of airway smooth muscle (ASM) in asthma. Therefore, we hypothesized that WISP1, a signaling molecule downstream of the WNT signaling pathway, is involved in PI3K/GSK3β signaling to mediate ASM remodeling in asthma. Our results showed that WISP1 depletion partly suppressed OVA-induced ASM hypertrophy in vivo. In vitro, WISP1 could induce hBSMC hypertrophy and proliferation, accompanied by upregulation of levels of PI3K, p-Akt, p-GSK3β, and its own expression. TGF-β treatment could increase expression of PI3K, p-Akt, p-GSK3β, and WISP1. SH-5 treatment could partly suppress TGF-β-induced hypertrophy and proliferation of hBSMC, and depress expression of p-GSK3β and WISP1. In conclusion, WISP1 may be a potential inducer of ASM proliferation and hypertrophy in asthma. The pro-remodeling effect of WISP1 is likely due to be involved in PI3K-GSK3β-dependent noncanonical TGF-β signaling.
Literatur
1.
Zurück zum Zitat Bousquet, J., P.K. Jeffery, and W.W. Busse. 2000. Asthma. From bronchoconstriction to airways inflammation and remodeling. American Journal of Respiratory and Critical Care Medicine 161: 1720–1745.CrossRefPubMed Bousquet, J., P.K. Jeffery, and W.W. Busse. 2000. Asthma. From bronchoconstriction to airways inflammation and remodeling. American Journal of Respiratory and Critical Care Medicine 161: 1720–1745.CrossRefPubMed
2.
Zurück zum Zitat Kumar, R.K. 2001. Understanding airway wall remodeling in asthma: a basis for improvements in therapy? Pharmacology and Therapeutics 91: 93–104.CrossRefPubMed Kumar, R.K. 2001. Understanding airway wall remodeling in asthma: a basis for improvements in therapy? Pharmacology and Therapeutics 91: 93–104.CrossRefPubMed
3.
Zurück zum Zitat Chiappara, G., R. Gagliardo, and A. Siena. 2001. Airway remodelling in the pathogenesis of asthma. Current Opinion in Allergy and Clinical Immunology 1: 85–93.CrossRefPubMed Chiappara, G., R. Gagliardo, and A. Siena. 2001. Airway remodelling in the pathogenesis of asthma. Current Opinion in Allergy and Clinical Immunology 1: 85–93.CrossRefPubMed
4.
Zurück zum Zitat Dekkers, B.G., H. Maarsingh, H. Meurs, and R. Gosens. 2009. Airway structural components drive airway smooth muscle remodeling in asthma. Proceedings of the American Thoracic Society 6(8): 683–692.CrossRefPubMed Dekkers, B.G., H. Maarsingh, H. Meurs, and R. Gosens. 2009. Airway structural components drive airway smooth muscle remodeling in asthma. Proceedings of the American Thoracic Society 6(8): 683–692.CrossRefPubMed
5.
Zurück zum Zitat Suganuma, N., S. Ito, H. Aso, M. Kondo, M. Sato, M. Sokabe, and Y. Hasegawa. 2012. STIM1 regulates platelet-derived growth factor-induced migration and Ca2+ influx in human airway smooth muscle cells. PLoS One 7(9), e45056.PubMedCentralCrossRefPubMed Suganuma, N., S. Ito, H. Aso, M. Kondo, M. Sato, M. Sokabe, and Y. Hasegawa. 2012. STIM1 regulates platelet-derived growth factor-induced migration and Ca2+ influx in human airway smooth muscle cells. PLoS One 7(9), e45056.PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Michaeloudes, C., M.B. Sukkar, N.M. Khorasani, P.K. Bhavsar, and K.F. Chung. 2011. TGF-β regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 300(2): L295–L304.PubMedCentralCrossRefPubMed Michaeloudes, C., M.B. Sukkar, N.M. Khorasani, P.K. Bhavsar, and K.F. Chung. 2011. TGF-β regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 300(2): L295–L304.PubMedCentralCrossRefPubMed
7.
Zurück zum Zitat Pera, T., C. Atmaj, M. vander Vegt, A.J. Halayko, J. Zaagsma, and H. Meurs. 2012. Role for TAK1 in cigarette smoke-induced proinflammatory signaling and IL-8 release by human airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 303(3): L272–L278.CrossRefPubMed Pera, T., C. Atmaj, M. vander Vegt, A.J. Halayko, J. Zaagsma, and H. Meurs. 2012. Role for TAK1 in cigarette smoke-induced proinflammatory signaling and IL-8 release by human airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 303(3): L272–L278.CrossRefPubMed
8.
