Skip to main content
Erschienen in: Inflammation 1/2021

27.08.2020 | Original Article

LncRNA MEG3 Participates in Caerulein-Induced Inflammatory Injury in Human Pancreatic Cells via Regulating miR-195-5p/FGFR2 Axis and Inactivating NF-κB Pathway

verfasst von: Xinghai Chen, Debiao Song

Erschienen in: Inflammation | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Acute pancreatitis (AP) is a dysfunctional pancreas disease marked by severe inflammation. Long non-coding RNAs (lncRNAs) involving in the regulation of inflammatory responses have been frequently mentioned. The purpose of this study was to ensure the function and action mode of lncRNA maternally expressed gene 3 (MEG3) in caerulein-induced AP cell model. HPDE cells were treated with caerulein to establish an AP model in vitro. The expression of MEG3, miR-195-5p, and fibroblast growth factor receptor 2 (FGFR2) was measured using quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation and apoptosis were detected by 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry assay, respectively. The expression of CyclinD1, B cell lymphoma/leukemia-2 (Bcl-2), Bcl-2-associated X protein (Bax), FGFR2, P65, phosphorylated P65 (p-P65), alpha inhibitor of nuclear factor kappa beta (NF-κB) (IκB-α), and phosphorylated IκB-α (p-IκB-α) at the protein level was quantified by western blot. The concentrations of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) were monitored by enzyme-linked immunosorbent assay (ELISA). The targeted relationship between miR-195-5p and MEG3 or FGFR2 was forecasted by the online software starBase v2.0 and verified by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. As a result, the expression of MEG3 and FGFR2 was decreased in caerulein-induced HPDE cells, while the expression of miR-195-5p was increased. MEG3 overexpression inhibited cell apoptosis and inflammatory responses that were induced by caerulein. Mechanically, miR-195-5p was targeted by MEG3 and abolished the effects of MEG3 overexpression. FGFR2 was a target of miR-195-5p, and MEG3 regulated the expression of FGFR2 by sponging miR-195-5p. FGFR2 overexpression abolished miR-195-5p enrichment-aggravated inflammatory injuries. Moreover, the NF-κB signaling pathway was involved in the MEG3/miR-195-5p/FGFR2 axis. Collectively, MEG3 participates in caerulein-induced inflammatory injuries by targeting the miR-195-5p/FGFR2 regulatory axis via mediating the NF-κB pathway in HPDE cells.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Leppaniemi, A., M. Tolonen, A. Tarasconi, H. Segovia-Lohse, E. Gamberini, A.W. Kirkpatrick, C.G. Ball, N. Parry, M. Sartelli, D. Wolbrink, H. van Goor, G. Baiocchi, L. Ansaloni, W. Biffl, F. Coccolini, S. Di Saverio, Y. Kluger, E. Moore, and F. Catena. 2019. WSES guidelines for the management of severe acute pancreatitis. World Journal of Emergency Surgery : WJES 14: 27.PubMedCrossRefPubMedCentral Leppaniemi, A., M. Tolonen, A. Tarasconi, H. Segovia-Lohse, E. Gamberini, A.W. Kirkpatrick, C.G. Ball, N. Parry, M. Sartelli, D. Wolbrink, H. van Goor, G. Baiocchi, L. Ansaloni, W. Biffl, F. Coccolini, S. Di Saverio, Y. Kluger, E. Moore, and F. Catena. 2019. WSES guidelines for the management of severe acute pancreatitis. World Journal of Emergency Surgery : WJES 14: 27.PubMedCrossRefPubMedCentral
2.
Zurück zum Zitat Yadav, D., and A.B. Lowenfels. 2013. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 144 (6): 1252–1261.PubMedCrossRef Yadav, D., and A.B. Lowenfels. 2013. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 144 (6): 1252–1261.PubMedCrossRef
3.
