Skip to main content
Erschienen in: Inflammation 5/2017

21.06.2017 | ORIGINAL ARTICLE

Paeoniflorin Suppressed High Glucose-Induced Retinal Microglia MMP-9 Expression and Inflammatory Response via Inhibition of TLR4/NF-κB Pathway Through Upregulation of SOCS3 in Diabetic Retinopathy

verfasst von: Su-Hua Zhu, Bing-Qian Liu, Mao-Juan Hao, Yi-Xin Fan, Cheng Qian, Peng Teng, Xiao-Wei Zhou, Liang Hu, Wen-Tao Liu, Zhi-Lan Yuan, Qing-Ping Li

Erschienen in: Inflammation | Ausgabe 5/2017

Einloggen, um Zugang zu erhalten

Abstract

Diabetic retinopathy (DR) is a serious-threatening complication of diabetes and urgently needed to be treated. Evidence has accumulated indicating that microglia inflammation within the retina plays a critical role in DR. Microglial matrix metalloproteinase 9 (MMP-9) has an important role in the destruction of the integrity of the blood-retinal barrier (BRB) associated with the development of DR. MMP-9 was also considered important for regulating inflammatory responses. Paeoniflorin, a monoterpene glucoside, has a potent immunomodulatory effect on microglia. We hypothesized that paeoniflorin could significantly suppress microglial MMP-9 activation induced by high glucose and further relieve DR. BV2 cells were used to investigate the effects and mechanism of paeoniflorin. The activation of MMP-9 was measured by gelatin zymography. Cell signaling was measured by western blot assay and immunofluorescence assay. High glucose increased the activation of MMP-9 in BV2 cells, which was abolished by HMGB1, TLR4, p38 MAPK, and NF-κB inhibition. Phosphorylation of p38 MAPK induced by high glucose was decreased by TLR4 inhibition in BV2 cells. Paeoniflorin induced suppressor of cytokine signaling 3 (SOCS3) expression and reduced MMP-9 activation in BV2 cells. The effect of paeoniflorin on SOCS3 was abolished by the TLR4 inhibitor. In streptozotocin (STZ)-induced diabetes mice, paeoniflorin induced SOCS3 expression and reduced MMP-9 activation. Paeoniflorin suppressed STZ-induced IBA-1 and IL-1β expression and decreased STZ-induced high blood glucose level. In conclusion, paeoniflorin suppressed high glucose-induced retinal microglia MMP-9 expression and inflammatory response via inhibition of the TLR4/NF-κB pathway through upregulation of SOCS3 in diabetic retinopathy.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Thomas, R.L., F. Dunstan, S.D. Luzio, S. Roy Chowdury, S.L. Hale, R.V. North, et al. 2012. Incidence of diabetic retinopathy in people with type 2 diabetes mellitus attending the Diabetic Retinopathy Screening Service for Wales: Retrospective analysis. BMJ 344: e874.CrossRefPubMedPubMedCentral Thomas, R.L., F. Dunstan, S.D. Luzio, S. Roy Chowdury, S.L. Hale, R.V. North, et al. 2012. Incidence of diabetic retinopathy in people with type 2 diabetes mellitus attending the Diabetic Retinopathy Screening Service for Wales: Retrospective analysis. BMJ 344: e874.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Park, Y.G., and Y.J. Roh. 2016. New diagnostic and therapeutic approaches for preventing the progression of diabetic retinopathy. J Diabetes Res. 2016: 1753584.PubMed Park, Y.G., and Y.J. Roh. 2016. New diagnostic and therapeutic approaches for preventing the progression of diabetic retinopathy. J Diabetes Res. 2016: 1753584.PubMed
3.