Zurück zum Zitat Benayoun, L., A. Druilhe, M.C. Dombret, M. Aubier, and M. Pretolani. 2003. Airway structural alterations selectively associated with severe asthma. American Journal of Respiratory and Critical Care Medicine 167: 1360–1368.CrossRefPubMed Benayoun, L., A. Druilhe, M.C. Dombret, M. Aubier, and M. Pretolani. 2003. Airway structural alterations selectively associated with severe asthma. American Journal of Respiratory and Critical Care Medicine 167: 1360–1368.CrossRefPubMed
9.
Zurück zum Zitat Partridge, M.R., T. van der Molen, S.E. Myrseth, and W.W. Busse. 2006. Attitudes and actions of asthma patients on regular maintenance therapy: the INSPIRE study. BMC Pulmonary Medicine 6: 13.PubMedCentralCrossRefPubMed Partridge, M.R., T. van der Molen, S.E. Myrseth, and W.W. Busse. 2006. Attitudes and actions of asthma patients on regular maintenance therapy: the INSPIRE study. BMC Pulmonary Medicine 6: 13.PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Nakagawa, T., and M. Hoshino. 2004. Airway remodeling in asthma: an introduction. Clinical Reviews in Allergy and Immunology 27: 1–2.CrossRef Nakagawa, T., and M. Hoshino. 2004. Airway remodeling in asthma: an introduction. Clinical Reviews in Allergy and Immunology 27: 1–2.CrossRef
11.
Zurück zum Zitat Barnes, P.J., and I.M. Adcock. 2009. Glucocorticoid resistance in inflammatory diseases. Lancet 373: 1905–1917.CrossRefPubMed Barnes, P.J., and I.M. Adcock. 2009. Glucocorticoid resistance in inflammatory diseases. Lancet 373: 1905–1917.CrossRefPubMed
12.
Zurück zum Zitat Halayko, A.J., T. Tran, S.Y. Ji, A. Yamasaki, and R. Gosens. 2006. Airway smooth muscle phenotype and function: interactions with current asthma therapies. Current Drug Targets 7: 525e40.CrossRef Halayko, A.J., T. Tran, S.Y. Ji, A. Yamasaki, and R. Gosens. 2006. Airway smooth muscle phenotype and function: interactions with current asthma therapies. Current Drug Targets 7: 525e40.CrossRef
13.
Zurück zum Zitat Yeganeh, B., S. Mukherjee, L.M. Moir, and K. Kumawat. 2013. Novel non-canonical TGF-β signaling networks: emerging roles in airway smooth muscle phenotype and function. Pulmonary Pharmacology & Therapeutics 26(1): 50–63.CrossRef Yeganeh, B., S. Mukherjee, L.M. Moir, and K. Kumawat. 2013. Novel non-canonical TGF-β signaling networks: emerging roles in airway smooth muscle phenotype and function. Pulmonary Pharmacology & Therapeutics 26(1): 50–63.CrossRef
14.
Zurück zum Zitat Baarsma, H.A., A.I. Spanjer, G. Haitsma, L.H. Engelbertink, and H. Meurs. 2011. Activation of Wnt/beta-catenin signaling in pulmonary fibroblasts by TGF-beta is increased in chronic obstructive pulmonary disease. PLoS One 6, e25450.PubMedCentralCrossRefPubMed Baarsma, H.A., A.I. Spanjer, G. Haitsma, L.H. Engelbertink, and H. Meurs. 2011. Activation of Wnt/beta-catenin signaling in pulmonary fibroblasts by TGF-beta is increased in chronic obstructive pulmonary disease. PLoS One 6, e25450.PubMedCentralCrossRefPubMed
15.
Zurück zum Zitat Carthy, J.M., F.S. Garmaroudi, Z. Luo, and B.M. McManus. 2011. Wnt3a induces myofibroblast differentiation by upregulating TGF-β signaling through Smad2 in a beta-catenin-dependent manner. PLoS One 6, e19809.PubMedCentralCrossRefPubMed Carthy, J.M., F.S. Garmaroudi, Z. Luo, and B.M. McManus. 2011. Wnt3a induces myofibroblast differentiation by upregulating TGF-β signaling through Smad2 in a beta-catenin-dependent manner. PLoS One 6, e19809.PubMedCentralCrossRefPubMed
16.