Zurück zum Zitat Afghani, E., S.J. Pandol, T. Shimosegawa, R. Sutton, B.U. Wu, S.S. Vege, F. Gorelick, M. Hirota, J. Windsor, S.K. Lo, M.L. Freeman, M.M. Lerch, Y. Tsuji, G.Y. Melmed, W. Wassef, and J. Mayerle. 2015. Acute pancreatitis-progress and challenges: A report on an international symposium. Pancreas 44 (8): 1195–1210.PubMedPubMedCentralCrossRef Afghani, E., S.J. Pandol, T. Shimosegawa, R. Sutton, B.U. Wu, S.S. Vege, F. Gorelick, M. Hirota, J. Windsor, S.K. Lo, M.L. Freeman, M.M. Lerch, Y. Tsuji, G.Y. Melmed, W. Wassef, and J. Mayerle. 2015. Acute pancreatitis-progress and challenges: A report on an international symposium. Pancreas 44 (8): 1195–1210.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Banks, P.A., T.L. Bollen, C. Dervenis, H.G. Gooszen, C.D. Johnson, M.G. Sarr, G.G. Tsiotos, S.S. Vege, and Acute Pancreatitis Classification Working, G. 2012. Classification of acute pancreatitis--2012: Revision of the Atlanta classification and definitions by international consensus. Gut 62 (1): 102–111.PubMedCrossRef Banks, P.A., T.L. Bollen, C. Dervenis, H.G. Gooszen, C.D. Johnson, M.G. Sarr, G.G. Tsiotos, S.S. Vege, and Acute Pancreatitis Classification Working, G. 2012. Classification of acute pancreatitis--2012: Revision of the Atlanta classification and definitions by international consensus. Gut 62 (1): 102–111.PubMedCrossRef
5.
Zurück zum Zitat Dellinger, E.P., C.E. Forsmark, P. Layer, P. Levy, E. Maravi-Poma, M.S. Petrov, T. Shimosegawa, A.K. Siriwardena, G. Uomo, D.C. Whitcomb, J.A. Windsor, and Pancreatitis Across Nations Clinical, R., and Education. 2012. A. Determinant-based classification of acute pancreatitis severity: An international multidisciplinary consultation. Annals of Surgery 256 (6): 875–880.PubMedCrossRef Dellinger, E.P., C.E. Forsmark, P. Layer, P. Levy, E. Maravi-Poma, M.S. Petrov, T. Shimosegawa, A.K. Siriwardena, G. Uomo, D.C. Whitcomb, J.A. Windsor, and Pancreatitis Across Nations Clinical, R., and Education. 2012. A. Determinant-based classification of acute pancreatitis severity: An international multidisciplinary consultation. Annals of Surgery 256 (6): 875–880.PubMedCrossRef
6.
Zurück zum Zitat Greenberg, J.A., J. Hsu, M. Bawazeer, J. Marshall, J.O. Friedrich, A. Nathens, N. Coburn, G.R. May, E. Pearsall, and R.S. McLeod. 2016. Clinical practice guideline: Management of acute pancreatitis. Canadian Journal of Surgery 59 (2): 128–140.PubMedCentralCrossRef Greenberg, J.A., J. Hsu, M. Bawazeer, J. Marshall, J.O. Friedrich, A. Nathens, N. Coburn, G.R. May, E. Pearsall, and R.S. McLeod. 2016. Clinical practice guideline: Management of acute pancreatitis. Canadian Journal of Surgery 59 (2): 128–140.PubMedCentralCrossRef
7.
