Skip to main content
Erschienen in: Inflammation 4/2017

06.05.2017 | ORIGINAL ARTICLE

Anti-inflammatory Effects of Valproic Acid in a Rat Model of Renal Ischemia/Reperfusion Injury: Alteration in Cytokine Profile

verfasst von: Mohammad Ali Amirzargar, Faramarz Yaghubi, Mohammad Hosseinipanah, Mohammad Jafari, Mona Pourjafar, Mahsa Rezaeepoor, Hamzeh Rezaei, Godratollah Roshanaei, Mehrdad Hajilooi, Ghasem Solgi

Erschienen in: Inflammation | Ausgabe 4/2017

Einloggen, um Zugang zu erhalten

Abstract

Valporic acid (VPA) has been implicated to have anti-inflammatory and anti-oxidant activities in several ischemic/reperfusion (I/R) injury models. This study intended to evaluate whether VPA could affect the inflammatory/anti-inflammatory cytokines balance and severity of renal I/R injury in rat. I/R injury was induced in two groups of animals, vehicle normal saline and VPA-treated (IP injection, 150 mg/kg) rats, by 45 min occlusion of both left and right renal arteries followed by 3, 24 and 120 h reperfusion in separate groups. After each time point, kidneys and blood samples were collected for cytokine genes (TNF-α, IL-1β, IL-10 and TGF-β) expression analysis and histological examinations in the kidney tissues. Serum creatinine levels were measured for evaluation of renal function. We observed significantly downregulated mRNA expressions for IL-1β and TNF-α in blood and tissue samples 24 and 120 h post I/R injury in VPA-treated animals compared to control groups (P < 0.0001). On the other hand, mRNA expression levels for IL-10 and TGF-β were significantly increased in the blood samples from VPA-treated animals at two time points after I/R injury (P < 0.0001) and at 120 h in tissue samples (P < 0.001). Histopathology analysis showed downgraded ischemic changes in VPA group compared to sham control. Also, decreased serum creatinine levels were observed in VPA-treated animals particularly 120 h post I/R injury (P < 0.0001) that was correlated with less pathological changes in this group. Our results indicate that VPA can attenuate pro-inflammatory responses and augment the anti-inflammatory condition in favor of faster renal recovery from ischemic changes and improved renal function after renal I/R injury.
Literatur
1.
Zurück zum Zitat Ling, H., H. Chen, M. Wei, X. Meng, Y. Yu, and K. Xie. 2016. The effect of autophagy on inflammation cytokines in renal ischemia/reperfusion injury. Inflammation 39 (1): 347–356.CrossRefPubMed Ling, H., H. Chen, M. Wei, X. Meng, Y. Yu, and K. Xie. 2016. The effect of autophagy on inflammation cytokines in renal ischemia/reperfusion injury. Inflammation 39 (1): 347–356.CrossRefPubMed
2.
Zurück zum Zitat Speir, R.W., J.D. Stallings, J.M. Andrews, M.S. Gelnett, T.C. Brand, and S.K. Salgar. 2015. Effects of valproic acid and dexamethasone administration on early bio-markers and gene expression profile in acute kidney ischemia-reperfusion injury in the rat. PloS One 10 (5): e0126622.CrossRefPubMedPubMedCentral Speir, R.W., J.D. Stallings, J.M. Andrews, M.S. Gelnett, T.C. Brand, and S.K. Salgar. 2015. Effects of valproic acid and dexamethasone administration on early bio-markers and gene expression profile in acute kidney ischemia-reperfusion injury in the rat. PloS One 10 (5): e0126622.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Bonventre, J.V. 1993. Mechanisms of ischemic acute renal failure. Kidney international. 43 (5): 1160–1178.CrossRefPubMed Bonventre, J.V. 1993. Mechanisms of ischemic acute renal failure. Kidney international. 43 (5): 1160–1178.CrossRefPubMed
4.
