Skip to main content
Log in

Abnormal Transient Pupillary Light Reflex in Individuals with Autism Spectrum Disorders

  • Original Paper
  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Computerized binocular infrared pupillography was used to measure the transient pupillary light reflex (PLR) in both children with autism spectrum disorders (ASDs) and children with typical development. We found that participants with ASDs showed significantly longer PLR latency, smaller constriction amplitude and lower constriction velocity than children with typical development. The PLR latency alone can be used to discriminate the ASD group from the control group with a cross-validated success rate of 89.6%. By adding the constriction amplitude, the percentage of correct classification can be further improved to 92.5%. In addition, the right-lateralization of contraction anisocoria that was observed in participants with typical development was not observed in those with ASDs. Further studies are necessary to understand the origin and implications of these observations. It is anticipated that as potential biomarkers, these pupillary light reflex measurements will advance our understanding of neurodevelopmental differences in the autism brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexandridis, E., Argyropoulos, T., & Krastel, H. (1981). The latent period of the pupil light reflex in lesions of the optic nerve. Ophthalmologica, 182, 211–217.

    Article  PubMed  Google Scholar 

  • Allen, G., & Courchesne, E. (2003). Differential effects of developmental cerebellar abnormality on cognitive and motor functions in the cerebellum: An fMRI study of autism. The American Journal of Psychiatry, 160, 262–273. doi:10.1176/appi.ajp.160.2.262.

    Article  PubMed  Google Scholar 

  • Amaral, D. G., Schumann, C. M., & Nordahl, C. W. (2008). Neuroanatomy of autism. Trends in Neurosciences, 31, 137–145. doi:10.1016/j.tins.2007.12.005.

    Article  PubMed  Google Scholar 

  • Anderson, C. J., & Colombo, J. (2009). Larger tonic pupil size in young children with autism spectrum disorder. Developmental Psychobiology, 51, 207–211. doi:10.1002/dev.20352.

    Article  PubMed  Google Scholar 

  • Anderson, C. J., Colombo, J., & Shaddy, D. J. (2006). Visual scanning and pupillary responses in young children with autism spectrum disorder. Journal of Clinical and Experimental Neuropsychology, 28, 1238–1256. doi:10.1080/13803390500376790.

    Article  PubMed  Google Scholar 

  • Barbur, J. L. (2003). Learning from the pupil: studies of basic mechanisms and clinical application. In L. M. Chalupa & J. S. Werner (Eds.), The Visual Neurosciences (pp. 641–656). Cambridge, MA: MIT Press.

    Google Scholar 

  • Barkovich, A. J. (2000). Concepts of myelin and myelination in neuroradiology. AJNR. American Journal of Neuroradiology, 21, 1099–1109.

    PubMed  Google Scholar 

  • Bax, M., Tydeman, C., & Flodmark, O. (2006). Clinical and MRI correlates of cerebral palsy: the European Cerebral Palsy Study. Journal of the American Medical Association, 296, 1602–1608. doi:10.1001/jama.296.13.1602.

    Article  PubMed  Google Scholar 

  • Bergamin, O., & Kardon, R. H. (2003). Latency of the pupil light reflex: Sample rate, stimulus intensity, and variation in normal subject. Investigative Ophthalmology & Visual Science, 44, 1546–1554. doi:10.1167/iovs.02-0468.

    Article  Google Scholar 

  • Boddaert, N., Zilbovicius, M., Philipe, A., Robel, L., Bourgeois, M., Barthélemy, C., et al. (2009). MRI findings in 77 children with non-syndromic autistic disorder. PLoS ONE, 4, e4415. doi:10.1371/journal.pone.0004415.

    Article  PubMed  Google Scholar 

  • Bos, J. E. (1991). Detection of the pupil constriction latency. Medical & Biological Engineering & Computing, 29, 529–534. doi:10.1007/BF02442326.

    Article  Google Scholar 

  • Camelo-Nunes, I. C. (2006). New antihistamines: A critical view. Jornal de Pediatria, 82, S173–S180. doi:10.2223/JPED.1552.

    Article  PubMed  Google Scholar 

  • Cantú, T. G., & Korek, J. S. (1991). Central nervous system reactions to histamine-2 receptor blockers. Annals of Internal Medicine, 114, 1027–1034.

    PubMed  Google Scholar 

  • Casanova, M. F. (2007). The neuropathology of autism. Brain Pathology (Zurich, Switzerland), 17, 422–433. doi:10.1111/j.1750-3639.2007.00100.x.

    Google Scholar 

  • Catani, M., Jones, D. K., Daly, E., Embiricos, N., Deeley, Q., Pugliese, L., et al. (2008). Altered cerebellar feedback projections in Asperger syndrome. NeuroImage, 41, 1184–1191. doi:10.1016/j.neuroimage.2008.03.041.

