Skip to main content
Erschienen in: Journal of Interventional Cardiac Electrophysiology 1/2013

01.06.2013 | Reviews

Genetics of congenital and drug-induced long QT syndromes: current evidence and future research perspectives

verfasst von: Saagar Mahida, Andrew J. Hogarth, Campbell Cowan, Muzahir H. Tayebjee, Lee N. Graham, Christopher B. Pepper

Erschienen in: Journal of Interventional Cardiac Electrophysiology | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

The long QT syndrome (LQTS) is a condition characterized by abnormal prolongation of the QT interval with an associated risk of ventricular arrhythmias and sudden cardiac death. Congenital forms of LQTS arise due to rare and highly penetrant mutations that segregate in a Mendelian fashion. Over the years, multiple mutations in genes encoding ion channels and ion channel binding proteins have been reported to underlie congenital LQTS. Drugs are by far the most common cause of acquired forms of LQTS. Emerging evidence suggests that drug-induced LQTS also has a significant heritable component. However, the genetic substrate underlying drug-induced LQTS is presently largely unknown. In recent years, advances in next-generation sequencing technology and molecular biology techniques have significantly enhanced our ability to identify genetic variants underlying both monogenic diseases and more complex traits. In this review, we discuss the genetic basis of congenital and drug-induced LQTS and focus on future avenues of research in the field. Ultimately, a detailed characterization of the genetic substrate underlying congenital and drug-induced LQTS will enhance risk stratification and potentially result in the development of tailored genotype-based therapies.
Literatur
1.
Zurück zum Zitat Kannankeril, P., Roden, D. M., & Darbar, D. (2010). Drug-induced long QT syndrome. Pharmacological Reviews, 62(4), 760–781.PubMedCrossRef Kannankeril, P., Roden, D. M., & Darbar, D. (2010). Drug-induced long QT syndrome. Pharmacological Reviews, 62(4), 760–781.PubMedCrossRef
2.
Zurück zum Zitat Jervell, A., & Lange-Nielsen, F. (1957). Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. American Heart Journal, 54(1), 59–68.PubMedCrossRef Jervell, A., & Lange-Nielsen, F. (1957). Congenital deaf-mutism, functional heart disease with prolongation of the Q-T interval and sudden death. American Heart Journal, 54(1), 59–68.PubMedCrossRef
3.
Zurück zum Zitat Romano, C., Gemme, G., & Pongiglione, R. (1963). Rare cardiac arrythmias of the pediatric age. II. Syncopal attacks due to paroxysmal ventricular fibrillation. Presentation of 1st case in Italian pediatric literature. Clinical Pediatrics Bologna, 45, 656–683. Romano, C., Gemme, G., & Pongiglione, R. (1963). Rare cardiac arrythmias of the pediatric age. II. Syncopal attacks due to paroxysmal ventricular fibrillation. Presentation of 1st case in Italian pediatric literature. Clinical Pediatrics Bologna, 45, 656–683.
4.
Zurück zum Zitat Ward, O. C. (1964). A new familial cardiac syndrome in children. Journal of the Irish Medical Association, 54, 103–106.PubMed Ward, O. C. (1964). A new familial cardiac syndrome in children. Journal of the Irish Medical Association, 54, 103–106.PubMed
5.
Zurück zum Zitat Wang, Q., Curran, M. E., Splawski, I., Burn, T. C., Millholland, J. M., VanRaay, T. J., et al. (1996). Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genetics, 12(1), 17–23.PubMedCrossRef Wang, Q., Curran, M. E., Splawski, I., Burn, T. C., Millholland, J. M., VanRaay, T. J., et al. (1996). Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genetics, 12(1), 17–23.PubMedCrossRef
6.
Zurück zum Zitat Curran, M. E., Splawski, I., Timothy, K. W., Vincent, G. M., Green, E. D., & Keating, M. T. (1995). A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell, 80(5), 795–803.PubMedCrossRef Curran, M. E., Splawski, I., Timothy, K. W., Vincent, G. M., Green, E. D., & Keating, M. T. (1995). A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell, 80(5), 795–803.PubMedCrossRef
7.