Zurück zum Zitat Padua, D., S. Mahurkar-Joshi, I.K. Law, C. Polytarchou, J.P. Vu, J.R. Pisegna, D. Shih, D. Iliopoulos, and C. Pothoulakis. 2016. A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. American Journal of Physiology. Gastrointestinal and Liver Physiology 311 (3): G446–G457.PubMedPubMedCentralCrossRef Padua, D., S. Mahurkar-Joshi, I.K. Law, C. Polytarchou, J.P. Vu, J.R. Pisegna, D. Shih, D. Iliopoulos, and C. Pothoulakis. 2016. A long noncoding RNA signature for ulcerative colitis identifies IFNG-AS1 as an enhancer of inflammation. American Journal of Physiology. Gastrointestinal and Liver Physiology 311 (3): G446–G457.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Schmitz, S.U., P. Grote, and B.G. Herrmann. 2016. Mechanisms of long noncoding RNA function in development and disease. Cellular and Molecular Life Sciences 73 (13): 2491–2509.PubMedPubMedCentralCrossRef Schmitz, S.U., P. Grote, and B.G. Herrmann. 2016. Mechanisms of long noncoding RNA function in development and disease. Cellular and Molecular Life Sciences 73 (13): 2491–2509.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Wang, L., X. Zhao, and Y. Wang. 2019. The pivotal role and mechanism of long non-coding RNA B3GALT5-AS1 in the diagnosis of acute pancreatitis. Artificial Cells, Nanomedicine, and Biotechnology 47 (1): 2307–2315.PubMedCrossRef Wang, L., X. Zhao, and Y. Wang. 2019. The pivotal role and mechanism of long non-coding RNA B3GALT5-AS1 in the diagnosis of acute pancreatitis. Artificial Cells, Nanomedicine, and Biotechnology 47 (1): 2307–2315.PubMedCrossRef
10.
Zurück zum Zitat Liu, H., K. Yu, P. Ma, L. Xiong, M. Wang, and W. Wang. 2018. Long noncoding RNA myocardial infarction-associated transcript regulated the pancreatic stellate cell activation to promote the fibrosis process of chronic pancreatitis. Journal of Cellular Biochemistry 120 (6): 9547–9555.PubMedCrossRef Liu, H., K. Yu, P. Ma, L. Xiong, M. Wang, and W. Wang. 2018. Long noncoding RNA myocardial infarction-associated transcript regulated the pancreatic stellate cell activation to promote the fibrosis process of chronic pancreatitis. Journal of Cellular Biochemistry 120 (6): 9547–9555.PubMedCrossRef
11.
Zurück zum Zitat Zhao, D., H. Ge, B. Ma, D. Xue, W. Zhang, Z. Li, and H. Sun. 2018. The interaction between ANXA2 and lncRNA Fendrr promotes cell apoptosis in caerulein-induced acute pancreatitis. Journal of Cellular Biochemistry 120 (5): 8160–8168.CrossRef Zhao, D., H. Ge, B. Ma, D. Xue, W. Zhang, Z. Li, and H. Sun. 2018. The interaction between ANXA2 and lncRNA Fendrr promotes cell apoptosis in caerulein-induced acute pancreatitis. Journal of Cellular Biochemistry 120 (5): 8160–8168.CrossRef
12.
Zurück zum Zitat Ghaedi, H., A. Zare, M.D. Omrani, A.H. Doustimotlagh, R. Meshkani, S. Alipoor, and B. Alipoor. 2018. Genetic variants in long noncoding RNA H19 and MEG3 confer risk of type 2 diabetes in an Iranian population. Gene 675: 265–271.PubMedCrossRef Ghaedi, H., A. Zare, M.D. Omrani, A.H. Doustimotlagh, R. Meshkani, S. Alipoor, and B. Alipoor. 2018. Genetic variants in long noncoding RNA H19 and MEG3 confer risk of type 2 diabetes in an Iranian population. Gene 675: 265–271.PubMedCrossRef
13.
Zurück zum Zitat Qiu, Y.Y., Y. Wu, M.J. Lin, T. Bian, Y.L. Xiao, and C. Qin. 2019. LncRNA-MEG3 functions as a competing endogenous RNA to regulate Treg/Th17 balance in patients with asthma by targeting microRNA-17/RORgammat. Biomedicine & Pharmacotherapy 111: 386–394.CrossRef Qiu, Y.Y., Y. Wu, M.J. Lin, T. Bian, Y.L. Xiao, and C. Qin. 2019. LncRNA-MEG3 functions as a competing endogenous RNA to regulate Treg/Th17 balance in patients with asthma by targeting microRNA-17/RORgammat. Biomedicine & Pharmacotherapy 111: 386–394.CrossRef
14.
Zurück zum Zitat Li, J., Y. Zi, W. Wang, and Y. Li. 2018. Long Noncoding RNA MEG3 inhibits cell proliferation and metastasis in chronic myeloid leukemia via targeting miR-184. Oncology Research 26 (2): 297–305.CrossRefPubMedCentral Li, J., Y. Zi, W. Wang, and Y. Li. 2018. Long Noncoding RNA MEG3 inhibits cell proliferation and metastasis in chronic myeloid leukemia via targeting miR-184. Oncology Research 26 (2): 297–305.CrossRefPubMedCentral
15.