    Article  PubMed  Google Scholar 

  • Cleavinger, H. B., Bigler, E. D., Johnson, J. L., Lu, J., McMahon, W., & Lainhart, J. E. (2008). Quantitative magnetic resonance image analysis of the cerebellum in macrocephalic and normocephalic children and adults with autism. Journal of the International Neuropsychological Society, 14, 401–413. doi:10.1017/S1355617708080594.

    Article  PubMed  Google Scholar 

  • Cohen, D., Chambers, W., & Sprague, J. M. (1973). Experimental study of the efferent projections from the cerebellar nuclei to the brainstem of the cat. The Journal of Comparative Neurology, 109, 233–259. doi:10.1002/cne.901090207.

    Article  Google Scholar 

  • Cox, T. A., & Drewes, C. P. (1984). Contraction anisocoria resulting from half-field illumination. American Journal of Ophthalmology, 97, 577–582.

    PubMed  Google Scholar 

  • Crispino, L., & Bullock, T. H. (1984). Cerebellum mediate modality-specific modulation of sensory response of midbrain and forebrain in rat. Proceedings of the National Academy of Sciences of the United States of America, 81, 2917–2920. doi:10.1073/pnas.81.9.2917.

    Article  PubMed  Google Scholar 

  • Fan, X. F., Miles, J. H., Takahashi, N., & Yao, G. (2009). Sex-specific lateralization of constriction anisocoria in transient pupillary light reflex. Investigative Ophthalmology & Visual Science, 50, 1137–1144. doi:10.1167/iovs.08-2329.

    Article  Google Scholar 

  • Gamlin, P. D., & Clarke, R. J. (1995). The pupillary light reflex pathway of the primate. Journal of the American Optometric Association, 66, 415–418.

    PubMed  Google Scholar 

  • Hultborn, H., Mori, K., & Tsukahara, N. (1978). Cerebellar influence on parasympathetic neurons innervating intra-ocular muscle. Brain Research, 159, 269–278. doi:10.1016/0006-8993(78)90534-6.

    Article  PubMed  Google Scholar 

  • Ijichi, Y., Kiyohara, T., Hosoba, M., & Tsukahara, N. (1977). The cerebella control of pupillary light reflex in the cat. Brain Research, 128, 69–79. doi:10.1016/0006-8993(77)90236-0.

    Article  PubMed  Google Scholar 

  • Kahneman, D., Tursky, B., Shapiro, D., & Crider, A. (1969). Pupillary, heart rate, and skin resistance changes during a mental task. Journal of Experimental Psychology, 79, 164–167. doi:10.1037/h0026952.

    Article  PubMed  Google Scholar 

  • Kern, J. K. (2002). The possible role of the cerebellum in autism/PDD: Disruption of a multisensory feedback loop. Medical Hypotheses, 59, 255–260. doi:10.1016/S0306-9877(02)00212-8.

    Article  PubMed  Google Scholar 

  • Kupfer, C., Chumbley, L., & Downer, J. C. (1967). Quantitative histology of optic nerve, optic tract and lateral geniculate nucleus of man. Journal of Anatomy, 101, 393–401.

    PubMed  Google Scholar 

  • Loewenfeld, I. E. (1999). The pupil. Anatomy, physiology and clinical applications. Oxford: Butterworth-Heinemann.

    Google Scholar 

  • Lord, C., Rutter, M., & Couteur, A. L. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685. doi:10.1007/BF02172145.

    Article  PubMed  Google Scholar 

  • Lord, C., Risi, S., Lambrecht, L., Cook, E. H., Jr, Leventhal, B. L., DiLavore, P. C., et al. (2000). The autism diagnostic observation schedule–generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 205–223. doi:10.1023/A:1005592401947.

    Article  PubMed  Google Scholar 

  • Lowenstein, O., & Loewenfeld, I. E. (1950). Mutual role of sympathetic and parasympathetic in shaping of the pupillary reflex to light: Pupillographic studies. Archives of Neurology and Psychiatry, 64, 341–377.

    PubMed  Google Scholar 

  • Miles, J. H., Takahashi, T. N., Bagby, S., Sahota, P. K., Vaslow, D. F., Wang, C. H., et al. (2005). Essential versus complex autism: Definition of fundamental prognostic subtypes. American Journal of Medical Genetics. Part A, 135, 171–180. doi:10.1002/ajmg.a.30590.

    Article  PubMed  Google Scholar 

  • Ming, X., Julu, P. O. O., Brimacombe, M., Connor, S., & Daniels, M. L. (2005). Reduced cardiac parasympathetic activity in children with autism. Brain & Development, 27, 509–516. doi:10.1016/j.braindev.2005.01.003.

    Article  Google Scholar 

  • Palmen, S. J. (2004). Neuropathological findings in autism. Brain, 127, 2572–2583. doi:10.1093/brain/awh287.

    Article  PubMed  Google Scholar 

  • Pickett, J. P., & London, E. (2005). The neuropathology of autism: A review. Journal of Neuropathology and Experimental Neurology, 64, 925–935. doi:10.1097/01.jnen.0000186921.42592.6c.