Zurück zum Zitat Ruan, Y., Liu, N., Napolitano, C., & Priori, S. G. (2008). Therapeutic strategies for long-QT syndrome: does the molecular substrate matter? Circulation. Arrhythmia and Electrophysiology, 1(4), 290–297.PubMedCrossRef Ruan, Y., Liu, N., Napolitano, C., & Priori, S. G. (2008). Therapeutic strategies for long-QT syndrome: does the molecular substrate matter? Circulation. Arrhythmia and Electrophysiology, 1(4), 290–297.PubMedCrossRef
8.
Zurück zum Zitat Mohler, P. J., Schott, J. J., Gramolini, A. O., Dilly, K. W., Guatimosim, S., duBell, W. H., et al. (2003). Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature, 421(6923), 634–639.PubMedCrossRef Mohler, P. J., Schott, J. J., Gramolini, A. O., Dilly, K. W., Guatimosim, S., duBell, W. H., et al. (2003). Ankyrin-B mutation causes type 4 long-QT cardiac arrhythmia and sudden cardiac death. Nature, 421(6923), 634–639.PubMedCrossRef
9.
Zurück zum Zitat Schulze-Bahr, E., Wang, Q., Wedekind, H., Haverkamp, W., Chen, Q., Sun, Y., et al. (1997). KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nature Genetics, 17(3), 267–268.PubMedCrossRef Schulze-Bahr, E., Wang, Q., Wedekind, H., Haverkamp, W., Chen, Q., Sun, Y., et al. (1997). KCNE1 mutations cause jervell and Lange-Nielsen syndrome. Nature Genetics, 17(3), 267–268.PubMedCrossRef
10.
Zurück zum Zitat Abbott, G. W., Sesti, F., Splawski, I., Buck, M. E., Lehmann, M. H., Timothy, K. W., et al. (1999). MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell, 97(2), 175–187.PubMedCrossRef Abbott, G. W., Sesti, F., Splawski, I., Buck, M. E., Lehmann, M. H., Timothy, K. W., et al. (1999). MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell, 97(2), 175–187.PubMedCrossRef
11.
Zurück zum Zitat Plaster, N. M., Tawil, R., Tristani-Firouzi, M., Canun, S., Bendahhou, S., Tsunoda, A., et al. (2001). Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell, 105(4), 511–519.PubMedCrossRef Plaster, N. M., Tawil, R., Tristani-Firouzi, M., Canun, S., Bendahhou, S., Tsunoda, A., et al. (2001). Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell, 105(4), 511–519.PubMedCrossRef
12.
Zurück zum Zitat Splawski, I., Shen, J., Timothy, K. W., Lehmann, M. H., Priori, S., Robinson, J. L., et al. (2000). Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation, 102(10), 1178–1185.PubMedCrossRef Splawski, I., Shen, J., Timothy, K. W., Lehmann, M. H., Priori, S., Robinson, J. L., et al. (2000). Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation, 102(10), 1178–1185.PubMedCrossRef
13.
Zurück zum Zitat Vatta, M., Ackerman, M. J., Ye, B., Makielski, J. C., Ughanze, E. E., Taylor, E. W., et al. (2006). Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation, 114(20), 2104–2112.PubMedCrossRef Vatta, M., Ackerman, M. J., Ye, B., Makielski, J. C., Ughanze, E. E., Taylor, E. W., et al. (2006). Mutant caveolin-3 induces persistent late sodium current and is associated with long-QT syndrome. Circulation, 114(20), 2104–2112.PubMedCrossRef
14.
Zurück zum Zitat Medeiros-Domingo, A., Kaku, T., Tester, D. J., Iturralde-Torres, P., Itty, A., Ye, B., et al. (2007). SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation, 116(2), 134–142.PubMedCrossRef Medeiros-Domingo, A., Kaku, T., Tester, D. J., Iturralde-Torres, P., Itty, A., Ye, B., et al. (2007). SCN4B-encoded sodium channel beta4 subunit in congenital long-QT syndrome. Circulation, 116(2), 134–142.PubMedCrossRef
15.
Zurück zum Zitat Chen, L., Marquardt, M. L., Tester, D. J., Sampson, K. J., Ackerman, M. J., & Kass, R. S. (2007). Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20990–20995.PubMedCrossRef Chen, L., Marquardt, M. L., Tester, D. J., Sampson, K. J., Ackerman, M. J., & Kass, R. S. (2007). Mutation of an A-kinase-anchoring protein causes long-QT syndrome. Proceedings of the National Academy of Sciences of the United States of America, 104(52), 20990–20995.PubMedCrossRef
16.