Zurück zum Zitat Rabb, H., C.C. Mendiola, S.R. Saba, J.R. Dietz, C. Smith, J.V. Bonventre, et al. 1995. Antibodies to ICAM-1 protect kidneys in severe ischemic reperfusion injury. Biochemical and biophysical research communications. 211 (1): 67–73.CrossRefPubMed Rabb, H., C.C. Mendiola, S.R. Saba, J.R. Dietz, C. Smith, J.V. Bonventre, et al. 1995. Antibodies to ICAM-1 protect kidneys in severe ischemic reperfusion injury. Biochemical and biophysical research communications. 211 (1): 67–73.CrossRefPubMed
5.
Zurück zum Zitat Solez, K., E.C. Kramer, J.A. Fox, and R.H. Heptinstall. 1974. Medullary plasma flow and intravascular leukocyte accumulation in acute renal failure. Kidney international. 6 (1): 24–37.CrossRefPubMed Solez, K., E.C. Kramer, J.A. Fox, and R.H. Heptinstall. 1974. Medullary plasma flow and intravascular leukocyte accumulation in acute renal failure. Kidney international. 6 (1): 24–37.CrossRefPubMed
6.
Zurück zum Zitat Donnahoo, K.K., B.D. SHAMES, A.H. HARKEN, and D.R. MELDRUM. 1999. Review article: the role of tumor necrosis factor in renal ischemia-reperfusion injury. The Journal of urology. 162 (1): 196–203.CrossRefPubMed Donnahoo, K.K., B.D. SHAMES, A.H. HARKEN, and D.R. MELDRUM. 1999. Review article: the role of tumor necrosis factor in renal ischemia-reperfusion injury. The Journal of urology. 162 (1): 196–203.CrossRefPubMed
7.
Zurück zum Zitat Sancak, E.B., H. Turkön, S. Çukur, S. Erimsah, A. Akbas, M.T. Gulpinar, et al. 2016. Major ozonated autohemotherapy preconditioning ameliorates kidney ischemia-reperfusion injury. Inflammation 39 (1): 209–217.CrossRefPubMed Sancak, E.B., H. Turkön, S. Çukur, S. Erimsah, A. Akbas, M.T. Gulpinar, et al. 2016. Major ozonated autohemotherapy preconditioning ameliorates kidney ischemia-reperfusion injury. Inflammation 39 (1): 209–217.CrossRefPubMed
8.
Zurück zum Zitat Deng, J., Y. Kohda, H. Chiao, Y. Wang, X. Hu, S.M. Hewitt, et al. 2001. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney international. 60 (6): 2118–2128.CrossRefPubMed Deng, J., Y. Kohda, H. Chiao, Y. Wang, X. Hu, S.M. Hewitt, et al. 2001. Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury. Kidney international. 60 (6): 2118–2128.CrossRefPubMed
9.
Zurück zum Zitat Kim, H.J., M. Rowe, M. Ren, J.-S. Hong, P.-S. Chen, and D.-M. Chuang. 2007. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. Journal of Pharmacology and Experimental Therapeutics. 321 (3): 892–901.CrossRefPubMed Kim, H.J., M. Rowe, M. Ren, J.-S. Hong, P.-S. Chen, and D.-M. Chuang. 2007. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. Journal of Pharmacology and Experimental Therapeutics. 321 (3): 892–901.CrossRefPubMed
10.