Zurück zum Zitat Gosens, R., H.A. Baarsma, I.H. Heijink, T.A. Oenema, and A.J. Halayko. 2010. De novo synthesis of {beta}-catenin via H-Ras and Mek regulates airway smooth muscle growth. FASEB Journal 24: 757e68.CrossRef Gosens, R., H.A. Baarsma, I.H. Heijink, T.A. Oenema, and A.J. Halayko. 2010. De novo synthesis of {beta}-catenin via H-Ras and Mek regulates airway smooth muscle growth. FASEB Journal 24: 757e68.CrossRef
17.
Zurück zum Zitat Kumawat, K., M.H. Menzen, I.S. Bos, H.A. Baarsma, P. Borger, M. Roth, M. Tamm, A.J. Halayko, M. Simoons, A. Prins, D.S. Postma, M. Schmidt, and R. Gosens. 2013. Noncanonical WNT-5A signaling regulates TGF-β-induced extracellular matrix production by airway smooth muscle cells. FASEB Journal 27(4): 1631–1643.CrossRefPubMed Kumawat, K., M.H. Menzen, I.S. Bos, H.A. Baarsma, P. Borger, M. Roth, M. Tamm, A.J. Halayko, M. Simoons, A. Prins, D.S. Postma, M. Schmidt, and R. Gosens. 2013. Noncanonical WNT-5A signaling regulates TGF-β-induced extracellular matrix production by airway smooth muscle cells. FASEB Journal 27(4): 1631–1643.CrossRefPubMed
18.
Zurück zum Zitat Xu, L., R.B. Corcoran, J.W. Welsh, D. Pennica, and A.J. Levine. 2000. WISP-1 is a Wnt-1- and β-catenin-responsive oncogene. Genes and Development 14: 585–595.PubMedCentralPubMed Xu, L., R.B. Corcoran, J.W. Welsh, D. Pennica, and A.J. Levine. 2000. WISP-1 is a Wnt-1- and β-catenin-responsive oncogene. Genes and Development 14: 585–595.PubMedCentralPubMed
19.
Zurück zum Zitat Colston, J.T., S.D. de la Rosa, and M. Koehler. 2007. Wnt-induced secreted protein 1 is a prohypertrophic and profibrotic growth factor. Am J Physiol H eart Circ Physiol 293: H1839–H1846.CrossRef Colston, J.T., S.D. de la Rosa, and M. Koehler. 2007. Wnt-induced secreted protein 1 is a prohypertrophic and profibrotic growth factor. Am J Physiol H eart Circ Physiol 293: H1839–H1846.CrossRef
20.
Zurück zum Zitat Jiang, F., C.J. Parsons, and B. Stefanovic. 2006. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. Journal of Hepatology 45: 401–409.CrossRefPubMed Jiang, F., C.J. Parsons, and B. Stefanovic. 2006. Gene expression profile of quiescent and activated rat hepatic stellate cells implicates Wnt signaling pathway in activation. Journal of Hepatology 45: 401–409.CrossRefPubMed
21.
Zurück zum Zitat Yang, M., X. Zhao, and Y. Liu. 2013. A role for WNT1-inducible signaling protein-1 in airway remodeling in a rat asthma model. International Immunopharmacology 17(2): 350–357.CrossRefPubMed Yang, M., X. Zhao, and Y. Liu. 2013. A role for WNT1-inducible signaling protein-1 in airway remodeling in a rat asthma model. International Immunopharmacology 17(2): 350–357.CrossRefPubMed
22.
Zurück zum Zitat Reddy, V.S., A.J. Valente, and P. Delafontaine. 2011. Interleukin-18/WNT1-inducible signaling pathway protein-1 signaling mediates human saphenous vein smooth muscle cell proliferation. Journal of Cellular Physiology 226(12): 3303–3315.PubMedCentralCrossRefPubMed Reddy, V.S., A.J. Valente, and P. Delafontaine. 2011. Interleukin-18/WNT1-inducible signaling pathway protein-1 signaling mediates human saphenous vein smooth muscle cell proliferation. Journal of Cellular Physiology 226(12): 3303–3315.PubMedCentralCrossRefPubMed
23.
Zurück zum Zitat Katoh, M., and M. Katoh. 2006. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biology and Therapy 5(9): 1059–1064.CrossRefPubMed Katoh, M., and M. Katoh. 2006. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades. Cancer Biology and Therapy 5(9): 1059–1064.CrossRefPubMed
24.