Zurück zum Zitat Ueda, K., Valdivia, C., Medeiros-Domingo, A., Tester, D. J., Vatta, M., Farrugia, G., et al. (2008). Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proceedings of the National Academy of Sciences of the United States of America, 105(27), 9355–9360.PubMedCrossRef Ueda, K., Valdivia, C., Medeiros-Domingo, A., Tester, D. J., Vatta, M., Farrugia, G., et al. (2008). Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex. Proceedings of the National Academy of Sciences of the United States of America, 105(27), 9355–9360.PubMedCrossRef
17.
Zurück zum Zitat Yang, Y., Liang, B., Liu, J., Li, J., Grunnet, M., Olesen, S. P., et al. (2010). Identification of a Kir3.4 mutation in congenital long QT syndrome. American Journal of Human Genetics, 86(6), 872–880.PubMedCrossRef Yang, Y., Liang, B., Liu, J., Li, J., Grunnet, M., Olesen, S. P., et al. (2010). Identification of a Kir3.4 mutation in congenital long QT syndrome. American Journal of Human Genetics, 86(6), 872–880.PubMedCrossRef
18.
Zurück zum Zitat Crumb, W., & Cavero, I. I. (1999). QT interval prolongation by non-cardiovascular drugs: issues and solutions for novel drug development. Pharmacology Science Technology Today, 2(7), 270–280.CrossRef Crumb, W., & Cavero, I. I. (1999). QT interval prolongation by non-cardiovascular drugs: issues and solutions for novel drug development. Pharmacology Science Technology Today, 2(7), 270–280.CrossRef
19.
Zurück zum Zitat Roden, D. M. (2004). Drug-induced prolongation of the QT interval. The New England Journal of Medicine, 350(10), 1013–1022.PubMedCrossRef Roden, D. M. (2004). Drug-induced prolongation of the QT interval. The New England Journal of Medicine, 350(10), 1013–1022.PubMedCrossRef
20.
Zurück zum Zitat Roden, D. M. (2011). Personalized medicine and the genotype-phenotype dilemma. Journal of Interventional Cardiac Electrophysiology, 31(1), 17–23.PubMedCrossRef Roden, D. M. (2011). Personalized medicine and the genotype-phenotype dilemma. Journal of Interventional Cardiac Electrophysiology, 31(1), 17–23.PubMedCrossRef
21.
Zurück zum Zitat Keating, M., Atkinson, D., Dunn, C., Timothy, K., Vincent, G. M., & Leppert, M. (1991). Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science, 252(5006), 704–706.PubMedCrossRef Keating, M., Atkinson, D., Dunn, C., Timothy, K., Vincent, G. M., & Leppert, M. (1991). Linkage of a cardiac arrhythmia, the long QT syndrome, and the Harvey ras-1 gene. Science, 252(5006), 704–706.PubMedCrossRef
22.
Zurück zum Zitat Ott, J. (Ed.). (1991). Analysis of human genetic linkage. Baltimore: The John Hopkins University Press. Ott, J. (Ed.). (1991). Analysis of human genetic linkage. Baltimore: The John Hopkins University Press.
23.
Zurück zum Zitat Kuhlenbaumer, G., Hullmann, J., & Appenzeller, S. (2011). Novel genomic techniques open new avenues in the analysis of monogenic disorders. Human Mutation, 32(2), 144–151.PubMedCrossRef Kuhlenbaumer, G., Hullmann, J., & Appenzeller, S. (2011). Novel genomic techniques open new avenues in the analysis of monogenic disorders. Human Mutation, 32(2), 144–151.PubMedCrossRef
24.
Zurück zum Zitat Tester, D. J., Will, M. L., Haglund, C. M., & Ackerman, M. J. (2005). Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm, 2(5), 507–517.PubMedCrossRef Tester, D. J., Will, M. L., Haglund, C. M., & Ackerman, M. J. (2005). Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm, 2(5), 507–517.PubMedCrossRef
25.