Zurück zum Zitat Van Beneden, K., C. Geers, M. Pauwels, I. Mannaerts, D. Verbeelen, L.A. van Grunsven, et al. 2011. Valproic acid attenuates proteinuria and kidney injury. Journal of the American Society of Nephrology. 22 (10): 1863–1875.CrossRefPubMedPubMedCentral Van Beneden, K., C. Geers, M. Pauwels, I. Mannaerts, D. Verbeelen, L.A. van Grunsven, et al. 2011. Valproic acid attenuates proteinuria and kidney injury. Journal of the American Society of Nephrology. 22 (10): 1863–1875.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Göttlicher, M., S. Minucci, P. Zhu, O.H. Krämer, A. Schimpf, S. Giavara, et al. 2001. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO journal. 20 (24): 6969–6978.CrossRefPubMedPubMedCentral Göttlicher, M., S. Minucci, P. Zhu, O.H. Krämer, A. Schimpf, S. Giavara, et al. 2001. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. The EMBO journal. 20 (24): 6969–6978.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Peinnequin, A., C. Mouret, O. Birot, A. Alonso, J. Mathieu, D. Clarençon, et al. 2004. Rat pro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green. BMC immunology. 5 (1): 3.CrossRefPubMedPubMedCentral Peinnequin, A., C. Mouret, O. Birot, A. Alonso, J. Mathieu, D. Clarençon, et al. 2004. Rat pro-inflammatory cytokine and cytokine related mRNA quantification by real-time polymerase chain reaction using SYBR green. BMC immunology. 5 (1): 3.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Pulskens, W.P., G.J. Teske, L.M. Butter, J.J. Roelofs, T. Van Der Poll, S. Florquin, et al. 2008. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PloS One 3 (10): e3596.CrossRefPubMedPubMedCentral Pulskens, W.P., G.J. Teske, L.M. Butter, J.J. Roelofs, T. Van Der Poll, S. Florquin, et al. 2008. Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PloS One 3 (10): e3596.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat M-h, Ji, Li G-m, M. Jia, S.-h. Zhu, D.-p. Gao, Fan Y-x, et al. 2013. Valproic acid attenuates lipopolysaccharide-induced acute lung injury in mice. Inflammation 36 (6): 1453–1459.CrossRef M-h, Ji, Li G-m, M. Jia, S.-h. Zhu, D.-p. Gao, Fan Y-x, et al. 2013. Valproic acid attenuates lipopolysaccharide-induced acute lung injury in mice. Inflammation 36 (6): 1453–1459.CrossRef
15.
Zurück zum Zitat Suda, S., K.-I. Katsura, T. Kanamaru, M. Saito, and Y. Katayama. 2013. Valproic acid attenuates ischemia-reperfusion injury in the rat brain through inhibition of oxidative stress and inflammation. European journal of pharmacology. 707 (1): 26–31.CrossRefPubMed Suda, S., K.-I. Katsura, T. Kanamaru, M. Saito, and Y. Katayama. 2013. Valproic acid attenuates ischemia-reperfusion injury in the rat brain through inhibition of oxidative stress and inflammation. European journal of pharmacology. 707 (1): 26–31.CrossRefPubMed
16.
Zurück zum Zitat Peng, G.-S., G. Li, N.-S. Tzeng, P.-S. Chen, D.-M. Chuang, Y.-D. Hsu, et al. 2005. Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Molecular Brain Research. 134 (1): 162–169.CrossRefPubMed Peng, G.-S., G. Li, N.-S. Tzeng, P.-S. Chen, D.-M. Chuang, Y.-D. Hsu, et al. 2005. Valproate pretreatment protects dopaminergic neurons from LPS-induced neurotoxicity in rat primary midbrain cultures: role of microglia. Molecular Brain Research. 134 (1): 162–169.CrossRefPubMed
17.
Zurück zum Zitat Ichiyama, T., K. Okada, J.M. Lipton, T. Matsubara, T. Hayashi, and S. Furukawa. 2000. Sodium valproate inhibits production of TNF-α and IL-6 and activation of NF-κB. Brain research. 857 (1): 246–251.CrossRefPubMed Ichiyama, T., K. Okada, J.M. Lipton, T. Matsubara, T. Hayashi, and S. Furukawa. 2000. Sodium valproate inhibits production of TNF-α and IL-6 and activation of NF-κB. Brain research. 857 (1): 246–251.CrossRefPubMed
18.
Zurück zum Zitat Li, R., A. Aslan, R. Yan, R.M. Jongman, J. Moser, P.J. Zwiers, et al. 2015. Histone deacetylase inhibition and IκB kinase/nuclear factor-κB blockade ameliorate microvascular proinflammatory responses associated with hemorrhagic shock/resuscitation in mice. Critical care medicine. 43 (12): e567–ee80.CrossRefPubMed Li, R., A. Aslan, R. Yan, R.M. Jongman, J. Moser, P.J. Zwiers, et al. 2015. Histone deacetylase inhibition and IκB kinase/nuclear factor-κB blockade ameliorate microvascular proinflammatory responses associated with hemorrhagic shock/resuscitation in mice. Critical care medicine. 43 (12): e567–ee80.CrossRefPubMed
19.
