Skip to main content
Erschienen in: Inflammation 6/2016

02.09.2016 | ORIGINAL ARTICLE

Contributory Anti-Inflammatory Effects of Mesenchymal Stem Cells, Not Conditioned Media, On Ovalbumin-Induced Asthmatic Changes in Male Rats

verfasst von: Mahdi Ahmadi, Reza Rahbarghazi, Sina Soltani, Mohammad Reza Aslani, Rana Keyhanmanesh

Erschienen in: Inflammation | Ausgabe 6/2016

Einloggen, um Zugang zu erhalten

ABSTRACT

Our aim in selecting an appropriate cell fraction and conditioned media (CM) was to achieve the suitable candidate for ameliorating long-term chronic asthmatic changes of respiratory tract. Thirty-six rats were classified into healthy and sensitized groups, which were further divided into three subgroups; rats received systemically 50 μl volume of PBS, CM, or 2 × 106 rat bone marrow-derived mesenchymal stem cells (rBMMSCs). Tracheal responsiveness (TR), immunologic responses, and recruitment of rBMMSCs into the lungs were evaluated. A high degree of TR and total WBC and percentages of eosinophils and neutrophils was significantly recorded in all sensitized groups rather than of controls (p < 0.001 to p < 0.05). Concurrently, a significant improvement of TR and eosinophil and neutrophil return toward normal levels was evident in sensitized rats receiving cells as compared to parallel asthmatic animals. Flow cytometric monitoring of lymphocyte subpopulation revealed a decrease in the number of CD3+CD4+ and concurrent increase in CD3+CD8+ in all sensitized rats as compared to control (p < 0.001 to p < 0.05). Noticeably, no significant modulatory effects of either cell or CM administration were achieved on the CD3+CD4+ and CD3+CD8+ populations in non-asthmatic rats. Corroborating our results, the number of CD3+CD4+ tended to increase (p < 0.05) which coincided with a decreased manner of CD3+CD8+ populations as compared to other asthmatic groups (p < 0.01 to p < 0.05). Moreover, stem cells could efficiently transmigrate to the lung parenchyma, albeit the dynamic of asthmatic changes stimulated the rate of recruited cells. Our study shed light on superior effects of mesenchymal stem cells, but not CM, in attenuating chronic asthmatic changes in the model of rat.
Literatur
1.
Zurück zum Zitat Campos, H.D.S., and A.C.M. Lemos. 2009. Asthma and COPD according to the pulmonologist. Jornal Brasileiro de Pneumologia 35(4): 301–309.CrossRef Campos, H.D.S., and A.C.M. Lemos. 2009. Asthma and COPD according to the pulmonologist. Jornal Brasileiro de Pneumologia 35(4): 301–309.CrossRef
2.
Zurück zum Zitat Neamati, A., M.H. Boskabady, N. Mahdavi-Shahri, and M. Mahmoudabady. 2013. The preventive effect of Brassica napus L. oil on pathophysiological changes of respiratory system in experimental asthmatic rat. Avicenna Journal of Phytomedicine 3(1): 56.PubMedPubMedCentral Neamati, A., M.H. Boskabady, N. Mahdavi-Shahri, and M. Mahmoudabady. 2013. The preventive effect of Brassica napus L. oil on pathophysiological changes of respiratory system in experimental asthmatic rat. Avicenna Journal of Phytomedicine 3(1): 56.PubMedPubMedCentral
3.
Zurück zum Zitat Bloemen, K., S. Verstraelen, R. Van Den Heuvel, H. Witters, I. Nelissen, and G. Schoeters. 2007. The allergic cascade: review of the most important molecules in the asthmatic lung. Immunology Letters 113(1): 6–18.CrossRefPubMed Bloemen, K., S. Verstraelen, R. Van Den Heuvel, H. Witters, I. Nelissen, and G. Schoeters. 2007. The allergic cascade: review of the most important molecules in the asthmatic lung. Immunology Letters 113(1): 6–18.CrossRefPubMed
4.
Zurück zum Zitat Ishmael, F.T. 2011. The inflammatory response in the pathogenesis of asthma. The Journal of the American Osteopathic Association 111(11_suppl_7): S11–S17.PubMed Ishmael, F.T. 2011. The inflammatory response in the pathogenesis of asthma. The Journal of the American Osteopathic Association 111(11_suppl_7): S11–S17.PubMed
5.