Zurück zum Zitat Deng, H., G.A. Dokshin, J. Lei, A.M. Goldsmith, and K.N. Bitar. 2008. Inhibition of glycogen synthase kinase-3beta is sufficient for airway smooth muscle hypertrophy. Journal of Biological Chemistry 283(15): 10198–10207.PubMedCentralCrossRefPubMed Deng, H., G.A. Dokshin, J. Lei, A.M. Goldsmith, and K.N. Bitar. 2008. Inhibition of glycogen synthase kinase-3beta is sufficient for airway smooth muscle hypertrophy. Journal of Biological Chemistry 283(15): 10198–10207.PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Oenema, T.A., M. Smit, L. Smedinga, K. Racké, A.J. Halayko, H. Meurs, and R. Gosens. 2012. Muscarinic receptor stimulation augments TGF-β1-induced contractile protein expression by airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 303(7): L589–L597.CrossRefPubMed Oenema, T.A., M. Smit, L. Smedinga, K. Racké, A.J. Halayko, H. Meurs, and R. Gosens. 2012. Muscarinic receptor stimulation augments TGF-β1-induced contractile protein expression by airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 303(7): L589–L597.CrossRefPubMed
26.
Zurück zum Zitat Baarsma, H.A., M.H. Menzen, A.J. Halayko, H. Meurs, H.A. Kerstjens, and R. Gosens. 2011. Beta-catenin signaling is required for TGF-β1-induced extracellular matrix production by airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 301(6): L956–L965.CrossRefPubMed Baarsma, H.A., M.H. Menzen, A.J. Halayko, H. Meurs, H.A. Kerstjens, and R. Gosens. 2011. Beta-catenin signaling is required for TGF-β1-induced extracellular matrix production by airway smooth muscle cells. American Journal of Physiology. Lung Cellular and Molecular Physiology 301(6): L956–L965.CrossRefPubMed
27.
Zurück zum Zitat National Research Council. 1996. Guide for the care and use of laboratory animals, 21–55. Washington, DC: National Academy Press. National Research Council. 1996. Guide for the care and use of laboratory animals, 21–55. Washington, DC: National Academy Press.
28.
Zurück zum Zitat Nabe, T., C.L. Zindl, Y.W. Jung, R. Stephens, and A. Sakamoto. 2005. Induction of a late asthmatic response associated with airway inflammation in mice. European Journal of Pharmacology 521: 144–155.CrossRefPubMed Nabe, T., C.L. Zindl, Y.W. Jung, R. Stephens, and A. Sakamoto. 2005. Induction of a late asthmatic response associated with airway inflammation in mice. European Journal of Pharmacology 521: 144–155.CrossRefPubMed
29.
Zurück zum Zitat Ho, W., and A. Furst. 1973. Intratracheal instillation method for mouse lungs. Oncology 27: 385–393.CrossRefPubMed Ho, W., and A. Furst. 1973. Intratracheal instillation method for mouse lungs. Oncology 27: 385–393.CrossRefPubMed
30.
Zurück zum Zitat Königshoff, M., M. Kramer, and N. Balsara. 2009. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. Journal of Clinical Investigation 119(4): 772–787.PubMedCentralPubMed Königshoff, M., M. Kramer, and N. Balsara. 2009. WNT1-inducible signaling protein-1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. Journal of Clinical Investigation 119(4): 772–787.PubMedCentralPubMed
31.
Zurück zum Zitat Cho, J.Y., M. Miller, K.J. Baek, J.W. Han, J. Nayar, and S.Y. Lee. 2004. Inhibition of airway remodeling in IL-5-deficient mice. Journal of Clinical Investigation 113(4): 551–560.PubMedCentralCrossRefPubMed Cho, J.Y., M. Miller, K.J. Baek, J.W. Han, J. Nayar, and S.Y. Lee. 2004. Inhibition of airway remodeling in IL-5-deficient mice. Journal of Clinical Investigation 113(4): 551–560.PubMedCentralCrossRefPubMed
32.
Zurück zum Zitat Qiao, Chong, W. Chunhui, Z. Jiao, L. Caixia, and S. Tao. 2012. Elevated expression of KiSS-1 in placenta of Chinese women with early-onset preeclampsia. PLoS One 7(11), e48937.PubMedCentralCrossRefPubMed Qiao, Chong, W. Chunhui, Z. Jiao, L. Caixia, and S. Tao. 2012. Elevated expression of KiSS-1 in placenta of Chinese women with early-onset preeclampsia. PLoS One 7(11), e48937.PubMedCentralCrossRefPubMed
33.