Zurück zum Zitat Rhodus, N.L., B. Cheng, S. Myers, W. Bowles, V. Ho, and F. Ondrey. 2005. A comparison of the pro-inflammatory, NF-κB-dependent cytokines: TNF-alpha, IL-1-alpha, IL-6, and IL-8 in different oral fluids from oral lichen planus patients. Clinical Immunology. 114 (3): 278–283.CrossRefPubMed Rhodus, N.L., B. Cheng, S. Myers, W. Bowles, V. Ho, and F. Ondrey. 2005. A comparison of the pro-inflammatory, NF-κB-dependent cytokines: TNF-alpha, IL-1-alpha, IL-6, and IL-8 in different oral fluids from oral lichen planus patients. Clinical Immunology. 114 (3): 278–283.CrossRefPubMed
20.
Zurück zum Zitat Haq, M., J. Norman, S.R. Saba, G. Ramirez, and H. Rabb. 1998. Role of IL-1 in renal ischemic reperfusion injury. Journal of the American Society of Nephrology. 9 (4): 614–619.PubMed Haq, M., J. Norman, S.R. Saba, G. Ramirez, and H. Rabb. 1998. Role of IL-1 in renal ischemic reperfusion injury. Journal of the American Society of Nephrology. 9 (4): 614–619.PubMed
21.
Zurück zum Zitat Zhang, Z., X. Qin, X. Zhao, N. Tong, Y. Gong, W. Zhang, et al. 2012. Valproic acid regulates antioxidant enzymes and prevents ischemia/reperfusion injury in the rat retina. Current eye research. 37 (5): 429–437.CrossRefPubMed Zhang, Z., X. Qin, X. Zhao, N. Tong, Y. Gong, W. Zhang, et al. 2012. Valproic acid regulates antioxidant enzymes and prevents ischemia/reperfusion injury in the rat retina. Current eye research. 37 (5): 429–437.CrossRefPubMed
22.
Zurück zum Zitat Kim, K., Y. Li, G. Jin, W. Chong, B. Liu, J. Lu, et al. 2012. Effect of valproic acid on acute lung injury in a rodent model of intestinal ischemia reperfusion. Resuscitation 83 (2): 243–248.CrossRefPubMed Kim, K., Y. Li, G. Jin, W. Chong, B. Liu, J. Lu, et al. 2012. Effect of valproic acid on acute lung injury in a rodent model of intestinal ischemia reperfusion. Resuscitation 83 (2): 243–248.CrossRefPubMed
23.
Zurück zum Zitat Rao, J.S., R.P. Bazinet, S.I. Rapoport, and H.J. Lee. 2007. Chronic treatment of rats with sodium valproate downregulates frontal cortex NF-κB DNA binding activity and COX-2 mRNA1. Bipolar disorders. 9 (5): 513–520.CrossRefPubMed Rao, J.S., R.P. Bazinet, S.I. Rapoport, and H.J. Lee. 2007. Chronic treatment of rats with sodium valproate downregulates frontal cortex NF-κB DNA binding activity and COX-2 mRNA1. Bipolar disorders. 9 (5): 513–520.CrossRefPubMed
24.
Zurück zum Zitat Eppinger, M.J., P.A. Ward, S.F. Bolling, and G.M. Deeb. 1996. Regulatory effects of interleukin-10 on lung ischemia-reperfusion injury. The Journal of thoracic and cardiovascular surgery. 112 (5): 1301–1306.CrossRefPubMed Eppinger, M.J., P.A. Ward, S.F. Bolling, and G.M. Deeb. 1996. Regulatory effects of interleukin-10 on lung ischemia-reperfusion injury. The Journal of thoracic and cardiovascular surgery. 112 (5): 1301–1306.CrossRefPubMed
25.