Zurück zum Zitat Cardona, S.M., A.S. Mendiola, Y.C. Yang, S.L. Adkins, V. Torres, and A.E. Cardona. 2015. Disruption of fractalkine signaling leads to microglial activation and neuronal damage in the diabetic retina. ASN Neuro 7: 1759091415608204.CrossRefPubMedPubMedCentral Cardona, S.M., A.S. Mendiola, Y.C. Yang, S.L. Adkins, V. Torres, and A.E. Cardona. 2015. Disruption of fractalkine signaling leads to microglial activation and neuronal damage in the diabetic retina. ASN Neuro 7: 1759091415608204.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Ibrahim, A.S., A.B. El-Remessy, S. Matragoon, W. Zhang, Y. Patel, S. Khan, et al. 2011. Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes. Diabetes 60: 1122–1133.CrossRefPubMedPubMedCentral Ibrahim, A.S., A.B. El-Remessy, S. Matragoon, W. Zhang, Y. Patel, S. Khan, et al. 2011. Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes. Diabetes 60: 1122–1133.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Arnold, T., and C. Betsholtz. 2013. Correction: The importance of microglia in the development of the vasculature in the central nervous system. Vascular cell. 5: 12.CrossRefPubMedPubMedCentral Arnold, T., and C. Betsholtz. 2013. Correction: The importance of microglia in the development of the vasculature in the central nervous system. Vascular cell. 5: 12.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Portillo, J.C., Y.L. Corcino, Y. Miao, J. Tang, N. Sheibani, T.S. Kern, et al. 2016. Cd40 in retinal Muller cells induces P2X7-dependent cytokine expression in macrophages/microglia in diabetic mice and development of early experimental diabetic retinopathy. Diabetes 66: 483–493.CrossRefPubMed Portillo, J.C., Y.L. Corcino, Y. Miao, J. Tang, N. Sheibani, T.S. Kern, et al. 2016. Cd40 in retinal Muller cells induces P2X7-dependent cytokine expression in macrophages/microglia in diabetic mice and development of early experimental diabetic retinopathy. Diabetes 66: 483–493.CrossRefPubMed
7.
Zurück zum Zitat Abcouwer, S.F. 2011. Neural inflammation and the microglial response in diabetic retinopathy. Journal of ocular biology, diseases, and informatics. 4: 25–33.CrossRefPubMed Abcouwer, S.F. 2011. Neural inflammation and the microglial response in diabetic retinopathy. Journal of ocular biology, diseases, and informatics. 4: 25–33.CrossRefPubMed
8.
Zurück zum Zitat Nissinen, L., and V.M. Kahari. 1840. Matrix metalloproteinases in inflammation. Biochimica et Biophysica Acta 2014: 2571–2580. Nissinen, L., and V.M. Kahari. 1840. Matrix metalloproteinases in inflammation. Biochimica et Biophysica Acta 2014: 2571–2580.
10.
Zurück zum Zitat Rangasamy, S., P.G. McGuire, C. Franco Nitta, F. Monickaraj, S.R. Oruganti, and A. Das. 2014. Chemokine mediated monocyte trafficking into the retina: Role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy. PloS One 9: e108508.CrossRefPubMedPubMedCentral Rangasamy, S., P.G. McGuire, C. Franco Nitta, F. Monickaraj, S.R. Oruganti, and A. Das. 2014. Chemokine mediated monocyte trafficking into the retina: Role of inflammation in alteration of the blood-retinal barrier in diabetic retinopathy. PloS One 9: e108508.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Kowluru, R.A., Q. Zhong, and J.M. Santos. 2012. Matrix metalloproteinases in diabetic retinopathy: Potential role of MMP-9. Expert Opin Inv Drug. 21: 797–805.CrossRef Kowluru, R.A., Q. Zhong, and J.M. Santos. 2012. Matrix metalloproteinases in diabetic retinopathy: Potential role of MMP-9. Expert Opin Inv Drug. 21: 797–805.CrossRef
12.
Zurück zum Zitat Rodrigues, M., X. Xin, K. Jee, S. Babapoor-Farrokhran, F. Kashiwabuchi, T. Ma, et al. 2013. VEGF secreted by hypoxic Muller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes 62: 3863–3873.CrossRefPubMedPubMedCentral Rodrigues, M., X. Xin, K. Jee, S. Babapoor-Farrokhran, F. Kashiwabuchi, T. Ma, et al. 2013. VEGF secreted by hypoxic Muller cells induces MMP-2 expression and activity in endothelial cells to promote retinal neovascularization in proliferative diabetic retinopathy. Diabetes 62: 3863–3873.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Qin, H., W.I. Yeh, P. De Sarno, A.T. Holdbrooks, Y. Liu, M.T. Muldowney, et al. 2012. Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America 109: 5004–5009.CrossRefPubMedPubMedCentral Qin, H., W.I. Yeh, P. De Sarno, A.T. Holdbrooks, Y. Liu, M.T. Muldowney, et al. 2012. Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proceedings of the National Academy of Sciences of the United States of America 109: 5004–5009.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Goldmann, T., and M. Prinz. 2013. Role of microglia in CNS autoimmunity. Clinical & Developmental Immunology 2013: 208093.CrossRef Goldmann, T., and M. Prinz. 2013. Role of microglia in CNS autoimmunity. Clinical & Developmental Immunology 2013: 208093.CrossRef
15.