Zurück zum Zitat Douglas, G., B. Higgins, N. Barnes, A. Boyter, S. Burge, C. Cates, et al. 2008. British guideline on the management of asthma: a national clinical guideline. Thorax 63(Suppl. 4): iv1–iv121. Douglas, G., B. Higgins, N. Barnes, A. Boyter, S. Burge, C. Cates, et al. 2008. British guideline on the management of asthma: a national clinical guideline. Thorax 63(Suppl. 4): iv1–iv121.
6.
Zurück zum Zitat Bonfield, T.L., M. Koloze, D.P. Lennon, B. Zuchowski, S.E. Yang, and A.I. Caplan. 2010. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. American Journal of Physiology—Lung Cellular and Molecular Physiology 299(6): L760–L770.CrossRefPubMedPubMedCentral Bonfield, T.L., M. Koloze, D.P. Lennon, B. Zuchowski, S.E. Yang, and A.I. Caplan. 2010. Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. American Journal of Physiology—Lung Cellular and Molecular Physiology 299(6): L760–L770.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Rana Keyhanmanesh, L.P., H. Omrani, Z. Mirzamohammadi, and A.A. Shahbazfar. 2014. The effect of single dose of thymoquinone, the main constituents of Nigella sativa, in guinea pig model of asthma. BioImpacts: BI 4(2): 75.PubMedPubMedCentral Rana Keyhanmanesh, L.P., H. Omrani, Z. Mirzamohammadi, and A.A. Shahbazfar. 2014. The effect of single dose of thymoquinone, the main constituents of Nigella sativa, in guinea pig model of asthma. BioImpacts: BI 4(2): 75.PubMedPubMedCentral
8.
Zurück zum Zitat Vosooghi, S., M. Mahmoudabady, A. Neamati, and H. Aghababa. 2013. Preventive effects of hydroalcoholic extract of saffron on hematological parameters of experimental asthmatic rats. Avicenna Journal of Phytomedicine. 3(3): 279.PubMedPubMedCentral Vosooghi, S., M. Mahmoudabady, A. Neamati, and H. Aghababa. 2013. Preventive effects of hydroalcoholic extract of saffron on hematological parameters of experimental asthmatic rats. Avicenna Journal of Phytomedicine. 3(3): 279.PubMedPubMedCentral
9.
Zurück zum Zitat Kavanagh, H., and B. Mahon. 2011. Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy 66(4): 523–531.CrossRefPubMed Kavanagh, H., and B. Mahon. 2011. Allogeneic mesenchymal stem cells prevent allergic airway inflammation by inducing murine regulatory T cells. Allergy 66(4): 523–531.CrossRefPubMed
10.
Zurück zum Zitat Abreu, S.C., M.A. Antunes, T. Maron-Gutierrez, F.F. Cruz, D.S. Ornellas, A.L. Silva, et al. 2013. Bone marrow mononuclear cell therapy in experimental allergic asthma: intratracheal versus intravenous administration. Respiratory Physiology & Neurobiology 185(3): 615–624.CrossRef Abreu, S.C., M.A. Antunes, T. Maron-Gutierrez, F.F. Cruz, D.S. Ornellas, A.L. Silva, et al. 2013. Bone marrow mononuclear cell therapy in experimental allergic asthma: intratracheal versus intravenous administration. Respiratory Physiology & Neurobiology 185(3): 615–624.CrossRef
11.
Zurück zum Zitat Abreu, S.C., M.A. Antunes, J.C. de Castro, M.V. de Oliveira, E. Bandeira, D.S. Ornellas, et al. 2013. Bone marrow-derived mononuclear cells vs. mesenchymal stromal cells in experimental allergic asthma. Respiratory Physiology & Neurobiology 187(2): 190–198.CrossRef Abreu, S.C., M.A. Antunes, J.C. de Castro, M.V. de Oliveira, E. Bandeira, D.S. Ornellas, et al. 2013. Bone marrow-derived mononuclear cells vs. mesenchymal stromal cells in experimental allergic asthma. Respiratory Physiology & Neurobiology 187(2): 190–198.CrossRef
12.