Zurück zum Zitat Shimizu, W. (2008). Clinical impact of genetic studies in lethal inherited cardiac arrhythmias. Circulation Journal, 72(12), 1926–1936.PubMedCrossRef Shimizu, W. (2008). Clinical impact of genetic studies in lethal inherited cardiac arrhythmias. Circulation Journal, 72(12), 1926–1936.PubMedCrossRef
26.
Zurück zum Zitat Wang, Q., Shen, J., Splawski, I., Atkinson, D., Li, Z., Robinson, J. L., et al. (1995). SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell, 80(5), 805–811.PubMedCrossRef Wang, Q., Shen, J., Splawski, I., Atkinson, D., Li, Z., Robinson, J. L., et al. (1995). SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell, 80(5), 805–811.PubMedCrossRef
27.
Zurück zum Zitat Tester, D. J., & Ackerman, M. J. (2011). Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation, 123(9), 1021–1037.PubMedCrossRef Tester, D. J., & Ackerman, M. J. (2011). Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation, 123(9), 1021–1037.PubMedCrossRef
28.
Zurück zum Zitat Splawski, I., Timothy, K. W., Sharpe, L. M., Decher, N., Kumar, P., Bloise, R., et al. (2004). Ca (V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell, 119(1), 19–31.PubMedCrossRef Splawski, I., Timothy, K. W., Sharpe, L. M., Decher, N., Kumar, P., Bloise, R., et al. (2004). Ca (V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell, 119(1), 19–31.PubMedCrossRef
29.
Zurück zum Zitat Yang, Y., Liang, B., Liu, J., Li, J., Grunnet, M., Olesen, S. P., et al. (2010). Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet, 86(6), 872–880.PubMedCrossRef Yang, Y., Liang, B., Liu, J., Li, J., Grunnet, M., Olesen, S. P., et al. (2010). Identification of a Kir3.4 mutation in congenital long QT syndrome. Am J Hum Genet, 86(6), 872–880.PubMedCrossRef
30.
Zurück zum Zitat Norton, N., Robertson, P. D., Rieder, M. J., Zuchner, S., Rampersaud, E., Martin, E., et al. (2012). Evaluating pathogenicity of rare variants from dilated cardiomyopathy in the exome era. Circulation. Cardiovascular Genetics, 5(2), 167–174.PubMedCrossRef Norton, N., Robertson, P. D., Rieder, M. J., Zuchner, S., Rampersaud, E., Martin, E., et al. (2012). Evaluating pathogenicity of rare variants from dilated cardiomyopathy in the exome era. Circulation. Cardiovascular Genetics, 5(2), 167–174.PubMedCrossRef
31.
Zurück zum Zitat Shah, M., Akar, F. G., & Tomaselli, G. F. (2005). Molecular basis of arrhythmias. Circulation, 112(16), 2517–2529.PubMedCrossRef Shah, M., Akar, F. G., & Tomaselli, G. F. (2005). Molecular basis of arrhythmias. Circulation, 112(16), 2517–2529.PubMedCrossRef
32.
Zurück zum Zitat Napolitano, C. (2012). Genetic testing of inherited arrhythmias. Pediatric Cardiology, 33(6), 980–987.PubMedCrossRef Napolitano, C. (2012). Genetic testing of inherited arrhythmias. Pediatric Cardiology, 33(6), 980–987.PubMedCrossRef
33.
Zurück zum Zitat Manolio, T. A. (2010). Genomewide association studies and assessment of the risk of disease. The New England Journal of Medicine, 363(2), 166–176.PubMedCrossRef Manolio, T. A. (2010). Genomewide association studies and assessment of the risk of disease. The New England Journal of Medicine, 363(2), 166–176.PubMedCrossRef
34.
Zurück zum Zitat Pfeufer, A., Sanna, S., Arking, D. E., Muller, M., Gateva, V., Fuchsberger, C., et al. (2009). Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nature Genetics, 41(4), 407–414.PubMedCrossRef Pfeufer, A., Sanna, S., Arking, D. E., Muller, M., Gateva, V., Fuchsberger, C., et al. (2009). Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nature Genetics, 41(4), 407–414.PubMedCrossRef
35.