Zurück zum Zitat Hayward, R., T.O. Nossuli, R. Scalia, and A.M. Lefer. 1997. Cardioprotective effect of interleukin-10 in murine myocardial ischemia-reperfusion. European journal of pharmacology. 334 (2): 157–163.CrossRefPubMed Hayward, R., T.O. Nossuli, R. Scalia, and A.M. Lefer. 1997. Cardioprotective effect of interleukin-10 in murine myocardial ischemia-reperfusion. European journal of pharmacology. 334 (2): 157–163.CrossRefPubMed
26.
Zurück zum Zitat Schneider, T., A. Roman, A. Basta-Kaim, M. Kubera, B. Budziszewska, K. Schneider, et al. 2008. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 33 (6): 728–740.CrossRefPubMed Schneider, T., A. Roman, A. Basta-Kaim, M. Kubera, B. Budziszewska, K. Schneider, et al. 2008. Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology 33 (6): 728–740.CrossRefPubMed
27.
Zurück zum Zitat Dong, X., S. Swaminathan, L. Bachman, A. Croatt, K.A. Nath, and M. Griffin. 2007. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia–reperfusion injury. Kidney international. 71 (7): 619–628.CrossRefPubMed Dong, X., S. Swaminathan, L. Bachman, A. Croatt, K.A. Nath, and M. Griffin. 2007. Resident dendritic cells are the predominant TNF-secreting cell in early renal ischemia–reperfusion injury. Kidney international. 71 (7): 619–628.CrossRefPubMed
28.
Zurück zum Zitat Nencioni, A., J. Beck, D. Werth, F. Grünebach, F. Patrone, A. Ballestrero, et al. 2007. Histone deacetylase inhibitors affect dendritic cell differentiation and immunogenicity. Clinical Cancer Research. 13 (13): 3933–3941.CrossRefPubMed Nencioni, A., J. Beck, D. Werth, F. Grünebach, F. Patrone, A. Ballestrero, et al. 2007. Histone deacetylase inhibitors affect dendritic cell differentiation and immunogenicity. Clinical Cancer Research. 13 (13): 3933–3941.CrossRefPubMed
29.
Zurück zum Zitat Chen, H., D. Li, T. Saldeen, and J.L. Mehta. 2003. TGF-β1 attenuates myocardial ischemia-reperfusion injury via inhibition of upregulation of MMP-1. American Journal of Physiology-Heart and Circulatory Physiology. 284 (5): H1612–H16H7.CrossRefPubMed Chen, H., D. Li, T. Saldeen, and J.L. Mehta. 2003. TGF-β1 attenuates myocardial ischemia-reperfusion injury via inhibition of upregulation of MMP-1. American Journal of Physiology-Heart and Circulatory Physiology. 284 (5): H1612–H16H7.CrossRefPubMed
30.
Zurück zum Zitat Lefer, A.M., X.L. Ma, A.S. Weyrich, and R. Scalia. 1993. Mechanism of the cardioprotective effect of transforming growth factor beta 1 in feline myocardial ischemia and reperfusion. Proceedings of the National Academy of Sciences. 90 (3): 1018–1022.CrossRef Lefer, A.M., X.L. Ma, A.S. Weyrich, and R. Scalia. 1993. Mechanism of the cardioprotective effect of transforming growth factor beta 1 in feline myocardial ischemia and reperfusion. Proceedings of the National Academy of Sciences. 90 (3): 1018–1022.CrossRef
31.
Zurück zum Zitat Basile, D.P., D.R. Martin, and M.R. Hammerman. 1998. Extracellular matrix-related genes in kidney after ischemic injury: potential role for TGF-β in repair. American Journal of Physiology-Renal Physiology. 275 (6): F894–F903. Basile, D.P., D.R. Martin, and M.R. Hammerman. 1998. Extracellular matrix-related genes in kidney after ischemic injury: potential role for TGF-β in repair. American Journal of Physiology-Renal Physiology. 275 (6): F894–F903.
32.
