Skip to main content
Erschienen in: Inflammation 4/2019

30.04.2019 | ORIGINAL ARTICLE

Regulation of KDM2B and Brg1 on Inflammatory Response of Nasal Mucosa in CRSwNP

verfasst von: C. C. Liu, C. Sun, X. Zheng, M. Q. Zhao, F. Kong, F. L. Xu, X. J. Chen, X. X. Wang, M. Zhang, Ming Xia

Erschienen in: Inflammation | Ausgabe 4/2019

Einloggen, um Zugang zu erhalten

Abstract

Chronic nasal sinusitis with nasal polyps (CRSwNP) is a reversible nasal mucosal remodeling disease caused by persistent inflammation and structural changes in chronic nasal mucosa. Although there have been many studies on the inflammation of the nasal mucosa epithelium, the mechanism remains unclear. Our study found that H3K4me3 histone demethylase KDM2B (also known as JHDM1B) and transcriptional regulator Brg1 (also called SNF2-β or Smarca4) were significantly decreased in nasal mucosa of CRSwNP patients, and they were positively correlated. Brg1 and KDM2B co-localize in the epithelial cells of nasal mucosa. We used poly(I:C)-treated nasal mucosal epithelial cells (HNECs) to find that the expression of KDM2B and Brg1 was also decreased, and the main expression position transferred from the nucleus to the nuclear membrane. We used small interfering RNA to knock down the expression of KDM2B and Brg1 in nasal epithelial cells. It was interesting to find that the decreased expression of KDM2B and Brg1 produced similar effects to that of poly(I:C)-treated cells, which could promote inflammatory response of nasal mucosal epithelial cells. And Brg1 appears to play a role in KDM2B regulating gene promoters of IL-6 and TNF-α inflammatory. This study shows that KDM2B and Brg1 may have an inhibitory effect on the development of CRSwNP nasal mucosal epithelial inflammation. This study will provide a new perspective for gene targeting therapy of CRSwNPs.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, et al. 2012. European position paper on rhinosinusitis and nasal polyps 2012. Rhinology Supplement 3. preceding table of contents, 1–298. Fokkens WJ, Lund VJ, Mullol J, Bachert C, Alobid I, Baroody F, et al. 2012. European position paper on rhinosinusitis and nasal polyps 2012. Rhinology Supplement 3. preceding table of contents, 1–298.
2.
Zurück zum Zitat Cao, P.P., Y.N. Zhang, B. Liao, et al. 2014. Increased local IgE production induced by common aeroallergens and phenotypic alteration of mast cells in Chinese eosinophilic, but not non-eosinophilic, chronic rhinosinusitis with nasal polyps. Allergy 44: 690–700. Cao, P.P., Y.N. Zhang, B. Liao, et al. 2014. Increased local IgE production induced by common aeroallergens and phenotypic alteration of mast cells in Chinese eosinophilic, but not non-eosinophilic, chronic rhinosinusitis with nasal polyps. Allergy 44: 690–700.
3.
Zurück zum Zitat Ba, L., N. Zhang, J. Meng, J. Zhang, P. Lin, P. Zhou, S. Liu, and C. Bachert. 2011. The association between bacterial colonization and inflammatory pattern in Chinese chronic rhinosinusitis patients with nasal polyps. Allergy 66: 1296–1303.CrossRefPubMed Ba, L., N. Zhang, J. Meng, J. Zhang, P. Lin, P. Zhou, S. Liu, and C. Bachert. 2011. The association between bacterial colonization and inflammatory pattern in Chinese chronic rhinosinusitis patients with nasal polyps. Allergy 66: 1296–1303.CrossRefPubMed
4.