Zurück zum Zitat Chou, C.H., F.M. Lin, M.T. Chou, S.D. Hsu, T.H. Chang, S.L. Weng, S. Shrestha, C.C. Hsiao, J.H. Hung, and H.D. Huang. 2013. A computational approach for identifying microRNA-target interactions using high-throughput CLIP and PAR-CLIP sequencing. BMC Genomics 14 (1): S2.PubMedPubMedCentralCrossRef Chou, C.H., F.M. Lin, M.T. Chou, S.D. Hsu, T.H. Chang, S.L. Weng, S. Shrestha, C.C. Hsiao, J.H. Hung, and H.D. Huang. 2013. A computational approach for identifying microRNA-target interactions using high-throughput CLIP and PAR-CLIP sequencing. BMC Genomics 14 (1): S2.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Dixit, A.K., A.E. Sarver, Z. Yuan, J. George, U. Barlass, H. Cheema, A. Sareen, S. Banerjee, V. Dudeja, R. Dawra, S. Subramanian, and A.K. Saluja. 2016. Comprehensive analysis of microRNA signature of mouse pancreatic acini: overexpression of miR-21-3p in acute pancreatitis. American Journal of Physiology. Gastrointestinal and Liver Physiology 311 (5): G974–G980.PubMedPubMedCentralCrossRef Dixit, A.K., A.E. Sarver, Z. Yuan, J. George, U. Barlass, H. Cheema, A. Sareen, S. Banerjee, V. Dudeja, R. Dawra, S. Subramanian, and A.K. Saluja. 2016. Comprehensive analysis of microRNA signature of mouse pancreatic acini: overexpression of miR-21-3p in acute pancreatitis. American Journal of Physiology. Gastrointestinal and Liver Physiology 311 (5): G974–G980.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Tian, R., R.L. Wang, H. Xie, W. Jin, and K.L. Yu. 2013. Overexpressed miRNA-155 dysregulates intestinal epithelial apical junctional complex in severe acute pancreatitis. World Journal of Gastroenterology 19 (45): 8282–8291.PubMedPubMedCentralCrossRef Tian, R., R.L. Wang, H. Xie, W. Jin, and K.L. Yu. 2013. Overexpressed miRNA-155 dysregulates intestinal epithelial apical junctional complex in severe acute pancreatitis. World Journal of Gastroenterology 19 (45): 8282–8291.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Fu, Q., T. Qin, L. Chen, C.J. Liu, X. Zhang, Y.Z. Wang, M.X. Hu, H.Y. Chu, and H.W. Zhang. 2016. miR-29a up-regulation in AR42J cells contributes to apoptosis via targeting TNFRSF1A gene. World Journal of Gastroenterology 22 (20): 4881–4890.PubMedPubMedCentralCrossRef Fu, Q., T. Qin, L. Chen, C.J. Liu, X. Zhang, Y.Z. Wang, M.X. Hu, H.Y. Chu, and H.W. Zhang. 2016. miR-29a up-regulation in AR42J cells contributes to apoptosis via targeting TNFRSF1A gene. World Journal of Gastroenterology 22 (20): 4881–4890.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Bloomston, M., W.L. Frankel, F. Petrocca, S. Volinia, H. Alder, J.P. Hagan, C.G. Liu, D. Bhatt, C. Taccioli, and C.M. Croce. 2007. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297 (17): 1901–1908.PubMedCrossRef Bloomston, M., W.L. Frankel, F. Petrocca, S. Volinia, H. Alder, J.P. Hagan, C.G. Liu, D. Bhatt, C. Taccioli, and C.M. Croce. 2007. MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297 (17): 1901–1908.PubMedCrossRef
20.