Zurück zum Zitat Nabe, T., T. Morishita, K. Matsuya, A. Ikedo, M. Fujii, N. Mizutani, and S. Yoshino. 2011. Complete dependence on CD4+ cells in late asthmatic response, but limited contribution of the cells to airway remodeling in sensitized mice. Journal of Pharmacological Sciences 116(4): 373–383.CrossRefPubMed Nabe, T., T. Morishita, K. Matsuya, A. Ikedo, M. Fujii, N. Mizutani, and S. Yoshino. 2011. Complete dependence on CD4+ cells in late asthmatic response, but limited contribution of the cells to airway remodeling in sensitized mice. Journal of Pharmacological Sciences 116(4): 373–383.CrossRefPubMed
34.
Zurück zum Zitat Bogard, A.S., C. Xu, and R.S. Ostrom. 2011. Human bronchial smooth muscle cells express adenylyl cyclase isoforms 2, 4, and 6 in distinct membrane microdomains. Journal of Pharmacology and Experimental Therapeutics 337(1): 209–217.PubMedCentralCrossRefPubMed Bogard, A.S., C. Xu, and R.S. Ostrom. 2011. Human bronchial smooth muscle cells express adenylyl cyclase isoforms 2, 4, and 6 in distinct membrane microdomains. Journal of Pharmacology and Experimental Therapeutics 337(1): 209–217.PubMedCentralCrossRefPubMed
35.
Zurück zum Zitat Cui, X.L., A.M. Schlesier, E.L. Fisher, C. Cerqueira, and R.P. Ferraris. 2005. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. American Journal of Physiology. Gastrointestinal and Liver Physiology 288: G1310–G1320.CrossRefPubMed Cui, X.L., A.M. Schlesier, E.L. Fisher, C. Cerqueira, and R.P. Ferraris. 2005. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. American Journal of Physiology. Gastrointestinal and Liver Physiology 288: G1310–G1320.CrossRefPubMed
36.
Zurück zum Zitat Kierbel, A., A. Gassama-Diagne, K. Mostov, and J. Engel. 2005. The phosphoinositol-3-kinase-protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK internalization. Molecular Biology of the Cell 16: 2577–2585.PubMedCentralCrossRefPubMed Kierbel, A., A. Gassama-Diagne, K. Mostov, and J. Engel. 2005. The phosphoinositol-3-kinase-protein kinase B/Akt pathway is critical for Pseudomonas aeruginosa strain PAK internalization. Molecular Biology of the Cell 16: 2577–2585.PubMedCentralCrossRefPubMed
37.
Zurück zum Zitat Kozikowski, A.P., H. Sun, J. Brognard, and P.A. Dennis. 2003. Novel PI analogues selectively block activation of the pro-survival serine/threonine kinase Akt. Journal of the American Chemical Society 125: 1144–1145.CrossRefPubMed Kozikowski, A.P., H. Sun, J. Brognard, and P.A. Dennis. 2003. Novel PI analogues selectively block activation of the pro-survival serine/threonine kinase Akt. Journal of the American Chemical Society 125: 1144–1145.CrossRefPubMed
38.
Zurück zum Zitat Chandrasekar, B., S. Mummidi, W.C. Claycomb, and R. Mestril. 2005. Interleukin-18 is a prohypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. Journal of Biological Chemistry 280(6): 4553–4567.CrossRefPubMed Chandrasekar, B., S. Mummidi, W.C. Claycomb, and R. Mestril. 2005. Interleukin-18 is a prohypertrophic cytokine that acts through a phosphatidylinositol 3-kinase-phosphoinositide-dependent kinase-1-Akt-GATA4 signaling pathway in cardiomyocytes. Journal of Biological Chemistry 280(6): 4553–4567.CrossRefPubMed
39.
Zurück zum Zitat Goncharova, E.A., D.A. Goncharov, and V.P. Krymskaya. 2006. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration. Nature Protocols 1: 2933–2939.CrossRefPubMed Goncharova, E.A., D.A. Goncharov, and V.P. Krymskaya. 2006. Assays for in vitro monitoring of human airway smooth muscle (ASM) and human pulmonary arterial vascular smooth muscle (VSM) cell migration. Nature Protocols 1: 2933–2939.CrossRefPubMed
40.