Zurück zum Zitat Kern, R.C., D.B. Conley, W. Walsh, R. Chandra, A. Kato, A. Tripathi-Peters, et al. 2008. Perspectives on the etiology of chronic rhinosinusitis: an immune barrier hypothesis. American Journal of Rhinology 22 (6): 549–559.CrossRefPubMedPubMedCentral Kern, R.C., D.B. Conley, W. Walsh, R. Chandra, A. Kato, A. Tripathi-Peters, et al. 2008. Perspectives on the etiology of chronic rhinosinusitis: an immune barrier hypothesis. American Journal of Rhinology 22 (6): 549–559.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Vroling, A.B., W.J. Fokkens, and C.M. van Drunen. 2008. How epithelial cells detect danger: aiding the immune response. Allergy. 63 (9): 1110–1123.CrossRefPubMed Vroling, A.B., W.J. Fokkens, and C.M. van Drunen. 2008. How epithelial cells detect danger: aiding the immune response. Allergy. 63 (9): 1110–1123.CrossRefPubMed
6.
Zurück zum Zitat Kato, A., A. Peters, L. Suh, R. Carter, K.E. Harris, R. Chandra, et al. 2008. Evidence of a role for B cell-activating factor of the TNF family in the pathogenesis of chronic rhinosinusitis with nasal polyps. The Journal of Allergy and Clinical Immunology 121 (6): 1385–1392 92 e1–2.CrossRefPubMedPubMedCentral Kato, A., A. Peters, L. Suh, R. Carter, K.E. Harris, R. Chandra, et al. 2008. Evidence of a role for B cell-activating factor of the TNF family in the pathogenesis of chronic rhinosinusitis with nasal polyps. The Journal of Allergy and Clinical Immunology 121 (6): 1385–1392 92 e1–2.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Avila, P.C., and R.P. Schleimer. 2008. Airway epithelium. In Allergy and allergic diseases, ed. A.B. Kay, A.P. Kaplan, J. Bousquet, and P.G. Holt, 2nd ed. Wiley-Blackwell: Hoboken. Avila, P.C., and R.P. Schleimer. 2008. Airway epithelium. In Allergy and allergic diseases, ed. A.B. Kay, A.P. Kaplan, J. Bousquet, and P.G. Holt, 2nd ed. Wiley-Blackwell: Hoboken.
8.
Zurück zum Zitat Kowalski, M.L., A. Lewandowska-Polak, J. Wozniak, A. Ptasinska, A. Jankowski, M. Wagrowska-Danilewicz, M. Danilewicz, and R. Pawliczak. 2005. Association of stem cell factor expression in nasal polyp epithelial cells with aspirin sensitivity and asthma. Allergy 60 (5): 631–637.CrossRefPubMed Kowalski, M.L., A. Lewandowska-Polak, J. Wozniak, A. Ptasinska, A. Jankowski, M. Wagrowska-Danilewicz, M. Danilewicz, and R. Pawliczak. 2005. Association of stem cell factor expression in nasal polyp epithelial cells with aspirin sensitivity and asthma. Allergy 60 (5): 631–637.CrossRefPubMed
9.
Zurück zum Zitat Nishi, Y., S. Takeno, T. Ishino, and K. Hirakawa. 2009. Glucocorticoids suppress NF-kappaB activation induced by LPS and PGN in paranasal sinus epithelial cells. Rhinology 47 (4): 413–418.PubMed Nishi, Y., S. Takeno, T. Ishino, and K. Hirakawa. 2009. Glucocorticoids suppress NF-kappaB activation induced by LPS and PGN in paranasal sinus epithelial cells. Rhinology 47 (4): 413–418.PubMed
10.
Zurück zum Zitat Xu, J., R. Han, D.W. Kim, J.H. Mo, Y. Jin, K.S. Rha, and Y.M. Kim. 2016. Role of interleukin-10 on nasal polypogenesis in patients with chronic rhinosinusitis with nasal polyps. PLoS One 11 (9): e0161013.CrossRefPubMedPubMedCentral Xu, J., R. Han, D.W. Kim, J.H. Mo, Y. Jin, K.S. Rha, and Y.M. Kim. 2016. Role of interleukin-10 on nasal polypogenesis in patients with chronic rhinosinusitis with nasal polyps. PLoS One 11 (9): e0161013.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Mullol, J., J. Roca-Ferrer, I. Alobid, L. Pujols, A. Valero, A. Xaubet, M. Bernal-Sprekelsen, and C. Picado. 2006 Jan. Effect of desloratadine on epithelial cell granulocyte-macrophage colony- stimulating factor secretion and eosinophil survival. Clinical and Experimental Allergy. 36 (1): 52–58.CrossRefPubMed Mullol, J., J. Roca-Ferrer, I. Alobid, L. Pujols, A. Valero, A. Xaubet, M. Bernal-Sprekelsen, and C. Picado. 2006 Jan. Effect of desloratadine on epithelial cell granulocyte-macrophage colony- stimulating factor secretion and eosinophil survival. Clinical and Experimental Allergy. 36 (1): 52–58.CrossRefPubMed
12.