Zurück zum Zitat Newton-Cheh, C., Eijgelsheim, M., Rice, K. M., de Bakker, P. I., Yin, X., Estrada, K., et al. (2009). Common variants at ten loci influence QT interval duration in the QTGEN Study. Nature Genetics, 41(4), 399–406.PubMedCrossRef Newton-Cheh, C., Eijgelsheim, M., Rice, K. M., de Bakker, P. I., Yin, X., Estrada, K., et al. (2009). Common variants at ten loci influence QT interval duration in the QTGEN Study. Nature Genetics, 41(4), 399–406.PubMedCrossRef
36.
Zurück zum Zitat Arking, D. E., Pfeufer, A., Post, W., Kao, W. H., Newton-Cheh, C., Ikeda, M., et al. (2006). A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nature Genetics, 38(6), 644–651.PubMedCrossRef Arking, D. E., Pfeufer, A., Post, W., Kao, W. H., Newton-Cheh, C., Ikeda, M., et al. (2006). A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nature Genetics, 38(6), 644–651.PubMedCrossRef
37.
Zurück zum Zitat Crotti, L., Monti, M. C., Insolia, R., Peljto, A., Goosen, A., Brink, P. A., et al. (2009). NOS1AP is a genetic modifier of the long-QT syndrome. Circulation, 120(17), 1657–1663.PubMedCrossRef Crotti, L., Monti, M. C., Insolia, R., Peljto, A., Goosen, A., Brink, P. A., et al. (2009). NOS1AP is a genetic modifier of the long-QT syndrome. Circulation, 120(17), 1657–1663.PubMedCrossRef
38.
Zurück zum Zitat Tomas, M., Napolitano, C., De Giuli, L., Bloise, R., Subirana, I., Malovini, A., et al. (2010). Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. Journal of the American College of Cardiology, 55(24), 2745–2752.PubMedCrossRef Tomas, M., Napolitano, C., De Giuli, L., Bloise, R., Subirana, I., Malovini, A., et al. (2010). Polymorphisms in the NOS1AP gene modulate QT interval duration and risk of arrhythmias in the long QT syndrome. Journal of the American College of Cardiology, 55(24), 2745–2752.PubMedCrossRef
39.
Zurück zum Zitat Lalonde, E., Albrecht, S., Ha, K. C., Jacob, K., Bolduc, N., Polychronakos, C., et al. (2010). Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Human Mutation, 31(8), 918–923.PubMedCrossRef Lalonde, E., Albrecht, S., Ha, K. C., Jacob, K., Bolduc, N., Polychronakos, C., et al. (2010). Unexpected allelic heterogeneity and spectrum of mutations in Fowler syndrome revealed by next-generation exome sequencing. Human Mutation, 31(8), 918–923.PubMedCrossRef
40.
Zurück zum Zitat Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve, H. I., et al. (2010). Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nature Genetics, 42(9), 790–793.PubMedCrossRef Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin, M. J., Gildersleeve, H. I., et al. (2010). Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nature Genetics, 42(9), 790–793.PubMedCrossRef
41.
Zurück zum Zitat Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., Dent, K. M., et al. (2010). Exome sequencing identifies the cause of a Mendelian disorder. Nature Genetics, 42(1), 30–35.PubMedCrossRef Ng, S. B., Buckingham, K. J., Lee, C., Bigham, A. W., Tabor, H. K., Dent, K. M., et al. (2010). Exome sequencing identifies the cause of a Mendelian disorder. Nature Genetics, 42(1), 30–35.PubMedCrossRef
42.
Zurück zum Zitat Roach, J. C., Glusman, G., Smit, A. F., Huff, C. D., Hubley, R., Shannon, P. T., et al. (2010). Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328(5978), 636–9.PubMedCrossRef Roach, J. C., Glusman, G., Smit, A. F., Huff, C. D., Hubley, R., Shannon, P. T., et al. (2010). Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science, 328(5978), 636–9.PubMedCrossRef
43.
Zurück zum Zitat Koboldt, D. C., Ding, L., Mardis, E. R., & Wilson, R. K. (2010). Challenges of sequencing human genomes. Briefings in Bioinformatics, 11(5), 484–498.PubMedCrossRef Koboldt, D. C., Ding, L., Mardis, E. R., & Wilson, R. K. (2010). Challenges of sequencing human genomes. Briefings in Bioinformatics, 11(5), 484–498.PubMedCrossRef
44.