Zurück zum Zitat Zhang, J., L. Shan, L. Koussih, N.S. Redhu, A.J. Halayko, J. Chakir, and A.S. Gounni. 2012. Pentraxin 3 (PTX3) expression in allergic asthmatic airways: role in airway smooth muscle migration and chemokine production. PLoS One 7(4), e34965.PubMedCentralCrossRefPubMed Zhang, J., L. Shan, L. Koussih, N.S. Redhu, A.J. Halayko, J. Chakir, and A.S. Gounni. 2012. Pentraxin 3 (PTX3) expression in allergic asthmatic airways: role in airway smooth muscle migration and chemokine production. PLoS One 7(4), e34965.PubMedCentralCrossRefPubMed
41.
Zurück zum Zitat Balachandar, V., D. Sumanth, K.V. Prabhu, and M. Srinivas. 2010. WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cellular Signalling 22(5): 809–820.CrossRef Balachandar, V., D. Sumanth, K.V. Prabhu, and M. Srinivas. 2010. WNT1-inducible signaling pathway protein-1 activates diverse cell survival pathways and blocks doxorubicin-induced cardiomyocyte death. Cellular Signalling 22(5): 809–820.CrossRef
42.
Zurück zum Zitat Jude, J.A., K.G. Tirumurugaan, B.N. Kang, R.A. Panettieri, T.F. Walseth, and M.S. Kannan. 2012. Regulation of CD38 expression in human airway smooth muscle cells: role of class I phosphatidylinositol 3 kinases. American Journal of Respiratory Cell and Molecular Biology 47(4): 427–435.PubMedCentralCrossRefPubMed Jude, J.A., K.G. Tirumurugaan, B.N. Kang, R.A. Panettieri, T.F. Walseth, and M.S. Kannan. 2012. Regulation of CD38 expression in human airway smooth muscle cells: role of class I phosphatidylinositol 3 kinases. American Journal of Respiratory Cell and Molecular Biology 47(4): 427–435.PubMedCentralCrossRefPubMed
43.
Zurück zum Zitat Bentley, J.K., H. Deng, M.J. Linn, J. Lei, G.A. Dokshin, D.C. Fingar, K.N. Bitar, W.R. Henderson Jr., and M.B. Hershenson. 2009. Airway smooth muscle hyperplasia and hypertrophy correlate with glycogen synthase kinase-3(β) phosphorylation in a mouse model of asthma. American Journal of Physiology. Lung Cellular and Molecular Physiology 296(2): L176–L184.PubMedCentralCrossRefPubMed Bentley, J.K., H. Deng, M.J. Linn, J. Lei, G.A. Dokshin, D.C. Fingar, K.N. Bitar, W.R. Henderson Jr., and M.B. Hershenson. 2009. Airway smooth muscle hyperplasia and hypertrophy correlate with glycogen synthase kinase-3(β) phosphorylation in a mouse model of asthma. American Journal of Physiology. Lung Cellular and Molecular Physiology 296(2): L176–L184.PubMedCentralCrossRefPubMed
44.
Zurück zum Zitat Mohamed, J.S., M.A. Lopez, and A.M. Boriek. 2010. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. Journal of Biological Chemistry 285(38): 29336–29347.PubMedCentralCrossRefPubMed Mohamed, J.S., M.A. Lopez, and A.M. Boriek. 2010. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. Journal of Biological Chemistry 285(38): 29336–29347.PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat Clifford, R.L., K. Deacon, and A.J. Knox. 2008. Novel regulation of vascular endothelial growth factor-a (Vegfa) by transforming growth factor (Beta)1: requirement for Smads, (beta)-catenin, and Gsk(beta). Journal of Biological Chemistry 283(51): 35337–35353.CrossRefPubMed Clifford, R.L., K. Deacon, and A.J. Knox. 2008. Novel regulation of vascular endothelial growth factor-a (Vegfa) by transforming growth factor (Beta)1: requirement for Smads, (beta)-catenin, and Gsk(beta). Journal of Biological Chemistry 283(51): 35337–35353.CrossRefPubMed
46.
Zurück zum Zitat Cheon, S.S., P. Nadesan, R. Poon, and B.A. Alman. 2004. Growth factors regulate beta-catenin-mediated Tcf-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Experimental Cell Research 293(2): 267–274.CrossRefPubMed Cheon, S.S., P. Nadesan, R. Poon, and B.A. Alman. 2004. Growth factors regulate beta-catenin-mediated Tcf-dependent transcriptional activation in fibroblasts during the proliferative phase of wound healing. Experimental Cell Research 293(2): 267–274.CrossRefPubMed
47.