    Article  PubMed  Google Scholar 

  • Pierson, R. J., & Carpenter, M. B. (1974). Anatomical analysis of pupillary reflex pathways in the rhesus monkey. The Journal of Comparative Neurology, 158, 121–144. doi:10.1002/cne.901580202.

    Article  PubMed  Google Scholar 

  • Rubin, L. S. (1961). Patterns of pupillary dilatation and constriction in psychotic adults and autistic children. The Journal of Nervous and Mental Disease, 133, 130–142. doi:10.1097/00005053-196108000-00009.

    Article  PubMed  Google Scholar 

  • Schmid, R., Wilhelm, B., & Wilhelm, H. (2000). Naso-temporal asymmetry and contraction anisocoria in the pupillomotor system. Graefes Archive for Clinical and Experimental Ophthalmology, 238, 123–128. doi:10.1007/PL00007879.

    Article  Google Scholar 

  • Smith, S., Ellis, C., & Smith, S. (1979). Inequality of the direct and consensual light reflexes in normal subjects. The British Journal of Ophthalmology, 63, 523–527. doi:10.1136/bjo.63.7.523.

    Article  PubMed  Google Scholar 

  • Tsukahara, N., Kiyohara, T., & Ijichi, Y. (1973). The mode of cerebellar control of pupillary light reflex. Brain Research, 60, 244–248. doi:10.1016/0006-8993(73)90864-0.

    Article  PubMed  Google Scholar 

  • Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.

    Google Scholar 

  • van Diemen, H. A., van Dongen, M. M., Nauta, J. J., Lanting, P., & Polman, C. H. (1992). Pupillary light reflex latency in patients with multiple sclerosis. Electroencephalography and Clinical Neurophysiology, 82, 213–219. doi:10.1016/0013-4694(92)90170-M.

    Article  PubMed  Google Scholar 

  • van Engeland, H., Roelofs, J. W., Verbaten, M. N., & Slangen, J. L. (1991). Abnormal electrodermal reactivity to novel visual stimuli in autistic children. Psychiatry Research, 38, 27–38. doi:10.1016/0165-1781(91)90050-Y.

    Article  PubMed  Google Scholar 

  • Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J. T., Abrahams, B. S., Salyakina, D., Imielinski, M., Bradfield, J. P., Sleiman, P. M., Kim, C. E., Hou, C., Frackelton, E., Chiavacci, R., Takahashi, N., Sakurai, T., Rappaport, E., Lajonchere, C. M., Munson, J., Estes, A., Korvatska, O., Piven, J., Sonnenblick, L. I., & Alvarez Retuerto, A. I., Herman, E. I., Dong, H., Hutman, T., Sigman, M., Ozonoff, S., Klin, A., Owley, T., Sweeney, J. A., Brune, C. W., Cantor, R. M., Bernier, R., Gilbert, J. R., Cuccaro, M. L., McMahon, W. M., Miller, J., State, M. W., Wassink, T. H., Coon, H., Levy, S. E., Schultz, R. T., Nurnberger, J. I., Haines, J. L., Sutcliffe, J. S., Cook, E. H., Minshew, N. J., Buxbaum, J. D., Dawson, G., Grant, S. F., Geschwind, D. H., Pericak-Vance, M. A., Schellenberg, G. D., & Hakonarson, H. (2009). Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature. doi:10.1038/nature07999.

  • Wyatt, H. J., & Musselman, J. F. (1981). Pupillary light reflex in humans: Evidence for an unbalanced pathway from nasal retina, and for signal cancellation in brainstem. Vision Research, 21, 513–525. doi:10.1016/0042-6989(81)90097-3.

    Article  PubMed  Google Scholar 

  • Yu, M., Kautz, M. A., Thomas, M. L., Johnson, D., Hotchkiss, E. R., & Russo, M. B. (2007). Operational implications of varying ambient light levels and time-of-day effects on saccadic velocity and pupillary light reflex. Ophthalmic & Physiological Optics, 27, 130–141. doi:10.1111/j.1475-1313.2006.00450.x.

    Article  Google Scholar 

  • Zeegers, M., van Der Grond, J., Durston, S., Nievelstein, R. J., Witkamp, T., van Daalen, E., et al. (2006). Radiological findings in autistic and developmentally delayed children. Brain & Development, 28, 495–499. doi:10.1016/j.braindev.2006.02.006.

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported by a research grant from the Wallace H. Coulter Foundation. The authors thank Dr. Bo Lei for his help with vision exams in a portion of the participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, X., Miles, J.H., Takahashi, N. et al. Abnormal Transient Pupillary Light Reflex in Individuals with Autism Spectrum Disorders. J Autism Dev Disord 39, 1499–1508 (2009). https://doi.org/10.1007/s10803-009-0767-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10803-009-0767-7

Keywords

Navigation