Zurück zum Zitat Yan, C., P.A. Ward, X. Wang, and H. Gao. 2013. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein delta pathway. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 27: 2967–2976.CrossRef Yan, C., P.A. Ward, X. Wang, and H. Gao. 2013. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein delta pathway. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 27: 2967–2976.CrossRef
16.
Zurück zum Zitat Zhang, W., and S.M. Dai. 2012. Mechanisms involved in the therapeutic effects of Paeonia lactiflora Pallas in rheumatoid arthritis. International Immunopharmacology 14: 27–31.CrossRefPubMed Zhang, W., and S.M. Dai. 2012. Mechanisms involved in the therapeutic effects of Paeonia lactiflora Pallas in rheumatoid arthritis. International Immunopharmacology 14: 27–31.CrossRefPubMed
17.
Zurück zum Zitat Zheng, Y.Q., W. Wei, L. Zhu, and J.X. Liu. 2007. Effects and mechanisms of Paeoniflorin, a bioactive glucoside from paeony root, on adjuvant arthritis in rats. Inflammation research : official journal of the European Histamine Research Society 56: 182–188.CrossRef Zheng, Y.Q., W. Wei, L. Zhu, and J.X. Liu. 2007. Effects and mechanisms of Paeoniflorin, a bioactive glucoside from paeony root, on adjuvant arthritis in rats. Inflammation research : official journal of the European Histamine Research Society 56: 182–188.CrossRef
18.
Zurück zum Zitat Jiang, F., Y. Zhao, J. Wang, S. Wei, Z. Wei, R. Li, et al. 2012. Comparative pharmacokinetic study of paeoniflorin and albiflorin after oral administration of radix paeoniae rubra in normal rats and the acute cholestasis hepatitis rats. Fitoterapia 83: 415–421.CrossRefPubMed Jiang, F., Y. Zhao, J. Wang, S. Wei, Z. Wei, R. Li, et al. 2012. Comparative pharmacokinetic study of paeoniflorin and albiflorin after oral administration of radix paeoniae rubra in normal rats and the acute cholestasis hepatitis rats. Fitoterapia 83: 415–421.CrossRefPubMed
19.
Zurück zum Zitat Shi, D., Q. Wang, H. Zheng, D. Li, Y. Shen, H. Fu, et al. 2016. Paeoniflorin suppresses IL-6/Stat3 pathway via upregulation of Socs3 in dendritic cells in response to 1-chloro-2,4-dinitrobenze. International Immunopharmacology 38: 45–53.CrossRefPubMed Shi, D., Q. Wang, H. Zheng, D. Li, Y. Shen, H. Fu, et al. 2016. Paeoniflorin suppresses IL-6/Stat3 pathway via upregulation of Socs3 in dendritic cells in response to 1-chloro-2,4-dinitrobenze. International Immunopharmacology 38: 45–53.CrossRefPubMed
20.
Zurück zum Zitat Iwahara, N., S. Hisahara, J. Kawamata, A. Matsumura, K. Yokokawa, T. Saito, et al. 2016. Role of suppressor of cytokine signaling 3 (SOCS3) in altering activated microglia phenotype in APPswe/PS1dE9 mice. Journal of Alzheimer's disease : JAD 55 (3): 1235–1247.CrossRef Iwahara, N., S. Hisahara, J. Kawamata, A. Matsumura, K. Yokokawa, T. Saito, et al. 2016. Role of suppressor of cytokine signaling 3 (SOCS3) in altering activated microglia phenotype in APPswe/PS1dE9 mice. Journal of Alzheimer's disease : JAD 55 (3): 1235–1247.CrossRef
21.
Zurück zum Zitat Jiang, C., L. Xu, L. Chen, et al. 2014. Selective suppression of microglial activation by paeoniflorin attenuates morphine tolerance. European Journal of Pain 19 (7): 908.CrossRefPubMed Jiang, C., L. Xu, L. Chen, et al. 2014. Selective suppression of microglial activation by paeoniflorin attenuates morphine tolerance. European Journal of Pain 19 (7): 908.CrossRefPubMed
22.