Zurück zum Zitat Zhang, J., D. Upadhya, L. Lu, and L.W. Reneker. 2015. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development. PLoS One 10 (1): e0117089.PubMedPubMedCentralCrossRef Zhang, J., D. Upadhya, L. Lu, and L.W. Reneker. 2015. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development. PLoS One 10 (1): e0117089.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Chen, X., H. Ouyang, Z. Wang, B. Chen, and Q. Nie. 2018. A novel circular RNA generated by FGFR2 gene promotes myoblast proliferation and differentiation by sponging miR-133a-5p and miR-29b-1-5p. Cells 7 (11): 199.PubMedCentralCrossRef Chen, X., H. Ouyang, Z. Wang, B. Chen, and Q. Nie. 2018. A novel circular RNA generated by FGFR2 gene promotes myoblast proliferation and differentiation by sponging miR-133a-5p and miR-29b-1-5p. Cells 7 (11): 199.PubMedCentralCrossRef
22.
Zurück zum Zitat Chen, J., Z. Wang, Z. Zheng, Y. Chen, S. Khor, K. Shi, Z. He, Q. Wang, Y. Zhao, H. Zhang, X. Li, J. Li, J. Yin, X. Wang, and J. Xiao. 2017. Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-kappaB-dependent neuroinflammation to improve functional recovery after spinal cord injury. Cell Death & Disease 8 (10): e3090.CrossRef Chen, J., Z. Wang, Z. Zheng, Y. Chen, S. Khor, K. Shi, Z. He, Q. Wang, Y. Zhao, H. Zhang, X. Li, J. Li, J. Yin, X. Wang, and J. Xiao. 2017. Neuron and microglia/macrophage-derived FGF10 activate neuronal FGFR2/PI3K/Akt signaling and inhibit microglia/macrophages TLR4/NF-kappaB-dependent neuroinflammation to improve functional recovery after spinal cord injury. Cell Death & Disease 8 (10): e3090.CrossRef
23.
Zurück zum Zitat Huang, T., D. Liu, Y. Wang, P. Li, L. Sun, H. Xiong, Y. Dai, M. Zou, X. Yuan, and H. Qiu. 2018. FGFR2 Promotes gastric cancer progression by inhibiting the expression of Thrombospondin4 via PI3K-Akt-Mtor pathway. Cellular Physiology and Biochemistry 50 (4): 1332–1345.PubMedCrossRef Huang, T., D. Liu, Y. Wang, P. Li, L. Sun, H. Xiong, Y. Dai, M. Zou, X. Yuan, and H. Qiu. 2018. FGFR2 Promotes gastric cancer progression by inhibiting the expression of Thrombospondin4 via PI3K-Akt-Mtor pathway. Cellular Physiology and Biochemistry 50 (4): 1332–1345.PubMedCrossRef
24.
Zurück zum Zitat Nakada, S., K. Tsuneyama, I. Kato, Y. Tabuchi, I. Takasaki, Y. Furusawa, H. Kawaguchi, M. Fujimoto, H. Goto, H. Hikiami, T. Kondo, Y. Takano, and Y. Shimada. 2010. Identification of candidate genes involved in endogenous protection mechanisms against acute pancreatitis in mice. Biochemical and Biophysical Research Communications 391 (3): 1342–1347.PubMedCrossRef Nakada, S., K. Tsuneyama, I. Kato, Y. Tabuchi, I. Takasaki, Y. Furusawa, H. Kawaguchi, M. Fujimoto, H. Goto, H. Hikiami, T. Kondo, Y. Takano, and Y. Shimada. 2010. Identification of candidate genes involved in endogenous protection mechanisms against acute pancreatitis in mice. Biochemical and Biophysical Research Communications 391 (3): 1342–1347.PubMedCrossRef
25.
Zurück zum Zitat Liu, P., L. Xia, W.L. Zhang, H.J. Ke, T. Su, L.B. Deng, Y.X. Chen, and N.H. Lv. 2014. Identification of serum microRNAs as diagnostic and prognostic biomarkers for acute pancreatitis. Pancreatology 14 (3): 159–166.PubMedCrossRef Liu, P., L. Xia, W.L. Zhang, H.J. Ke, T. Su, L.B. Deng, Y.X. Chen, and N.H. Lv. 2014. Identification of serum microRNAs as diagnostic and prognostic biomarkers for acute pancreatitis. Pancreatology 14 (3): 159–166.PubMedCrossRef
26.