Zurück zum Zitat Sachse, F., K. Becker, T.J. Basel, D. Weiss, and C. Rudack. 2011. IKK-2 inhibitor TPCA-1 represses nasal epithelial inflammation in vitro. Rhinology. 49 (2): 168–173.PubMed Sachse, F., K. Becker, T.J. Basel, D. Weiss, and C. Rudack. 2011. IKK-2 inhibitor TPCA-1 represses nasal epithelial inflammation in vitro. Rhinology. 49 (2): 168–173.PubMed
13.
Zurück zum Zitat Workman, J.L., and R.E. Kingston. 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annual Review of Biochemistry 67: 545–579.CrossRefPubMed Workman, J.L., and R.E. Kingston. 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annual Review of Biochemistry 67: 545–579.CrossRefPubMed
14.
Zurück zum Zitat Wang, W. 2003. The SWI/SNF family of ATP-dependent chromatin remodelers: similar mechanisms for diverse functions. Current Topics in Microbiology and Immunology 274: 143–169.PubMed Wang, W. 2003. The SWI/SNF family of ATP-dependent chromatin remodelers: similar mechanisms for diverse functions. Current Topics in Microbiology and Immunology 274: 143–169.PubMed
15.
Zurück zum Zitat Chi, T. 2004. A BAF-centred view of the immune system. Nature Reviews. Immunology 4: 965–977.CrossRefPubMed Chi, T. 2004. A BAF-centred view of the immune system. Nature Reviews. Immunology 4: 965–977.CrossRefPubMed
16.
Zurück zum Zitat Liu, N., A. Balliano, and J.J. Hayes. 2011. Mechanism(s) of SWI/SNF-induced nucleosome mobilization. Chembiochem 12: 196–204.CrossRefPubMed Liu, N., A. Balliano, and J.J. Hayes. 2011. Mechanism(s) of SWI/SNF-induced nucleosome mobilization. Chembiochem 12: 196–204.CrossRefPubMed
17.
Zurück zum Zitat De, S., A.L. Wurster, P. Precht, W.H. Wood, K.G. Becker, and M.J. Pazin. 2011. Dynamic Brg1 recruitment during T helper differentiation and activation reveals distal regulatory elements. Molecular and Cellular Biology 31: 1512–1527.CrossRefPubMedPubMedCentral De, S., A.L. Wurster, P. Precht, W.H. Wood, K.G. Becker, and M.J. Pazin. 2011. Dynamic Brg1 recruitment during T helper differentiation and activation reveals distal regulatory elements. Molecular and Cellular Biology 31: 1512–1527.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Wurster, A.L., and M.J. Pazin. 2008. Brg1-mediated chromatin remodeling regulates differentiation and gene expression of T helper cells. Molecular and Cellular Biology 28: 7274–7285.CrossRefPubMedPubMedCentral Wurster, A.L., and M.J. Pazin. 2008. Brg1-mediated chromatin remodeling regulates differentiation and gene expression of T helper cells. Molecular and Cellular Biology 28: 7274–7285.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Ni, Z., M. Abou El Hassan, Z. Xu, T. Yu, and R. Bremner. 2008. The chromatin-remodeling enzyme Brg1 coordinates CIITA induction through many interdependent distal enhancers. Nature Immunology 9: 785–793.CrossRefPubMed Ni, Z., M. Abou El Hassan, Z. Xu, T. Yu, and R. Bremner. 2008. The chromatin-remodeling enzyme Brg1 coordinates CIITA induction through many interdependent distal enhancers. Nature Immunology 9: 785–793.CrossRefPubMed
21.