Zurück zum Zitat da Silva Meirelles, L., P.C. Chagastelles, and N.B. Nardi. 2006. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science 119(11): 2204–2213.CrossRefPubMed da Silva Meirelles, L., P.C. Chagastelles, and N.B. Nardi. 2006. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. Journal of Cell Science 119(11): 2204–2213.CrossRefPubMed
13.
Zurück zum Zitat Bydlowski, S.P., A.A. Debes, L.M. Maselli, and F.L. Janz. 2009. Características biológicas das células-tronco mesenquimais. Revista Brasileira de Hematologia e Hemoterapia 31(supl 1): 25–35.CrossRef Bydlowski, S.P., A.A. Debes, L.M. Maselli, and F.L. Janz. 2009. Características biológicas das células-tronco mesenquimais. Revista Brasileira de Hematologia e Hemoterapia 31(supl 1): 25–35.CrossRef
14.
Zurück zum Zitat Goodwin, M., V. Sueblinvong, P. Eisenhauer, N.P. Ziats, L. LeClair, M.E. Poynter, et al. 2011. Bone marrow‐derived mesenchymal stromal cells inhibit Th2‐mediated allergic airways inflammation in mice. Stem Cells 29(7): 1137–1148.CrossRefPubMedPubMedCentral Goodwin, M., V. Sueblinvong, P. Eisenhauer, N.P. Ziats, L. LeClair, M.E. Poynter, et al. 2011. Bone marrow‐derived mesenchymal stromal cells inhibit Th2‐mediated allergic airways inflammation in mice. Stem Cells 29(7): 1137–1148.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Trzil, J.E., I. Masseau, T.L. Webb, C.H. Chang, J.R. Dodam, L.A. Cohn, et al. 2014. Long‐term evaluation of mesenchymal stem cell therapy in a feline model of chronic allergic asthma. Clinical and Experimental Allergy. 44(12): 1546–1557.CrossRefPubMedPubMedCentral Trzil, J.E., I. Masseau, T.L. Webb, C.H. Chang, J.R. Dodam, L.A. Cohn, et al. 2014. Long‐term evaluation of mesenchymal stem cell therapy in a feline model of chronic allergic asthma. Clinical and Experimental Allergy. 44(12): 1546–1557.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Kyurkchiev, D., I. Bochev, E. Ivanova-Todorova, M. Mourdjeva, T. Oreshkova, K. Belemezova, et al. 2014. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World Journal of Stem Cells 6(5): 552.CrossRefPubMedPubMedCentral Kyurkchiev, D., I. Bochev, E. Ivanova-Todorova, M. Mourdjeva, T. Oreshkova, K. Belemezova, et al. 2014. Secretion of immunoregulatory cytokines by mesenchymal stem cells. World Journal of Stem Cells 6(5): 552.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Timmers, L., S.K. Lim, I.E. Hoefer, F. Arslan, R.C. Lai, A.A. van Oorschot, et al. 2011. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Research 6(3): 206–214.CrossRefPubMed Timmers, L., S.K. Lim, I.E. Hoefer, F. Arslan, R.C. Lai, A.A. van Oorschot, et al. 2011. Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Research 6(3): 206–214.CrossRefPubMed
18.
Zurück zum Zitat Rahbarghazi, R., S.M. Nassiri, P. Khazraiinia, A.-M. Kajbafzadeh, S.H. Ahmadi, E. Mohammadi, et al. 2012. Juxtacrine and paracrine interactions of rat marrow-derived mesenchymal stem cells, muscle-derived satellite cells, and neonatal cardiomyocytes with endothelial cells in angiogenesis dynamics. Stem Cells and Development 22(6): 855–865.CrossRefPubMedPubMedCentral Rahbarghazi, R., S.M. Nassiri, P. Khazraiinia, A.-M. Kajbafzadeh, S.H. Ahmadi, E. Mohammadi, et al. 2012. Juxtacrine and paracrine interactions of rat marrow-derived mesenchymal stem cells, muscle-derived satellite cells, and neonatal cardiomyocytes with endothelial cells in angiogenesis dynamics. Stem Cells and Development 22(6): 855–865.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Rahbarghazi, R., S.M. Nassiri, S.H. Ahmadi, E. Mohammadi, S. Rabbani, A. Araghi, et al. 2014. Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction. International Journal of Cardiology 173(3): 453–466.CrossRefPubMed Rahbarghazi, R., S.M. Nassiri, S.H. Ahmadi, E. Mohammadi, S. Rabbani, A. Araghi, et al. 2014. Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction. International Journal of Cardiology 173(3): 453–466.CrossRefPubMed
20.
