Skip to main content
Log in

Biological Implications of Gene–Environment Interaction

  • Published:
Journal of Abnormal Child Psychology Aims and scope Submit manuscript

Abstract

Gene–environment interaction (G × E) has been treated as both a statistical phenomenon and a biological reality. It is argued that, although there are important statistical issues that need to be considered, the focus has to be on the biological implications of G × E. Four reports of G × E deriving from the Dunedin longitudinal study are used as exemplars of the biological considerations that should lead to an hypothesis-driven choice of the specific genetic polymorphisms and the specific environmental influence to be investigated. The same four studies are used to discuss how the assessment of internal and external validity can be undertaken and how experimental approaches in humans and with animal models may be informative in the elucidation of the relevant operative biological mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Academy of Medical Sciences (2007). Identifying the environmental causes of disease: how should we decide what to believe and when to take action?. London: Academy of Medical Sciences.

    Google Scholar 

  • Adamo, K. B., & Tesson, F. (2008). Gene–environment interaction and the metabolic syndrome. In M. Rutter (Ed.), Gene effects on environmental vulnerability to disease (pp. 103–127). Chichester: Wiley.

    Google Scholar 

  • Battaglia, M., Marino, C., Maziade, M., Molteni, M., & D’Amato, F. (2008). Gene–environment interaction and behavioral disorders: a developmental perspective based on endophenotypes. In M. Rutter (Ed.), Gene effects on environmental vulnerability to disease (pp. 31–47). Chichester: Wiley.

    Google Scholar 

  • Bird, A. (2007). Perceptions of epigenetics. Nature, 447, 396–398.

    Article  PubMed  Google Scholar 

  • Caspi, A., McClay, J., Moffitt, T. E., Mill, J., Martin, J., Craig, I. W., et al. (2002). Role of genotype in the cycle of violence in maltreated children. Science, 297, 851–854.

    Article  PubMed  Google Scholar 

  • Caspi, A., & Moffitt, T. E. (2006). Gene–environment interactions in psychiatry: joining forces with neuroscience. Nature Reviews Neuroscience, 7, 583–590.

    Article  PubMed  Google Scholar 

  • Caspi, A., Moffitt, T. E., Cannon, M., McClay, J., Murray, R., Harrington, H., et al. (2005). Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biological Psychiatry, 57, 1117–1127.

    Article  PubMed  Google Scholar 

  • Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., et al. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.

    Article  PubMed  Google Scholar 

  • Caspi, A., Williams, B., Kim-Cohen, J., Craig, I. W., Milne, B. J., Poulton, R., et al. (2007). Moderation of breastfeeding effects on the IQ by genetic variation in fatty acid metabolism. Proceedings of the National Academy of Science U S A, 104, 18860–18865.

    Article  Google Scholar 

  • Eaves, L. J. (2006). Genotype x Environment interaction in psychopathology: fact or artifact? Twin Research and Human Genetics, 9, 1–8.

    Article  PubMed  Google Scholar 

  • Hariri, A. R., Drabant, E. M., Munoz, K. E., Kolachana, B. S., Mattay, V. S., Egan, M. F., et al. (2005). A susceptibility gene for affective disorders and the response of the human amygdala. Archives of General Psychiatry, 62, 146–152.

    Article  PubMed  Google Scholar 

  • Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297, 400–403.

    Article  PubMed  Google Scholar 

  • Henquet, C., Rosa, A., Krabbendam, L., Papiol, S., Fananás, L., Drukker, M., et al. (2006). An experimental study of catechol-o-methyltransferase Val158Met moderation of delta-9-tetrahydrocannabinol-induced effects on psychosis and cognition. Neuropsychopharmacology, 31, 2748–2757.

    Article  PubMed  Google Scholar 

  • Kim-Cohen, J., Caspi, A., Taylor, A., Williams, B., Newcombe, R., Craig, I. W., et al. (2006). MAOA, maltreatment, and gene–environment interaction predicting children’s mental health: New evidence and a meta-analysis. Molecular Psychiatry, 11, 903–913.

    Article  PubMed  Google Scholar 

  • Meaney, M. J., & Szyf, M. (2005). Environmental programming of stress responses through DNA methylation: Life at the interface between a dynamic environment and a fixed genome. Dialogues in Clinical Neuroscience, 7, 103–123.

    PubMed  Google Scholar 

  • Meyer-Lindenberg, A., Buckholtz, J. W., Kolachana, B. R., Hariri, A., Pezawas, L., Blasi, G., et al. (2006). Neural mechanisms of genetic risk for impulsivity and violence in humans. Proceedings of the National Academy of Sciences U S A, 103, 6269–6274.

    Article  Google Scholar 

  • Mill, J., & Petronis, A. (2007). Molecular studies of major depressive disorder: the epigenetic perspective. Molecular Psychiatry, 12, 799–814.