Zurück zum Zitat van Beijnum, J.R., W.A. Buurman, and A.W. Griffioen. 2008. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11: 91–99.CrossRefPubMed van Beijnum, J.R., W.A. Buurman, and A.W. Griffioen. 2008. Convergence and amplification of toll-like receptor (TLR) and receptor for advanced glycation end products (RAGE) signaling pathways via high mobility group B1 (HMGB1). Angiogenesis 11: 91–99.CrossRefPubMed
23.
Zurück zum Zitat Yang, N., H. Cui, F. Han, L. Zhang, T. Huang, Y. Zhou, et al. 2016. Paeoniflorin inhibits human pancreatic cancer cell apoptosis via suppression of MMP-9 and ERK signaling. Oncology Letters 12: 1471–1476.PubMedPubMedCentral Yang, N., H. Cui, F. Han, L. Zhang, T. Huang, Y. Zhou, et al. 2016. Paeoniflorin inhibits human pancreatic cancer cell apoptosis via suppression of MMP-9 and ERK signaling. Oncology Letters 12: 1471–1476.PubMedPubMedCentral
24.
Zurück zum Zitat Rivera, J.C., N. Sitaras, B. Noueihed, D. Hamel, A. Madaan, T. Zhou, et al. 2013. Microglia and interleukin-1beta in ischemic retinopathy elicit microvascular degeneration through neuronal semaphorin-3A. Arteriosclerosis, Thrombosis, and Vascular Biology 33: 1881–1891.CrossRefPubMed Rivera, J.C., N. Sitaras, B. Noueihed, D. Hamel, A. Madaan, T. Zhou, et al. 2013. Microglia and interleukin-1beta in ischemic retinopathy elicit microvascular degeneration through neuronal semaphorin-3A. Arteriosclerosis, Thrombosis, and Vascular Biology 33: 1881–1891.CrossRefPubMed
25.
Zurück zum Zitat Du, Y., A. Veenstra, K. Palczewski, and T.S. Kern. 2013. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proceedings of the National Academy of Sciences of the United States of America 110: 16586–16591.CrossRefPubMedPubMedCentral Du, Y., A. Veenstra, K. Palczewski, and T.S. Kern. 2013. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and local inflammation in the retina. Proceedings of the National Academy of Sciences of the United States of America 110: 16586–16591.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Yamagishi, S., N. Nakamura, M. Suematsu, K. Kaseda, and T. Matsui. 2015. Advanced glycation end products: A molecular target for vascular complications in diabetes. Molecular Medicine 21 (Suppl 1): S32–S40.CrossRefPubMedPubMedCentral Yamagishi, S., N. Nakamura, M. Suematsu, K. Kaseda, and T. Matsui. 2015. Advanced glycation end products: A molecular target for vascular complications in diabetes. Molecular Medicine 21 (Suppl 1): S32–S40.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Bandello, F., R. Lattanzio, I. Zucchiatti, and C. Del Turco. 2013. Pathophysiology and treatment of diabetic retinopathy. Acta Diabetologica 50: 1–20.CrossRefPubMed Bandello, F., R. Lattanzio, I. Zucchiatti, and C. Del Turco. 2013. Pathophysiology and treatment of diabetic retinopathy. Acta Diabetologica 50: 1–20.CrossRefPubMed
28.
Zurück zum Zitat Bressler, S.B., M. Melia, A.R. Glassman, T. Almukhtar, L.M. Jampol, M. Shami, et al. 2015. Ranibizumab plus prompt or deferred laser for diabetic macular edema in eyes with vitrectomy before anti-vascular endothelial growth factor therapy. Retina 35: 2516–2528.CrossRefPubMedPubMedCentral Bressler, S.B., M. Melia, A.R. Glassman, T. Almukhtar, L.M. Jampol, M. Shami, et al. 2015. Ranibizumab plus prompt or deferred laser for diabetic macular edema in eyes with vitrectomy before anti-vascular endothelial growth factor therapy. Retina 35: 2516–2528.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Kim, H. 2005. Neuroprotective herbs for stroke therapy in traditional eastern medicine. Neurological Research 27: 287–301.CrossRefPubMed Kim, H. 2005. Neuroprotective herbs for stroke therapy in traditional eastern medicine. Neurological Research 27: 287–301.CrossRefPubMed
30.