Zurück zum Zitat Mao, Q., C.-X. Lin, X.-L. Liang, J.-S. Gao, and B. Xu. 2013. Mesenchymal stem cells overexpressing integrin-linked kinase attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. Molecular Medicine Reports 7(5): 1617–1623.PubMed Mao, Q., C.-X. Lin, X.-L. Liang, J.-S. Gao, and B. Xu. 2013. Mesenchymal stem cells overexpressing integrin-linked kinase attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. Molecular Medicine Reports 7(5): 1617–1623.PubMed
21.
Zurück zum Zitat Schuster, M., T. Tschernig, N. Krug, and R. Pabst. 2000. Lymphocytes migrate from the blood into the bronchoalveolar lavage and lung parenchyma in the asthma model of the brown Norway rat. American Journal of Respiratory and Critical Care Medicine 161(2): 558–566.CrossRefPubMed Schuster, M., T. Tschernig, N. Krug, and R. Pabst. 2000. Lymphocytes migrate from the blood into the bronchoalveolar lavage and lung parenchyma in the asthma model of the brown Norway rat. American Journal of Respiratory and Critical Care Medicine 161(2): 558–566.CrossRefPubMed
22.
Zurück zum Zitat Khazdair, M.R., M.H. Boskabady, A. Tabatabaee, M. Hosseini, and M. Abbasnejad. 2013. Effect of inhaled fluticasone and salmeterol on tracheal responsiveness and lung inflammation: influence of administration time and allergen-free period. Indian Journal of Medical Sciences 67(3): 78.CrossRefPubMed Khazdair, M.R., M.H. Boskabady, A. Tabatabaee, M. Hosseini, and M. Abbasnejad. 2013. Effect of inhaled fluticasone and salmeterol on tracheal responsiveness and lung inflammation: influence of administration time and allergen-free period. Indian Journal of Medical Sciences 67(3): 78.CrossRefPubMed
23.
Zurück zum Zitat Gholamnezhad Z, Boskabady MH, Khazdair MR, Hosseini M, Abbasnejad M. 2014. Effect of fluticasone and salmeterol on tracheal responsiveness to ovalbumin and lung inflammation, administrated during and after sensitization. The Scientific World Journal. 2014. Gholamnezhad Z, Boskabady MH, Khazdair MR, Hosseini M, Abbasnejad M. 2014. Effect of fluticasone and salmeterol on tracheal responsiveness to ovalbumin and lung inflammation, administrated during and after sensitization. The Scientific World Journal. 2014.
24.
Zurück zum Zitat Hajighahramani, S., and N. Vesal. 2007. Evaluation of several drug combinations for intraperitoneal anaesthesia in adult male rats. Iranian Journal of Veterinary Research. 8(2): 106–115. Hajighahramani, S., and N. Vesal. 2007. Evaluation of several drug combinations for intraperitoneal anaesthesia in adult male rats. Iranian Journal of Veterinary Research. 8(2): 106–115.
25.
Zurück zum Zitat Chang, Y.-N., C.-H. Wang, C.-C. Wu, and H.-W. Wang. 2012. Effects of bupivacaine on the isolated rat tracheal smooth muscle. Journal of Experimental and Clinical Medicine 4(1): 62–65.CrossRef Chang, Y.-N., C.-H. Wang, C.-C. Wu, and H.-W. Wang. 2012. Effects of bupivacaine on the isolated rat tracheal smooth muscle. Journal of Experimental and Clinical Medicine 4(1): 62–65.CrossRef
26.
Zurück zum Zitat Keyhanmanesh, R., H. Bagban, H. Nazemiyeh, F.M. Bavil, M.R. Alipour, and M. Ahmady. 2013. The relaxant effects of different methanolic fractions of Nigella sativa on guinea pig tracheal chains. Iranian Journal of Basic Medical Sciences 16(2): 123.PubMedPubMedCentral Keyhanmanesh, R., H. Bagban, H. Nazemiyeh, F.M. Bavil, M.R. Alipour, and M. Ahmady. 2013. The relaxant effects of different methanolic fractions of Nigella sativa on guinea pig tracheal chains. Iranian Journal of Basic Medical Sciences 16(2): 123.PubMedPubMedCentral
27.