    Article  PubMed  Google Scholar 

  • Moffitt, T. E., Caspi, A., Rutter, M., & Silva, P. A. (2001). Sex differences in antisocial behavior: conduct disorder, delinquency, and violence in the Dunedin longitudinal study. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Pezawas, L., Meyer-Lindenberg, A., Drabant, E. M., Verchinski, B. A., Munoz, K. E., Kolachana, B. S., et al. (2005). 5-HTTLPR polymorphism impacts human cingulated–amygdala interactions: a genetic susceptibility mechanism for depression. Nature Neuroscience, 8, 828–834.

    Article  PubMed  Google Scholar 

  • Rutter, M. (2006a). Genes and behavior: nature–nurture interplay explained. Oxford: Blackwell.

    Google Scholar 

  • Rutter, M. (2006b). Implications of resilience concepts for scientific understanding. Annals of the New York Academy of Sciences, 1094, 1–12.

    Article  PubMed  Google Scholar 

  • Rutter, M. (2006c). The psychological effects of early institutional rearing. In P. Marshall, & N. Fox (Eds.), The development of social engagement: neurobiological perspectives (pp. 355–391). New York & Oxford: Oxford University Press.

    Google Scholar 

  • Rutter, M. (2007). Gene–environment interdependence. Developmental Science, 10, 12–18.

    Article  PubMed  Google Scholar 

  • Rutter, M. (Ed.) (2008a). Introduction: whither gene–environment interactions? In Genetic effects on environmental vulnerability (pp. 1–12). Chichester, Wiley.

  • Rutter, M. (Ed.) (2008b). Conclusions: taking stock and looking ahead. In Gene effects on environmental vulnerability to disease (pp. 198–205). Chichester: Wiley.

  • Rutter, M., Beckett, C., Castle, J., Colvert, E., Kreppner, J., Mehta, M., et al. (2007). Effects of profound early institutional deprivation: an overview of findings from a UK longitudinal study of Romanian adoptees. European Journal of Developmental Psychology, 4, 332–350.

    Article  Google Scholar 

  • Rutter, M., Caspi, A., & Moffitt, T. E. (2003). Using sex differences in psychopathology to study causal mechanisms: unifying issues and research strategies. Journal of Child Psychology and Psychiatry, 44, 1092–1115.

    Article  PubMed  Google Scholar 

  • Rutter, M., Hagel, A., & Giller, H. (1998). Anti-social behaviour and young people. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rutter, M., & Pickles, A. (1991). Person–environment interactions; concepts, mechanisms, and implications for data analysis. In T. D. Wachs, & R. Plomin (Eds.), Conceptualization and measurement of organism–environment interaction (pp. 105–141). Washington DC: APA.

    Chapter  Google Scholar 

  • Snieder, H., Wang, X., Lagou, V., Penninx, B. W. J. H., Riese, H., & Hartman, C. A. (2008). Role of gene–stress interactions in gene finding studies. In M. Rutter (Ed.), Gene effects on environmental vulnerability to disease (pp. 71–86). Chichester: Wiley.

    Google Scholar 

  • Sonuga-Barke, E. J. S., Beckett, C., Kreppner, J., Castle, J., Colvert, E., Stevens, S., et al. (2008). Is subnutrition necessary for a poor outcome following severe and pervasive early institutional deprivation? Brain growth, cognition and mental health. Developmental Medicine and Child Neurology, in press.

  • Tabery, J. (2007). Biometric and developmental gene–environment interactions: looking back, moving forward. Development and Psychopathology, 19, 961–976.

    Article  PubMed  Google Scholar 

  • Taylor, A., & Kim-Cohen, J. (2007). Meta-analysis of gene–environment interactions in developmental psychopathology. Development and Psychopathology, 19, 1029–1037.

    Article  PubMed  Google Scholar 

  • Uher, R. (2008). Gene–environment interaction: Overcoming methodological challenges. In M. Rutter (Ed.), Gene effects on environmental vulnerability to disease (pp. 13–30). Chichester: Wiley.

    Google Scholar 

  • Wray, N. R., Coventry, W. L., James, M. R., Montgomery, G. W., Eaves, L. J., & Martin, N. G. (2008). Use of monozygotic twins to investigate the relationship between 5-HTTLPR genotype, depression and stressful life events: an application of Item Response Theory. In M. Rutter (Ed.),Gene effects on environmental vulnerability to disease (pp. 48–67). Chichester: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rutter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutter, M. Biological Implications of Gene–Environment Interaction. J Abnorm Child Psychol 36, 969–975 (2008). https://doi.org/10.1007/s10802-008-9256-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10802-008-9256-2

Keywords

Navigation