27.
Zurück zum Zitat Zhu, Y., P. Chen, Y. Gao, N. Ta, Y. Zhang, J. Cai, Y. Zhao, S. Liu, and J. Zheng. 2018. MEG3 activated by vitamin D inhibits colorectal cancer cells proliferation and migration via regulating clusterin. EBioMedicine 30: 148–157.PubMedPubMedCentralCrossRef Zhu, Y., P. Chen, Y. Gao, N. Ta, Y. Zhang, J. Cai, Y. Zhao, S. Liu, and J. Zheng. 2018. MEG3 activated by vitamin D inhibits colorectal cancer cells proliferation and migration via regulating clusterin. EBioMedicine 30: 148–157.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Wang, P., D. Chen, H. Ma, and Y. Li. 2017. LncRNA MEG3 enhances cisplatin sensitivity in non-small cell lung cancer by regulating miR-21-5p/SOX7 axis. Oncotargets and Therapy 10: 5137–5149.PubMedPubMedCentralCrossRef Wang, P., D. Chen, H. Ma, and Y. Li. 2017. LncRNA MEG3 enhances cisplatin sensitivity in non-small cell lung cancer by regulating miR-21-5p/SOX7 axis. Oncotargets and Therapy 10: 5137–5149.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Ma, L., F. Wang, C. Du, Z. Zhang, H. Guo, X. Xie, H. Gao, Y. Zhuang, M. Kornmann, H. Gao, X. Tian, and Y. Yang. 2018. Long non-coding RNA MEG3 functions as a tumour suppressor and has prognostic predictive value in human pancreatic cancer. Oncology Reports 39 (3): 1132–1140.PubMed Ma, L., F. Wang, C. Du, Z. Zhang, H. Guo, X. Xie, H. Gao, Y. Zhuang, M. Kornmann, H. Gao, X. Tian, and Y. Yang. 2018. Long non-coding RNA MEG3 functions as a tumour suppressor and has prognostic predictive value in human pancreatic cancer. Oncology Reports 39 (3): 1132–1140.PubMed
30.
Zurück zum Zitat Li, X., C. Tang, J. Wang, P. Guo, C. Wang, Y. Wang, Z. Zhang, and H. Wu. 2018. Methylene blue relieves the development of osteoarthritis by upregulating lncRNA MEG3. Experimental and Therapeutic Medicine 15 (4): 3856–3864.PubMedPubMedCentral Li, X., C. Tang, J. Wang, P. Guo, C. Wang, Y. Wang, Z. Zhang, and H. Wu. 2018. Methylene blue relieves the development of osteoarthritis by upregulating lncRNA MEG3. Experimental and Therapeutic Medicine 15 (4): 3856–3864.PubMedPubMedCentral
31.
Zurück zum Zitat Li, G., Y. Liu, F. Meng, Z. Xia, X. Wu, Y. Fang, C. Zhang, Y. Zhang, and D. Liu. 2019. LncRNA MEG3 inhibits rheumatoid arthritis through miR-141 and inactivation of AKT/mTOR signalling pathway. Journal of Cellular and Molecular Medicine 23 (10): 7116–7120.PubMedPubMedCentralCrossRef Li, G., Y. Liu, F. Meng, Z. Xia, X. Wu, Y. Fang, C. Zhang, Y. Zhang, and D. Liu. 2019. LncRNA MEG3 inhibits rheumatoid arthritis through miR-141 and inactivation of AKT/mTOR signalling pathway. Journal of Cellular and Molecular Medicine 23 (10): 7116–7120.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Ballantyne, M.D., R.A. McDonald, and A.H. Baker. 2016. lncRNA/MicroRNA interactions in the vasculature. Clinical Pharmacology and Therapeutics 99 (5): 494–501.PubMedPubMedCentralCrossRef Ballantyne, M.D., R.A. McDonald, and A.H. Baker. 2016. lncRNA/MicroRNA interactions in the vasculature. Clinical Pharmacology and Therapeutics 99 (5): 494–501.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Shi, G., J. Shi, K. Liu, N. Liu, Y. Wang, Z. Fu, J. Ding, L. Jia, and W. Yuan. 2013. Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 61 (4): 504–512.PubMedCrossRef Shi, G., J. Shi, K. Liu, N. Liu, Y. Wang, Z. Fu, J. Ding, L. Jia, and W. Yuan. 2013. Increased miR-195 aggravates neuropathic pain by inhibiting autophagy following peripheral nerve injury. Glia 61 (4): 504–512.PubMedCrossRef
34.