Zurück zum Zitat Boskabady, M.H., R. Keyhanmanesh, S. Khamneh, and M.A. Ebrahimi. 2011. The effect of Nigella sativa extract on tracheal responsiveness and lung inflammation in ovalbumin-sensitized guinea pigs. Clinics 66(5): 879–887.CrossRefPubMedPubMedCentral Boskabady, M.H., R. Keyhanmanesh, S. Khamneh, and M.A. Ebrahimi. 2011. The effect of Nigella sativa extract on tracheal responsiveness and lung inflammation in ovalbumin-sensitized guinea pigs. Clinics 66(5): 879–887.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Mahmoudabady, M., A. Neamati, S. Vosooghi, and H. Aghababa. 2013. Hydroalcoholic extract of Crocus sativus effects on bronchial inflammatory cells in ovalbumin sensitized rats. Avicenna Journal of Phytomedicine. 3(4): 356–363.PubMedPubMedCentral Mahmoudabady, M., A. Neamati, S. Vosooghi, and H. Aghababa. 2013. Hydroalcoholic extract of Crocus sativus effects on bronchial inflammatory cells in ovalbumin sensitized rats. Avicenna Journal of Phytomedicine. 3(4): 356–363.PubMedPubMedCentral
29.
Zurück zum Zitat Kucharewicz, I., I. Kasacka, D. Pawlak, A. Tankiewicz-Kwedlo, B. Mroczko, W. Buczko, et al. 2008. The concentration of kynurenine in rat model of asthma. Folia Histochemica et Cytobiologica 46(2): 199–8.CrossRefPubMed Kucharewicz, I., I. Kasacka, D. Pawlak, A. Tankiewicz-Kwedlo, B. Mroczko, W. Buczko, et al. 2008. The concentration of kynurenine in rat model of asthma. Folia Histochemica et Cytobiologica 46(2): 199–8.CrossRefPubMed
30.
Zurück zum Zitat Pejman, L., H. Omrani, Z. Mirzamohammadi, A.A. Shahbazfar, M. Khalili, and R. Keyhanmanesh. 2014. The effect of adenosine A2A and A2B antagonists on tracheal responsiveness, serum levels of cytokines and lung inflammation in guinea pig model of asthma. Advanced Pharmaceutical Bulletin 4(2): 131.PubMed Pejman, L., H. Omrani, Z. Mirzamohammadi, A.A. Shahbazfar, M. Khalili, and R. Keyhanmanesh. 2014. The effect of adenosine A2A and A2B antagonists on tracheal responsiveness, serum levels of cytokines and lung inflammation in guinea pig model of asthma. Advanced Pharmaceutical Bulletin 4(2): 131.PubMed
31.
Zurück zum Zitat Bayrami, G., and M. Boskabady. 2012. The potential effect of the extract of Crocus sativus and safranal on the total and differential white blood cells of ovalbumin-sensitized guinea pigs. Research in Pharmaceutical Sciences 7(4): 249.PubMedPubMedCentral Bayrami, G., and M. Boskabady. 2012. The potential effect of the extract of Crocus sativus and safranal on the total and differential white blood cells of ovalbumin-sensitized guinea pigs. Research in Pharmaceutical Sciences 7(4): 249.PubMedPubMedCentral
32.
Zurück zum Zitat Nemeth, K., A. Keane-Myers, J.M. Brown, D.D. Metcalfe, J.D. Gorham, V.G. Bundoc, et al. 2010. Bone marrow stromal cells use TGF-β to suppress allergic responses in a mouse model of ragweed-induced asthma. Proceedings of the National Academy of Sciences 107(12): 5652–5657.CrossRef Nemeth, K., A. Keane-Myers, J.M. Brown, D.D. Metcalfe, J.D. Gorham, V.G. Bundoc, et al. 2010. Bone marrow stromal cells use TGF-β to suppress allergic responses in a mouse model of ragweed-induced asthma. Proceedings of the National Academy of Sciences 107(12): 5652–5657.CrossRef
33.