Zurück zum Zitat Jons, C., O.-Uchi, J., O.-Uchi, J., Moss, A. J., Reumann, M., Rice, J. J., Goldenberg, I., et al. (2011). Use of mutant-specific ion channel characteristics for risk stratification of long QT syndrome patients. Science Translational Medicine, 3(76), 76ra28.PubMedCrossRef Jons, C., O.-Uchi, J., O.-Uchi, J., Moss, A. J., Reumann, M., Rice, J. J., Goldenberg, I., et al. (2011). Use of mutant-specific ion channel characteristics for risk stratification of long QT syndrome patients. Science Translational Medicine, 3(76), 76ra28.PubMedCrossRef
45.
Zurück zum Zitat Goldenberg, I., & Moss, A. J. (2008). Long QT syndrome. Journal of the American College of Cardiology, 51(24), 2291–300.PubMedCrossRef Goldenberg, I., & Moss, A. J. (2008). Long QT syndrome. Journal of the American College of Cardiology, 51(24), 2291–300.PubMedCrossRef
46.
Zurück zum Zitat Priori, S. G., Schwartz, P. J., Napolitano, C., Bloise, R., Ronchetti, E., Grillo, M., et al. (2003). Risk stratification in the long-QT syndrome. The New England Journal of Medicine, 348(19), 1866–74.PubMedCrossRef Priori, S. G., Schwartz, P. J., Napolitano, C., Bloise, R., Ronchetti, E., Grillo, M., et al. (2003). Risk stratification in the long-QT syndrome. The New England Journal of Medicine, 348(19), 1866–74.PubMedCrossRef
47.
Zurück zum Zitat Zareba, W., Moss, A. J., Locati, E. H., Lehmann, M. H., Peterson, D. R., Hall, W. J., et al. (2003). Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. Journal of the American College of Cardiology, 42(1), 103–1099.PubMedCrossRef Zareba, W., Moss, A. J., Locati, E. H., Lehmann, M. H., Peterson, D. R., Hall, W. J., et al. (2003). Modulating effects of age and gender on the clinical course of long QT syndrome by genotype. Journal of the American College of Cardiology, 42(1), 103–1099.PubMedCrossRef
48.
Zurück zum Zitat Costa, J., Lopes, C. M., Barsheshet, A., Moss, A. J., Migdalovich, D., Ouellet, G., et al. (2012). Combined assessment of sex- and mutation-specific information for risk stratification in type 1 long QT syndrome. Heart Rhythm, 9(6), 892–898.PubMedCrossRef Costa, J., Lopes, C. M., Barsheshet, A., Moss, A. J., Migdalovich, D., Ouellet, G., et al. (2012). Combined assessment of sex- and mutation-specific information for risk stratification in type 1 long QT syndrome. Heart Rhythm, 9(6), 892–898.PubMedCrossRef
49.
Zurück zum Zitat Migdalovich, D., Moss, A. J., Lopes, C. M., Costa, J., Ouellet, G., Barsheshet, A., et al. (2011). Mutation and gender-specific risk in type 2 long QT syndrome: implications for risk stratification for life-threatening cardiac events in patients with long QT syndrome. Heart Rhythm, 8(10), 1537–1543.PubMedCrossRef Migdalovich, D., Moss, A. J., Lopes, C. M., Costa, J., Ouellet, G., Barsheshet, A., et al. (2011). Mutation and gender-specific risk in type 2 long QT syndrome: implications for risk stratification for life-threatening cardiac events in patients with long QT syndrome. Heart Rhythm, 8(10), 1537–1543.PubMedCrossRef
50.
Zurück zum Zitat Moss, A. J., Shimizu, W., Wilde, A. A., Towbin, J. A., Zareba, W., Robinson, J. L., et al. (2007). Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation, 115(19), 2481–2489.PubMedCrossRef Moss, A. J., Shimizu, W., Wilde, A. A., Towbin, J. A., Zareba, W., Robinson, J. L., et al. (2007). Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation, 115(19), 2481–2489.PubMedCrossRef
51.
Zurück zum Zitat Shimizu, W., Horie, M., Ohno, S., Takenaka, K., Yamaguchi, M., Shimizu, M., et al. (2004). Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: multicenter study in Japan. Journal of the American College of Cardiology, 44(1), 117–125.PubMedCrossRef Shimizu, W., Horie, M., Ohno, S., Takenaka, K., Yamaguchi, M., Shimizu, M., et al. (2004). Mutation site-specific differences in arrhythmic risk and sensitivity to sympathetic stimulation in the LQT1 form of congenital long QT syndrome: multicenter study in Japan. Journal of the American College of Cardiology, 44(1), 117–125.PubMedCrossRef
52.