Zurück zum Zitat Gu, X., Z. Cai, M. Cai, K. Liu, D. Liu, Q. Zhang, et al. 2016. Protective effect of paeoniflorin on inflammation and apoptosis in the cerebral cortex of atransgenic mouse model of alzheimer's disease. Molecular Medicine Reports 13: 2247–2252.CrossRefPubMed Gu, X., Z. Cai, M. Cai, K. Liu, D. Liu, Q. Zhang, et al. 2016. Protective effect of paeoniflorin on inflammation and apoptosis in the cerebral cortex of atransgenic mouse model of alzheimer's disease. Molecular Medicine Reports 13: 2247–2252.CrossRefPubMed
31.
Zurück zum Zitat Guo, R.B., G.F. Wang, A.P. Zhao, J. Gu, X.L. Sun, and G. Hu. 2012. Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-kappab-mediated inflammatory responses. PloS One 7: e49701.CrossRefPubMedPubMedCentral Guo, R.B., G.F. Wang, A.P. Zhao, J. Gu, X.L. Sun, and G. Hu. 2012. Paeoniflorin protects against ischemia-induced brain damages in rats via inhibiting MAPKs/NF-kappab-mediated inflammatory responses. PloS One 7: e49701.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Zhang, J., W. Dou, E. Zhang, A. Sun, L. Ding, X. Wei, et al. 2014. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. Am J Physiol-Gastr L. 306: G27–G36. Zhang, J., W. Dou, E. Zhang, A. Sun, L. Ding, X. Wei, et al. 2014. Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway. Am J Physiol-Gastr L. 306: G27–G36.
33.
Zurück zum Zitat Liu, H., J. Wang, J. Wang, P. Wang, and Y. Xue. 2015. Paeoniflorin attenuates Abeta1-42-induced inflammation and chemotaxis of microglia in vitro and inhibits NF-kappab- and VEGF/Flt-1 signaling pathways. Brain Research 1618: 149–158.CrossRefPubMed Liu, H., J. Wang, J. Wang, P. Wang, and Y. Xue. 2015. Paeoniflorin attenuates Abeta1-42-induced inflammation and chemotaxis of microglia in vitro and inhibits NF-kappab- and VEGF/Flt-1 signaling pathways. Brain Research 1618: 149–158.CrossRefPubMed
34.
Zurück zum Zitat Jiang, C., L. Xu, L. Chen, Y. Han, J. Tang, Y. Yang, et al. 2015. Selective suppression of microglial activation by paeoniflorin attenuates morphine tolerance. European Journal of Pain 19: 908–919.CrossRefPubMed Jiang, C., L. Xu, L. Chen, Y. Han, J. Tang, Y. Yang, et al. 2015. Selective suppression of microglial activation by paeoniflorin attenuates morphine tolerance. European Journal of Pain 19: 908–919.CrossRefPubMed
35.
Zurück zum Zitat Krady, J.K., A. Basu, C.M. Allen, Y. Xu, K.F. LaNoue, T.W. Gardner, et al. 2005. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54: 1559–1565.CrossRefPubMed Krady, J.K., A. Basu, C.M. Allen, Y. Xu, K.F. LaNoue, T.W. Gardner, et al. 2005. Minocycline reduces proinflammatory cytokine expression, microglial activation, and caspase-3 activation in a rodent model of diabetic retinopathy. Diabetes 54: 1559–1565.CrossRefPubMed
36.
Zurück zum Zitat Lee, H.S., J.H. Jun, E.H. Jung, B.A. Koo, and Y.S. Kim. 2014. Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation. Molecules 19: 12150–12172.CrossRefPubMed Lee, H.S., J.H. Jun, E.H. Jung, B.A. Koo, and Y.S. Kim. 2014. Epigalloccatechin-3-gallate inhibits ocular neovascularization and vascular permeability in human retinal pigment epithelial and human retinal microvascular endothelial cells via suppression of MMP-9 and VEGF activation. Molecules 19: 12150–12172.CrossRefPubMed
37.
Zurück zum Zitat Giebel, S.J., G. Menicucci, P.G. McGuire, and A. Das. 2005. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab invest: a journal of technical methods and pathology 85: 597–607.CrossRef Giebel, S.J., G. Menicucci, P.G. McGuire, and A. Das. 2005. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood-retinal barrier. Lab invest: a journal of technical methods and pathology 85: 597–607.CrossRef
38.