Zurück zum Zitat Zhao, M.M., J.Z. Cui, Y. Cui, R. Li, Y.X. Tian, S.X. Song, et al. 2013. Therapeutic effect of exogenous bone marrow-derived mesenchymal stem cell transplantation on silicosis via paracrine mechanisms in rats. Molecular Medicine Reports 8(3): 741–746.PubMed Zhao, M.M., J.Z. Cui, Y. Cui, R. Li, Y.X. Tian, S.X. Song, et al. 2013. Therapeutic effect of exogenous bone marrow-derived mesenchymal stem cell transplantation on silicosis via paracrine mechanisms in rats. Molecular Medicine Reports 8(3): 741–746.PubMed
34.
Zurück zum Zitat Rangwala, R., R. Leone, Y.C. Chang, L.A. Fecher, L.M. Schuchter, A. Kramer, et al. 2014. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10(8): 1369–1379.CrossRefPubMedPubMedCentral Rangwala, R., R. Leone, Y.C. Chang, L.A. Fecher, L.M. Schuchter, A. Kramer, et al. 2014. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy 10(8): 1369–1379.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Gallina, C., V. Turinetto, and C. Giachino. 2015. A new paradigm in cardiac regeneration: the mesenchymal stem cell secretome. Stem Cells International 2015(765846): 765846.PubMedPubMedCentral Gallina, C., V. Turinetto, and C. Giachino. 2015. A new paradigm in cardiac regeneration: the mesenchymal stem cell secretome. Stem Cells International 2015(765846): 765846.PubMedPubMedCentral
36.
Zurück zum Zitat Cantinieaux, D., R. Quertainmont, S. Blacher, L. Rossi, T. Wanet, A. Noël, et al. 2013. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PloS One 8(8): e69515.CrossRefPubMedPubMedCentral Cantinieaux, D., R. Quertainmont, S. Blacher, L. Rossi, T. Wanet, A. Noël, et al. 2013. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation. PloS One 8(8): e69515.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Linero, I., and O. Chaparro. 2014. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PloS One 9(9): e107001.CrossRefPubMedPubMedCentral Linero, I., and O. Chaparro. 2014. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration. PloS One 9(9): e107001.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Ghorbani, A., A. Feizpour, M. Hashemzahi, L. Gholami, M. Hosseini, M. Soukhtanloo, et al. 2014. The effect of adipose derived stromal cells on oxidative stress level, lung emphysema and white blood cells of guinea pigs model of chronic obstructive pulmonary disease. Daru 22(1): 22–26.CrossRef Ghorbani, A., A. Feizpour, M. Hashemzahi, L. Gholami, M. Hosseini, M. Soukhtanloo, et al. 2014. The effect of adipose derived stromal cells on oxidative stress level, lung emphysema and white blood cells of guinea pigs model of chronic obstructive pulmonary disease. Daru 22(1): 22–26.CrossRef
39.
Zurück zum Zitat Schweitzer, K.S., B.H. Johnstone, J. Garrison, N.I. Rush, S. Cooper, D.O. Traktuev, et al. 2011. Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. American Journal of Respiratory and Critical Care Medicine 183(2): 215–225.CrossRefPubMed Schweitzer, K.S., B.H. Johnstone, J. Garrison, N.I. Rush, S. Cooper, D.O. Traktuev, et al. 2011. Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. American Journal of Respiratory and Critical Care Medicine 183(2): 215–225.CrossRefPubMed
40.
Zurück zum Zitat Herzog, E.L., J. Van Arnam, B. Hu, and D.S. Krause. 2006. Threshold of lung injury required for the appearance of marrow‐derived lung epithelia. Stem Cells 24(8): 1986–1992.CrossRefPubMed Herzog, E.L., J. Van Arnam, B. Hu, and D.S. Krause. 2006. Threshold of lung injury required for the appearance of marrow‐derived lung epithelia. Stem Cells 24(8): 1986–1992.CrossRefPubMed
41.