Zurück zum Zitat Cheng, H.Y., Y.S. Wang, P.Y. Hsu, C.Y. Chen, Y.C. Liao, and S.H. Juo. 2019. miR-195 has a potential to treat ischemic and hemorrhagic stroke through neurovascular protection and neurogenesis. Molecular Therapy - Methods & Clinical Development 13: 121–132.CrossRef Cheng, H.Y., Y.S. Wang, P.Y. Hsu, C.Y. Chen, Y.C. Liao, and S.H. Juo. 2019. miR-195 has a potential to treat ischemic and hemorrhagic stroke through neurovascular protection and neurogenesis. Molecular Therapy - Methods & Clinical Development 13: 121–132.CrossRef
35.
Zurück zum Zitat Bjersing, J.L., C. Lundborg, M.I. Bokarewa, and K. Mannerkorpi. 2013. Profile of cerebrospinal microRNAs in fibromyalgia. PLoS One 8 (10): e78762.PubMedPubMedCentralCrossRef Bjersing, J.L., C. Lundborg, M.I. Bokarewa, and K. Mannerkorpi. 2013. Profile of cerebrospinal microRNAs in fibromyalgia. PLoS One 8 (10): e78762.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Muratore, C.S., F.I. Luks, Y. Zhou, M. Harty, J. Reichner, and T.F. Tracy. 2009. Endotoxin alters early fetal lung morphogenesis. The Journal of Surgical Research 155 (2): 225–230.PubMedCrossRef Muratore, C.S., F.I. Luks, Y. Zhou, M. Harty, J. Reichner, and T.F. Tracy. 2009. Endotoxin alters early fetal lung morphogenesis. The Journal of Surgical Research 155 (2): 225–230.PubMedCrossRef
37.
Zurück zum Zitat Liu, Y., V. Tergaonkar, S. Krishna, and E.J. Androphy. 1999. Human papillomavirus type 16 E6-enhanced susceptibility of L929 cells to tumor necrosis factor alpha correlates with increased accumulation of reactive oxygen species. The Journal of Biological Chemistry 274 (35): 24819–24827.PubMedCrossRef Liu, Y., V. Tergaonkar, S. Krishna, and E.J. Androphy. 1999. Human papillomavirus type 16 E6-enhanced susceptibility of L929 cells to tumor necrosis factor alpha correlates with increased accumulation of reactive oxygen species. The Journal of Biological Chemistry 274 (35): 24819–24827.PubMedCrossRef
38.
Zurück zum Zitat Li, F., J. Zhang, F. Arfuso, A. Chinnathambi, M.E. Zayed, S.A. Alharbi, A.P. Kumar, K.S. Ahn, and G. Sethi. 2015. NF-kappaB in cancer therapy. Archives of Toxicology 89 (5): 711–731.PubMedCrossRef Li, F., J. Zhang, F. Arfuso, A. Chinnathambi, M.E. Zayed, S.A. Alharbi, A.P. Kumar, K.S. Ahn, and G. Sethi. 2015. NF-kappaB in cancer therapy. Archives of Toxicology 89 (5): 711–731.PubMedCrossRef
39.
Zurück zum Zitat Tong, L., and V. Tergaonkar. 2014. Rho protein GTPases and their interactions with NFkappaB: Crossroads of inflammation and matrix biology. Bioscience Reports 34 (3): 183–295. Tong, L., and V. Tergaonkar. 2014. Rho protein GTPases and their interactions with NFkappaB: Crossroads of inflammation and matrix biology. Bioscience Reports 34 (3): 183–295.
41.