Zurück zum Zitat Moss, A. J., Zareba, W., Kaufman, E. S., Gartman, E., Peterson, D. R., Benhorin, J., et al. (2002). Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation, 105(7), 794–799.PubMedCrossRef Moss, A. J., Zareba, W., Kaufman, E. S., Gartman, E., Peterson, D. R., Benhorin, J., et al. (2002). Increased risk of arrhythmic events in long-QT syndrome with mutations in the pore region of the human ether-a-go-go-related gene potassium channel. Circulation, 105(7), 794–799.PubMedCrossRef
53.
Zurück zum Zitat Shimizu, W., Moss, A. J., Wilde, A. A., Towbin, J. A., Ackerman, M. J., January, C. T., et al. (2009). Genotype-phenotype aspects of type 2 long QT syndrome. Journal of the American College of Cardiology, 54(22), 2052–2062.PubMedCrossRef Shimizu, W., Moss, A. J., Wilde, A. A., Towbin, J. A., Ackerman, M. J., January, C. T., et al. (2009). Genotype-phenotype aspects of type 2 long QT syndrome. Journal of the American College of Cardiology, 54(22), 2052–2062.PubMedCrossRef
54.
Zurück zum Zitat Hoefen, R., Reumann, M., Goldenberg, I., Moss, A. J., Jin, O. U., Gu, Y., et al. (2012). In silico cardiac risk assessment in patients with long QT syndrome: type 1: clinical predictability of cardiac models. Journal of the American College of Cardiology, 60(21), 2182–2191.PubMedCrossRef Hoefen, R., Reumann, M., Goldenberg, I., Moss, A. J., Jin, O. U., Gu, Y., et al. (2012). In silico cardiac risk assessment in patients with long QT syndrome: type 1: clinical predictability of cardiac models. Journal of the American College of Cardiology, 60(21), 2182–2191.PubMedCrossRef
55.
Zurück zum Zitat Moss, A. J., & Goldenberg, I. (2008). Importance of knowing the genotype and the specific mutation when managing patients with long QT syndrome. Circulation. Arrhythmia and Electrophysiology, 1(3), 213–226. Discussion 226.PubMedCrossRef Moss, A. J., & Goldenberg, I. (2008). Importance of knowing the genotype and the specific mutation when managing patients with long QT syndrome. Circulation. Arrhythmia and Electrophysiology, 1(3), 213–226. Discussion 226.PubMedCrossRef
56.
Zurück zum Zitat Archer, S. L., & Rusch, N. J. (2001). Potassium channels in cardiovascular biology (p. 932). New York: Springer.CrossRef Archer, S. L., & Rusch, N. J. (2001). Potassium channels in cardiovascular biology (p. 932). New York: Springer.CrossRef
57.
Zurück zum Zitat Fernández-Ballester, G., Fernandez-Carvajal, A., González-Ros, J. M., & Ferrer-Montiel, A. (2011). Ionic channels as targets for drug design: a review on computational methods. Pharmaceutics, 3(4), 932–953.CrossRef Fernández-Ballester, G., Fernandez-Carvajal, A., González-Ros, J. M., & Ferrer-Montiel, A. (2011). Ionic channels as targets for drug design: a review on computational methods. Pharmaceutics, 3(4), 932–953.CrossRef
58.
Zurück zum Zitat Anson, B. D., Kolaja, K. L., & Kamp, T. J. (2011). Opportunities for use of human iPS cells in predictive toxicology. Clinical Pharmacology and Therapeutics, 89(5), 754–8.PubMedCrossRef Anson, B. D., Kolaja, K. L., & Kamp, T. J. (2011). Opportunities for use of human iPS cells in predictive toxicology. Clinical Pharmacology and Therapeutics, 89(5), 754–8.PubMedCrossRef
59.