Zurück zum Zitat Abe, S., C. Boyer, X. Liu, F.Q. Wen, T. Kobayashi, Q. Fang, et al. 2004. Cells derived from the circulation contribute to the repair of lung injury. American Journal of Respiratory and Critical Care Medicine 170(11): 1158–1163.CrossRefPubMed Abe, S., C. Boyer, X. Liu, F.Q. Wen, T. Kobayashi, Q. Fang, et al. 2004. Cells derived from the circulation contribute to the repair of lung injury. American Journal of Respiratory and Critical Care Medicine 170(11): 1158–1163.CrossRefPubMed
42.
Zurück zum Zitat Lee, R.H., A.A. Pulin, M.J. Seo, D.J. Kota, J. Ylostalo, B.L. Larson, et al. 2009. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1): 54–63.CrossRefPubMedPubMedCentral Lee, R.H., A.A. Pulin, M.J. Seo, D.J. Kota, J. Ylostalo, B.L. Larson, et al. 2009. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 5(1): 54–63.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Shigemura, N., M. Okumura, S. Mizuno, Y. Imanishi, T. Nakamura, and Y. Sawa. 2006. Autologous transplantation of adipose tissue‐derived stromal cells ameliorates pulmonary emphysema. American Journal of Transplantation 6(11): 2592–2600.CrossRefPubMed Shigemura, N., M. Okumura, S. Mizuno, Y. Imanishi, T. Nakamura, and Y. Sawa. 2006. Autologous transplantation of adipose tissue‐derived stromal cells ameliorates pulmonary emphysema. American Journal of Transplantation 6(11): 2592–2600.CrossRefPubMed
44.
Zurück zum Zitat Ishizawa, K., H. Kubo, M. Yamada, S. Kobayashi, M. Numasaki, S. Ueda, et al. 2004. Bone marrow-derived cells contribute to lung regeneration after elastase-induced pulmonary emphysema. FEBS Letters 556(1): 249–252.CrossRefPubMed Ishizawa, K., H. Kubo, M. Yamada, S. Kobayashi, M. Numasaki, S. Ueda, et al. 2004. Bone marrow-derived cells contribute to lung regeneration after elastase-induced pulmonary emphysema. FEBS Letters 556(1): 249–252.CrossRefPubMed
45.
Zurück zum Zitat Luan, Y., X. Zhang, F. Kong, G.-H. Cheng, T.-G. Qi, and Z.-H. Zhang. 2012. Mesenchymal stem cell prevention of vascular remodeling in high flow-induced pulmonary hypertension through a paracrine mechanism. International Immunopharmacology 14(4): 432–437.CrossRefPubMed Luan, Y., X. Zhang, F. Kong, G.-H. Cheng, T.-G. Qi, and Z.-H. Zhang. 2012. Mesenchymal stem cell prevention of vascular remodeling in high flow-induced pulmonary hypertension through a paracrine mechanism. International Immunopharmacology 14(4): 432–437.CrossRefPubMed
46.
Zurück zum Zitat Ionescu, L., R.N. Byrne, T. van Haaften, A. Vadivel, R.S. Alphonse, G.J. Rey-Parra, et al. 2012. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. American Journal of Physiology—Lung Cellular and Molecular Physiology 303(11): L967–L977.CrossRefPubMedPubMedCentral Ionescu, L., R.N. Byrne, T. van Haaften, A. Vadivel, R.S. Alphonse, G.J. Rey-Parra, et al. 2012. Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. American Journal of Physiology—Lung Cellular and Molecular Physiology 303(11): L967–L977.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Conese M, Piro D, Carbone A, Castellani S, Di Gioia S. 2014. Hematopoietic and mesenchymal stem cells for the treatment of chronic respiratory diseases: role of plasticity and heterogeneity. The Scientific World Journal. 2014. Conese M, Piro D, Carbone A, Castellani S, Di Gioia S. 2014. Hematopoietic and mesenchymal stem cells for the treatment of chronic respiratory diseases: role of plasticity and heterogeneity. The Scientific World Journal. 2014.
Metadaten
Titel
Contributory Anti-Inflammatory Effects of Mesenchymal Stem Cells, Not Conditioned Media, On Ovalbumin-Induced Asthmatic Changes in Male Rats
verfasst von
Mahdi Ahmadi
Reza Rahbarghazi
Sina Soltani
Mohammad Reza Aslani
Rana Keyhanmanesh
Publikationsdatum
02.09.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0431-2

Weitere Artikel der Ausgabe 6/2016

Inflammation 6/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.