Zurück zum Zitat Venkatachalam, K., B. Venkatesan, A.J. Valente, P.C. Melby, S. Nandish, J.E. Reusch, R.A. Clark, and B. Chandrasekar. 2009. WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-alpha (TNF-alpha)-stimulated cardiac fibroblast proliferation but inhibits TNF-alpha-induced cardiomyocyte death. Journal of Biological Chemistry 284(21): 14414–14427.PubMedCentralCrossRefPubMed Venkatachalam, K., B. Venkatesan, A.J. Valente, P.C. Melby, S. Nandish, J.E. Reusch, R.A. Clark, and B. Chandrasekar. 2009. WISP1, a pro-mitogenic, pro-survival factor, mediates tumor necrosis factor-alpha (TNF-alpha)-stimulated cardiac fibroblast proliferation but inhibits TNF-alpha-induced cardiomyocyte death. Journal of Biological Chemistry 284(21): 14414–14427.PubMedCentralCrossRefPubMed
48.
Zurück zum Zitat Sunita, S., T. Kelan, and C. Vincent. 2010. A role for Wnt signaling genes in the pathogenesis of impaired lung function in asthma. American Journal of Respiratory and Critical Care Medicine 181: 328–336.CrossRef Sunita, S., T. Kelan, and C. Vincent. 2010. A role for Wnt signaling genes in the pathogenesis of impaired lung function in asthma. American Journal of Respiratory and Critical Care Medicine 181: 328–336.CrossRef
49.
Zurück zum Zitat Broide, David H. 2008. Immunologic and inflammatory mechanisms that drive asthma progression to remodeling. Journal of Allergy and Clinical Immunology 121(3): 560–572.PubMedCentralCrossRefPubMed Broide, David H. 2008. Immunologic and inflammatory mechanisms that drive asthma progression to remodeling. Journal of Allergy and Clinical Immunology 121(3): 560–572.PubMedCentralCrossRefPubMed
50.
Zurück zum Zitat Murphy, J., R. Summer, and A. Fine. 2008. Stem cells in airway smooth muscle: state of the art. Proceedings of the American Thoracic Society 5(1): 11–14.PubMedCentralCrossRefPubMed Murphy, J., R. Summer, and A. Fine. 2008. Stem cells in airway smooth muscle: state of the art. Proceedings of the American Thoracic Society 5(1): 11–14.PubMedCentralCrossRefPubMed
51.
Zurück zum Zitat Yu, F., X. Zhao, C. Li, Y. Li, Y. Yan, and L. Shi. 2012. Airway stem cells: review of potential impact on understanding of upper airway diseases. Laryngoscope 122(7): 1463–1469.CrossRefPubMed Yu, F., X. Zhao, C. Li, Y. Li, Y. Yan, and L. Shi. 2012. Airway stem cells: review of potential impact on understanding of upper airway diseases. Laryngoscope 122(7): 1463–1469.CrossRefPubMed
52.
Zurück zum Zitat Damera, G., K.M. Druey, P.R. Cooper, V.P. Krymskaya, R.J. Soberman, Y. Amrani, and T. Hoshi. 2012. An RGS4-mediated phenotypic switch of bronchial smooth muscle cells promotes fixed airway obstruction in asthma. PLoS One 7(1), e28504.PubMedCentralCrossRefPubMed Damera, G., K.M. Druey, P.R. Cooper, V.P. Krymskaya, R.J. Soberman, Y. Amrani, and T. Hoshi. 2012. An RGS4-mediated phenotypic switch of bronchial smooth muscle cells promotes fixed airway obstruction in asthma. PLoS One 7(1), e28504.PubMedCentralCrossRefPubMed
53.
Zurück zum Zitat Panettieri Jr., R.A., R. Covar, and E. Grant. 2008. Natural history of asthma: persistence versus progression—does the beginning predict the end? Journal of Allergy and Clinical Immunology 121: 607–613.CrossRefPubMed Panettieri Jr., R.A., R. Covar, and E. Grant. 2008. Natural history of asthma: persistence versus progression—does the beginning predict the end? Journal of Allergy and Clinical Immunology 121: 607–613.CrossRefPubMed
54.
Zurück zum Zitat Bergmann, C., A. Akhmetshina, C. Dees, K. Palumbo, P. Zerr, C. Beyer, and J. Zwerina. 2011. Inhibition of glycogen synthase kinase 3β induces dermal fibrosis by activation of the canonical Wnt pathway. Annals of the Rheumatic Diseases 70(12): 2191–2198.CrossRefPubMed Bergmann, C., A. Akhmetshina, C. Dees, K. Palumbo, P. Zerr, C. Beyer, and J. Zwerina. 2011. Inhibition of glycogen synthase kinase 3β induces dermal fibrosis by activation of the canonical Wnt pathway. Annals of the Rheumatic Diseases 70(12): 2191–2198.CrossRefPubMed
55.