Zurück zum Zitat Causey, M.W., S. Salgar, N. Singh, M. Martin, and J.D. Stallings. 2012. Valproic acid reversed pathologic endothelial cell gene expression profile associated with ischemia–reperfusion injury in a swine hemorrhagic shock model. Journal of Vascular Surgery 55 (4): 1096–1103 e51.CrossRefPubMed Causey, M.W., S. Salgar, N. Singh, M. Martin, and J.D. Stallings. 2012. Valproic acid reversed pathologic endothelial cell gene expression profile associated with ischemia–reperfusion injury in a swine hemorrhagic shock model. Journal of Vascular Surgery 55 (4): 1096–1103 e51.CrossRefPubMed
33.
Zurück zum Zitat Gandolfo, M.T., H.R. Jang, S.M. Bagnasco, G.-J. Ko, P. Agreda, S.R. Satpute, et al. 2009. Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney international. 76 (7): 717–729.CrossRefPubMed Gandolfo, M.T., H.R. Jang, S.M. Bagnasco, G.-J. Ko, P. Agreda, S.R. Satpute, et al. 2009. Foxp3+ regulatory T cells participate in repair of ischemic acute kidney injury. Kidney international. 76 (7): 717–729.CrossRefPubMed
34.
Zurück zum Zitat Andersson, J., D.Q. Tran, M. Pesu, T.S. Davidson, H. Ramsey, J.J. O'Shea, et al. 2008. CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-β–dependent manner. The Journal of experimental medicine. 205 (9): 1975–1981.CrossRefPubMedPubMedCentral Andersson, J., D.Q. Tran, M. Pesu, T.S. Davidson, H. Ramsey, J.J. O'Shea, et al. 2008. CD4+ FoxP3+ regulatory T cells confer infectious tolerance in a TGF-β–dependent manner. The Journal of experimental medicine. 205 (9): 1975–1981.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Wang, L., E.F. de Zoeten, M.I. Greene, and W.W. Hancock. 2009. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nature Reviews Drug Discovery. 8 (12): 969–981.PubMedPubMedCentral Wang, L., E.F. de Zoeten, M.I. Greene, and W.W. Hancock. 2009. Immunomodulatory effects of deacetylase inhibitors: therapeutic targeting of FOXP3+ regulatory T cells. Nature Reviews Drug Discovery. 8 (12): 969–981.PubMedPubMedCentral
36.
Zurück zum Zitat Gueler, F., W. Gwinner, A. Schwarz, and H. Haller. 2004. Long-term effects of acute ischemia and reperfusion injury. Kidney international. 66 (2): 523–527.CrossRefPubMed Gueler, F., W. Gwinner, A. Schwarz, and H. Haller. 2004. Long-term effects of acute ischemia and reperfusion injury. Kidney international. 66 (2): 523–527.CrossRefPubMed
37.
Zurück zum Zitat Sankaran, D., A. Asderakis, S. Ashraf, I.S. Roberts, C.D. Short, P.A. Dyer, et al. 1999. Cytokine gene polymorphisms predict acute graft rejection following renal transplantation. Kidney international. 56 (1): 281–288.CrossRefPubMed Sankaran, D., A. Asderakis, S. Ashraf, I.S. Roberts, C.D. Short, P.A. Dyer, et al. 1999. Cytokine gene polymorphisms predict acute graft rejection following renal transplantation. Kidney international. 56 (1): 281–288.CrossRefPubMed
Metadaten
Titel
Anti-inflammatory Effects of Valproic Acid in a Rat Model of Renal Ischemia/Reperfusion Injury: Alteration in Cytokine Profile
verfasst von
Mohammad Ali Amirzargar
Faramarz Yaghubi
Mohammad Hosseinipanah
Mohammad Jafari
Mona Pourjafar
Mahsa Rezaeepoor
Hamzeh Rezaei
Godratollah Roshanaei
Mehrdad Hajilooi
Ghasem Solgi
Publikationsdatum
06.05.2017
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-017-0574-9

Weitere Artikel der Ausgabe 4/2017

Inflammation 4/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.