Zurück zum Zitat Navaratna, D., P.G. McGuire, G. Menicucci, and A. Das. 2007. Proteolytic degradation of ve-cadherin alters the blood-retinal barrier in diabetes. Diabetes 56: 2380–2387.CrossRefPubMed Navaratna, D., P.G. McGuire, G. Menicucci, and A. Das. 2007. Proteolytic degradation of ve-cadherin alters the blood-retinal barrier in diabetes. Diabetes 56: 2380–2387.CrossRefPubMed
39.
Zurück zum Zitat Bhatt, L.K., and V. Addepalli. 2010. Attenuation of diabetic retinopathy by enhanced inhibition of MMP-2 and MMP-9 using aspirin and minocycline in streptozotocin-diabetic rats. American Journal of Translational Research 2: 181–189.PubMedPubMedCentral Bhatt, L.K., and V. Addepalli. 2010. Attenuation of diabetic retinopathy by enhanced inhibition of MMP-2 and MMP-9 using aspirin and minocycline in streptozotocin-diabetic rats. American Journal of Translational Research 2: 181–189.PubMedPubMedCentral
40.
Zurück zum Zitat Lin, M., W.H. Yiu, H.J. Wu, L.Y. Chan, J.C. Leung, W.S. Au, et al. 2012. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J Am Soc Nephrol: JASN. 23: 86–102.CrossRefPubMed Lin, M., W.H. Yiu, H.J. Wu, L.Y. Chan, J.C. Leung, W.S. Au, et al. 2012. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J Am Soc Nephrol: JASN. 23: 86–102.CrossRefPubMed
41.
Zurück zum Zitat Chen, X.L., X.D. Zhang, Y.Y. Li, X.M. Chen, D.R. Tang, and R.J. Ran. 2013. Involvement of HMGB1 mediated signalling pathway in diabetic retinopathy: Evidence from type 2 diabetic rats and ARPE-19 cells under diabetic condition. Brit J Ophthalmol. 97: 1598–1603.CrossRef Chen, X.L., X.D. Zhang, Y.Y. Li, X.M. Chen, D.R. Tang, and R.J. Ran. 2013. Involvement of HMGB1 mediated signalling pathway in diabetic retinopathy: Evidence from type 2 diabetic rats and ARPE-19 cells under diabetic condition. Brit J Ophthalmol. 97: 1598–1603.CrossRef
42.
Zurück zum Zitat Kubo, M., T. Hanada, and A. Yoshimura. 2003. Suppressors of cytokine signaling and immunity. Nature Immunology 4: 1169–1176.CrossRefPubMed Kubo, M., T. Hanada, and A. Yoshimura. 2003. Suppressors of cytokine signaling and immunity. Nature Immunology 4: 1169–1176.CrossRefPubMed
43.
Zurück zum Zitat Yoshimura, A., T. Naka, and M. Kubo. 2007. Socs proteins, cytokine signalling and immune regulation. Nature Reviews. Immunology 7: 454–465.CrossRefPubMed Yoshimura, A., T. Naka, and M. Kubo. 2007. Socs proteins, cytokine signalling and immune regulation. Nature Reviews. Immunology 7: 454–465.CrossRefPubMed
44.
Zurück zum Zitat Yan, C., P.A. Ward, X. Wang, and H. Gao. 2013. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein δ pathway. The FASEB Journal 27: 2967–2976.CrossRefPubMedPubMedCentral Yan, C., P.A. Ward, X. Wang, and H. Gao. 2013. Myeloid depletion of SOCS3 enhances LPS-induced acute lung injury through CCAAT/enhancer binding protein δ pathway. The FASEB Journal 27: 2967–2976.CrossRefPubMedPubMedCentral
Metadaten
Titel
Paeoniflorin Suppressed High Glucose-Induced Retinal Microglia MMP-9 Expression and Inflammatory Response via Inhibition of TLR4/NF-κB Pathway Through Upregulation of SOCS3 in Diabetic Retinopathy
verfasst von
Su-Hua Zhu
Bing-Qian Liu
Mao-Juan Hao
Yi-Xin Fan
Cheng Qian
Peng Teng
Xiao-Wei Zhou
Liang Hu
Wen-Tao Liu
Zhi-Lan Yuan
Qing-Ping Li
Publikationsdatum
21.06.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0571-z

Weitere Artikel der Ausgabe 5/2017

Inflammation 5/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.