Zurück zum Zitat Liang, G., J. He, and Y. Zhang. 2012. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nature Cell Biology 14: 457–466.CrossRefPubMedPubMedCentral Liang, G., J. He, and Y. Zhang. 2012. Kdm2b promotes induced pluripotent stem cell generation by facilitating gene activation early in reprogramming. Nature Cell Biology 14: 457–466.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat He, J., E.M. Kallin, Y. Tsukada, and Y. Zhang. 2008. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nature Structural & Molecular Biology 15: 1169–1175.CrossRef He, J., E.M. Kallin, Y. Tsukada, and Y. Zhang. 2008. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nature Structural & Molecular Biology 15: 1169–1175.CrossRef
23.
Zurück zum Zitat Janzer, A., K. Stamm, A. Becker, A. Zimmer, R. Buettner, and J. Kirfel. 2012. The H3K4me3 histone demethylase Fbxl10 is a regulator of chemokine expression, cellular morphology, and the metabolome of fibroblasts. The Journal of Biological Chemistry 287: 30984–30992.CrossRefPubMedPubMedCentral Janzer, A., K. Stamm, A. Becker, A. Zimmer, R. Buettner, and J. Kirfel. 2012. The H3K4me3 histone demethylase Fbxl10 is a regulator of chemokine expression, cellular morphology, and the metabolome of fibroblasts. The Journal of Biological Chemistry 287: 30984–30992.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Frescas, D., D. Guardavaccaro, F. Bassermann, R. Koyama-Nasu, and M. Pagano. 2007. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450: 309–313.CrossRefPubMed Frescas, D., D. Guardavaccaro, F. Bassermann, R. Koyama-Nasu, and M. Pagano. 2007. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450: 309–313.CrossRefPubMed
25.
Zurück zum Zitat Wu, X., J.V. Johansen, and K. Helin. 2013. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Molecular Cell 49: 1134–1146.CrossRefPubMed Wu, X., J.V. Johansen, and K. Helin. 2013. Fbxl10/Kdm2b recruits polycomb repressive complex 1 to CpG islands and regulates H2A ubiquitylation. Molecular Cell 49: 1134–1146.CrossRefPubMed
26.
Zurück zum Zitat Blackledge, N.P., A.M. Farcas, T. Kondo, H.W. King, J.F. McGouran, L.L. Hanssen, S. Ito, S. Cooper, K. Kondo, Y. Koseki, T. Ishikura, H.K. Long, T.W. Sheahan, N. Brockdorff, B.M. Kessler, H. Koseki, and R.J. Klose. 2014. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157: 1445–1459.CrossRefPubMedPubMedCentral Blackledge, N.P., A.M. Farcas, T. Kondo, H.W. King, J.F. McGouran, L.L. Hanssen, S. Ito, S. Cooper, K. Kondo, Y. Koseki, T. Ishikura, H.K. Long, T.W. Sheahan, N. Brockdorff, B.M. Kessler, H. Koseki, and R.J. Klose. 2014. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 157: 1445–1459.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Tzatsos, A., P. Paskaleva, F. Ferrari, V. Deshpande, S. Stoykova, G. Contino, K.K. Wong, F. Lan, P. Trojer, P.J. Park, and N. Bardeesy. 2013. KDM2B promotes pancreatic cancer via polycomb-dependent and -independent transcriptional programs. The Journal of Clinical Investigation 123: 727–739.PubMedPubMedCentral Tzatsos, A., P. Paskaleva, F. Ferrari, V. Deshpande, S. Stoykova, G. Contino, K.K. Wong, F. Lan, P. Trojer, P.J. Park, and N. Bardeesy. 2013. KDM2B promotes pancreatic cancer via polycomb-dependent and -independent transcriptional programs. The Journal of Clinical Investigation 123: 727–739.PubMedPubMedCentral
28.