Zurück zum Zitat Vermeulen, L., G. De Wilde, S. Notebaert, W. Vanden Berghe, and G. Haegeman. 2002. Regulation of the transcriptional activity of the nuclear factor-kappaB p65 subunit. Biochemical Pharmacology 64 (5-6): 963–970.PubMedCrossRef Vermeulen, L., G. De Wilde, S. Notebaert, W. Vanden Berghe, and G. Haegeman. 2002. Regulation of the transcriptional activity of the nuclear factor-kappaB p65 subunit. Biochemical Pharmacology 64 (5-6): 963–970.PubMedCrossRef
42.
Zurück zum Zitat Baldwin, A.S., Jr. 1996. The NF-kappa B and I kappa B proteins: New discoveries and insights. Annual Review of Immunology 14: 649–683.PubMedCrossRef Baldwin, A.S., Jr. 1996. The NF-kappa B and I kappa B proteins: New discoveries and insights. Annual Review of Immunology 14: 649–683.PubMedCrossRef
43.
Zurück zum Zitat Barnes, P.J., and M. Karin. 1997. Nuclear factor-kappaB: A pivotal transcription factor in chronic inflammatory diseases. The New England Journal of Medicine 336 (15): 1066–1071.PubMedCrossRef Barnes, P.J., and M. Karin. 1997. Nuclear factor-kappaB: A pivotal transcription factor in chronic inflammatory diseases. The New England Journal of Medicine 336 (15): 1066–1071.PubMedCrossRef
44.
Zurück zum Zitat Baumann, B., M. Wagner, T. Aleksic, G. von Wichert, C.K. Weber, G. Adler, and T. Wirth. 2007. Constitutive IKK2 activation in acinar cells is sufficient to induce pancreatitis in vivo. The Journal of Clinical Investigation 117 (6): 1502–1513.PubMedPubMedCentralCrossRef Baumann, B., M. Wagner, T. Aleksic, G. von Wichert, C.K. Weber, G. Adler, and T. Wirth. 2007. Constitutive IKK2 activation in acinar cells is sufficient to induce pancreatitis in vivo. The Journal of Clinical Investigation 117 (6): 1502–1513.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Vaquero, E., I. Gukovsky, V. Zaninovic, A.S. Gukovskaya, and S.J. Pandol. 2001. Localized pancreatic NF-kappaB activation and inflammatory response in taurocholate-induced pancreatitis. American Journal of Physiology. Gastrointestinal and Liver Physiology 280 (6): G1197–G1208.PubMedCrossRef Vaquero, E., I. Gukovsky, V. Zaninovic, A.S. Gukovskaya, and S.J. Pandol. 2001. Localized pancreatic NF-kappaB activation and inflammatory response in taurocholate-induced pancreatitis. American Journal of Physiology. Gastrointestinal and Liver Physiology 280 (6): G1197–G1208.PubMedCrossRef
46.
Zurück zum Zitat Altavilla, D., C. Famulari, M. Passaniti, M. Galeano, A. Macri, P. Seminara, L. Minutoli, H. Marini, M. Calo, F.S. Venuti, M. Esposito, and F. Squadrito. 2003. Attenuated cerulein-induced pancreatitis in nuclear factor-kappaB-deficient mice. Laboratory Investigation 83 (12): 1723–1732.PubMedCrossRef Altavilla, D., C. Famulari, M. Passaniti, M. Galeano, A. Macri, P. Seminara, L. Minutoli, H. Marini, M. Calo, F.S. Venuti, M. Esposito, and F. Squadrito. 2003. Attenuated cerulein-induced pancreatitis in nuclear factor-kappaB-deficient mice. Laboratory Investigation 83 (12): 1723–1732.PubMedCrossRef
Metadaten
Titel
LncRNA MEG3 Participates in Caerulein-Induced Inflammatory Injury in Human Pancreatic Cells via Regulating miR-195-5p/FGFR2 Axis and Inactivating NF-κB Pathway
verfasst von
Xinghai Chen
Debiao Song
Publikationsdatum
27.08.2020
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 1/2021
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-020-01318-6

Weitere Artikel der Ausgabe 1/2021

Inflammation 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.