Zurück zum Zitat Rahmani, M., J.T. Read, J.M. Carthy, P.C. McDonald, and B.W. Wong. 2005. Regulation of the versican promoter by the β-catenin-T-cell factor complex in vascular smooth muscle cells. Journal of Biological Chemistry 280: 13019–13028.CrossRefPubMed Rahmani, M., J.T. Read, J.M. Carthy, P.C. McDonald, and B.W. Wong. 2005. Regulation of the versican promoter by the β-catenin-T-cell factor complex in vascular smooth muscle cells. Journal of Biological Chemistry 280: 13019–13028.CrossRefPubMed
56.
Zurück zum Zitat Halayko, A.J., T. Tran, S.Y. Ji, A. Yamasaki, and R. Gosens. 2006. Airway smooth muscle phenotype and function: interactions with current asthma therapies. Current Drug Targets 7(5): 525–540.CrossRefPubMed Halayko, A.J., T. Tran, S.Y. Ji, A. Yamasaki, and R. Gosens. 2006. Airway smooth muscle phenotype and function: interactions with current asthma therapies. Current Drug Targets 7(5): 525–540.CrossRefPubMed
57.
Zurück zum Zitat Li, H.Y., Q.G. Zhang, J.W. Chen, S.Q. Chen, and S.Y. Chen. 2013. The fibrotic role of phosphatidylinositol-3-kinase/Akt pathway in injured skeletal muscle after acute contusion. International Journal of Sports Medicine 34(9): 789–794.CrossRefPubMed Li, H.Y., Q.G. Zhang, J.W. Chen, S.Q. Chen, and S.Y. Chen. 2013. The fibrotic role of phosphatidylinositol-3-kinase/Akt pathway in injured skeletal muscle after acute contusion. International Journal of Sports Medicine 34(9): 789–794.CrossRefPubMed
58.
Zurück zum Zitat Yi, J.Y., I. Shin, and C.L. Arteaga. 2005. Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-Kinase. Journal of Biological Chemistry 280: 10870–10876.CrossRefPubMed Yi, J.Y., I. Shin, and C.L. Arteaga. 2005. Type I transforming growth factor beta receptor binds to and activates phosphatidylinositol 3-Kinase. Journal of Biological Chemistry 280: 10870–10876.CrossRefPubMed
59.
Zurück zum Zitat Moir, L.M., T. Trian, Q. Ge, and P.R. Shepherd. 2011. Phosphatidylinositol 3-kinase isoform-specific effects in airway mesenchymal cell function. Journal of Pharmacology and Experimental Therapeutics 337: 557–566.CrossRefPubMed Moir, L.M., T. Trian, Q. Ge, and P.R. Shepherd. 2011. Phosphatidylinositol 3-kinase isoform-specific effects in airway mesenchymal cell function. Journal of Pharmacology and Experimental Therapeutics 337: 557–566.CrossRefPubMed
60.
Zurück zum Zitat Wang, S., Z.Z. Chong, Y.C. Shang, and K. Maiese. 2012. Wnt1 inducible signaling pathway protein 1 (WISP1) blocks neurodegeneration through phosphoinositide 3 kinase/Akt1 and apoptotic mitochondrial signaling involving Bad, Bax, Bim, and Bcl-xL. Current Neurovascular Research 9(1): 20–31.PubMedCentralCrossRefPubMed Wang, S., Z.Z. Chong, Y.C. Shang, and K. Maiese. 2012. Wnt1 inducible signaling pathway protein 1 (WISP1) blocks neurodegeneration through phosphoinositide 3 kinase/Akt1 and apoptotic mitochondrial signaling involving Bad, Bax, Bim, and Bcl-xL. Current Neurovascular Research 9(1): 20–31.PubMedCentralCrossRefPubMed
Metadaten
Titel
Functional Effects of WNT1-Inducible Signaling Pathway Protein-1 on Bronchial Smooth Muscle Cell Migration and Proliferation in OVA-Induced Airway Remodeling
verfasst von
Mingjin Yang
Yuejun Du
Zhibo Xu
Youfan Jiang
Publikationsdatum
01.02.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-015-0218-x

Weitere Artikel der Ausgabe 1/2016

Inflammation 1/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.