Zurück zum Zitat Kottakis, F., P. Foltopoulou, I. Sanidas, P. Keller, A. Wronski, B.T. Dake, S.A. Ezell, Z. Shen, S.P. Naber, P.W. Hinds, E. McNiel, C. Kuperwasser, and P.N. Tsichlis. 2014. NDY1/KDM2B functions as a master regulator of polycomb complexes and controls self-renewal of breast cancer stem cells. Cancer Research 74: 3935–3946.CrossRefPubMedPubMedCentral Kottakis, F., P. Foltopoulou, I. Sanidas, P. Keller, A. Wronski, B.T. Dake, S.A. Ezell, Z. Shen, S.P. Naber, P.W. Hinds, E. McNiel, C. Kuperwasser, and P.N. Tsichlis. 2014. NDY1/KDM2B functions as a master regulator of polycomb complexes and controls self-renewal of breast cancer stem cells. Cancer Research 74: 3935–3946.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Andricovich, J., Y. Kai, W. Peng, A. Foudi, and A. Tzatsos. 2016. Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis. The Journal of Clinical Investigation 126: 905–920.CrossRefPubMedPubMedCentral Andricovich, J., Y. Kai, W. Peng, A. Foudi, and A. Tzatsos. 2016. Histone demethylase KDM2B regulates lineage commitment in normal and malignant hematopoiesis. The Journal of Clinical Investigation 126: 905–920.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat He, J., A.T. Nguyen, and Y. Zhang. 2011. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood 117: 3869–3880.CrossRefPubMedPubMedCentral He, J., A.T. Nguyen, and Y. Zhang. 2011. KDM2b/JHDM1b, an H3K36me2-specific demethylase, is required for initiation and maintenance of acute myeloid leukemia. Blood 117: 3869–3880.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Vareille, M., E. Kieninger, M.R. Edwards, and N. Regamey. 2011. The airway epithelium: soldier in the fight against respiratory viruses. Clinical Microbiology Reviews 24: 210–229.CrossRefPubMedPubMedCentral Vareille, M., E. Kieninger, M.R. Edwards, and N. Regamey. 2011. The airway epithelium: soldier in the fight against respiratory viruses. Clinical Microbiology Reviews 24: 210–229.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Hsiao, H.M., T.H. Thatcher, E.P. Levy, R.A. Fulton, K.M. Owens, R.P. Phipps, and P.J. Sime. 2014. Resolvin D1 attenuates polyinosinic-polycytidylic acid-induced inflammatory signaling in human airway epithelial cells via TAK1. Journal of Immunology 193 (10): 4980–4987. https://doi.org/10.4049/jimmunol.1400313.CrossRef Hsiao, H.M., T.H. Thatcher, E.P. Levy, R.A. Fulton, K.M. Owens, R.P. Phipps, and P.J. Sime. 2014. Resolvin D1 attenuates polyinosinic-polycytidylic acid-induced inflammatory signaling in human airway epithelial cells via TAK1. Journal of Immunology 193 (10): 4980–4987. https://​doi.​org/​10.​4049/​jimmunol.​1400313.CrossRef
33.
Zurück zum Zitat Narlikar, G.J., H.Y. Fan, and R.E. Kingston. 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108: 475–487.CrossRefPubMed Narlikar, G.J., H.Y. Fan, and R.E. Kingston. 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108: 475–487.CrossRefPubMed
34.
Zurück zum Zitat Clapier, C.R., and B.R. Cairns. 2009. The biology of chromatin remodeling complexes. Annual Review of Biochemistry 78: 273–304.CrossRefPubMed Clapier, C.R., and B.R. Cairns. 2009. The biology of chromatin remodeling complexes. Annual Review of Biochemistry 78: 273–304.CrossRefPubMed
35.
Zurück zum Zitat Jani, A., M. Wan, J. Zhang, K. Cui, J. Wu, P. Preston-Hurlburt, R. Khatri, K. Zhao, and T. Chi. 2008. A novel genetic strategy reveals unexpected roles of the Swi-Snf-like chromatin-remodeling BAF complex in thymocyte development. The Journal of Experimental Medicine 205: 2813–2825.CrossRefPubMedPubMedCentral Jani, A., M. Wan, J. Zhang, K. Cui, J. Wu, P. Preston-Hurlburt, R. Khatri, K. Zhao, and T. Chi. 2008. A novel genetic strategy reveals unexpected roles of the Swi-Snf-like chromatin-remodeling BAF complex in thymocyte development. The Journal of Experimental Medicine 205: 2813–2825.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Gao, H., K. Lukin, J. Ramirez, S. Fields, D. Lopez, and J. Hagman. 2009. Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5. Proceedings of the National Academy of Sciences of the United States of America 106: 11258–11263.CrossRefPubMedPubMedCentral Gao, H., K. Lukin, J. Ramirez, S. Fields, D. Lopez, and J. Hagman. 2009. Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5. Proceedings of the National Academy of Sciences of the United States of America 106: 11258–11263.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Farcas, A.M., N.P. Blackledge, I. Sudbery, H.K. Long, J.F. McGouran, N.R. Rose, S. Lee, D. Sims, A. Cerase, T.W. Sheahan, H. Koseki, N. Brockdorff, C.P. Ponting, B.M. Kessler, and R.J. Klose. 2012. KDM2B links the polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLife 1: e00205.CrossRefPubMedPubMedCentral Farcas, A.M., N.P. Blackledge, I. Sudbery, H.K. Long, J.F. McGouran, N.R. Rose, S. Lee, D. Sims, A. Cerase, T.W. Sheahan, H. Koseki, N. Brockdorff, C.P. Ponting, B.M. Kessler, and R.J. Klose. 2012. KDM2B links the polycomb repressive complex 1 (PRC1) to recognition of CpG islands. eLife 1: e00205.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Sánchez, C., I. Sánchez, J.A. Demmers, P. Rodriguez, J. Strouboulis, and M. Vidal. 2007. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Molecular & Cellular Proteomics 6: 820–834.CrossRef Sánchez, C., I. Sánchez, J.A. Demmers, P. Rodriguez, J. Strouboulis, and M. Vidal. 2007. Proteomics analysis of Ring1B/Rnf2 interactors identifies a novel complex with the Fbxl10/Jhdm1B histone demethylase and the Bcl6 interacting corepressor. Molecular & Cellular Proteomics 6: 820–834.CrossRef
39.
Zurück zum Zitat Gearhart, M.D., C.M. Corcoran, J.A. Wamstad, and V.J. Bardwell. 2006. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Molecular and Cellular Biology 26: 6880–6889.CrossRefPubMedPubMedCentral Gearhart, M.D., C.M. Corcoran, J.A. Wamstad, and V.J. Bardwell. 2006. Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets. Molecular and Cellular Biology 26: 6880–6889.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Chen, Z., X. Lu, D. Jia, Y. Jing, D. Chen, Q. Wang, F. Zhao, J. Li, M. Yao, W. Cong, and X. He. 2018. Hepatic SMARCA4 predicts HCC recurrence and promotes tumour cell proliferation by regulating SMAD6 expression. Cell Death & Disease 19 (2): 59.CrossRef Chen, Z., X. Lu, D. Jia, Y. Jing, D. Chen, Q. Wang, F. Zhao, J. Li, M. Yao, W. Cong, and X. He. 2018. Hepatic SMARCA4 predicts HCC recurrence and promotes tumour cell proliferation by regulating SMAD6 expression. Cell Death & Disease 19 (2): 59.CrossRef
Metadaten
Titel
Regulation of KDM2B and Brg1 on Inflammatory Response of Nasal Mucosa in CRSwNP
verfasst von
C. C. Liu
C. Sun
X. Zheng
M. Q. Zhao
F. Kong
F. L. Xu
X. J. Chen
X. X. Wang
M. Zhang
Ming Xia
Publikationsdatum
30.04.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 4/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01000-6

Weitere Artikel der Ausgabe 4/2019

Inflammation 4/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.