Zurück zum Zitat Moretti, A., Bellin, M., Welling, A., Jung, C. B., Lam, J. T., Bott-Flugel, L., et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. The New England Journal of Medicine, 363(15), 1397–409.PubMedCrossRef Moretti, A., Bellin, M., Welling, A., Jung, C. B., Lam, J. T., Bott-Flugel, L., et al. (2010). Patient-specific induced pluripotent stem-cell models for long-QT syndrome. The New England Journal of Medicine, 363(15), 1397–409.PubMedCrossRef
60.
Zurück zum Zitat Yazawa, M., Hsueh, B., Jia, X., Pasca, A. M., Bernstein, J. A., Hallmayer, J., et al. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature, 471(7337), 230–234.PubMedCrossRef Yazawa, M., Hsueh, B., Jia, X., Pasca, A. M., Bernstein, J. A., Hallmayer, J., et al. (2011). Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature, 471(7337), 230–234.PubMedCrossRef
61.
Zurück zum Zitat Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., et al. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471(7337), 225–229.PubMedCrossRef Itzhaki, I., Maizels, L., Huber, I., Zwi-Dantsis, L., Caspi, O., Winterstern, A., et al. (2011). Modelling the long QT syndrome with induced pluripotent stem cells. Nature, 471(7337), 225–229.PubMedCrossRef
62.
Zurück zum Zitat Priori, S. G. (2011). Induced pluripotent stem cell-derived cardiomyocytes and long QT syndrome: is personalized medicine ready for prime time? Circulation Research, 109(8), 822–824.PubMedCrossRef Priori, S. G. (2011). Induced pluripotent stem cell-derived cardiomyocytes and long QT syndrome: is personalized medicine ready for prime time? Circulation Research, 109(8), 822–824.PubMedCrossRef
63.
Zurück zum Zitat Chiang, C. E., & Roden, D. M. (2000). The long QT syndromes: genetic basis and clinical implications. Journal of the American College of Cardiology, 36(1), 1–12.PubMedCrossRef Chiang, C. E., & Roden, D. M. (2000). The long QT syndromes: genetic basis and clinical implications. Journal of the American College of Cardiology, 36(1), 1–12.PubMedCrossRef
64.
Zurück zum Zitat Schwartz, P. J. (2011). Pharmacological and non-pharmacological management of the congenital long QT syndrome: the rationale. Pharmacology and Therapeutics, 131(1), 171–177.PubMedCrossRef Schwartz, P. J. (2011). Pharmacological and non-pharmacological management of the congenital long QT syndrome: the rationale. Pharmacology and Therapeutics, 131(1), 171–177.PubMedCrossRef
65.
Zurück zum Zitat Schwartz, P. J., Priori, S. G., Spazzolini, C., Moss, A. J., Vincent, G. M., Napolitano, C., et al. (2001). Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation, 103(1), 89–95.PubMedCrossRef Schwartz, P. J., Priori, S. G., Spazzolini, C., Moss, A. J., Vincent, G. M., Napolitano, C., et al. (2001). Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation, 103(1), 89–95.PubMedCrossRef
66.
Zurück zum Zitat Schwartz, P. J. (1985). Idiopathic long QT syndrome: progress and questions. American Heart Journal, 109(2), 399–411.PubMedCrossRef Schwartz, P. J. (1985). Idiopathic long QT syndrome: progress and questions. American Heart Journal, 109(2), 399–411.PubMedCrossRef
67.
Zurück zum Zitat Eldar, M., Griffin, J. C., Van Hare, G. F., Witherell, C., Bhandari, A., Benditt, D., et al. (1992). Combined use of beta-adrenergic blocking agents and long-term cardiac pacing for patients with the long QT syndrome. Journal of the American College of Cardiology, 20(4), 830–837.PubMedCrossRef Eldar, M., Griffin, J. C., Van Hare, G. F., Witherell, C., Bhandari, A., Benditt, D., et al. (1992). Combined use of beta-adrenergic blocking agents and long-term cardiac pacing for patients with the long QT syndrome. Journal of the American College of Cardiology, 20(4), 830–837.PubMedCrossRef
68.
Zurück zum Zitat Brugada, R., Hong, K., Cordeiro, J. M., & Dumaine, R. (2005). Short QT syndrome. CMAJ, 173(11), 1349–1354.PubMedCrossRef Brugada, R., Hong, K., Cordeiro, J. M., & Dumaine, R. (2005). Short QT syndrome. CMAJ, 173(11), 1349–1354.PubMedCrossRef
69.
Zurück zum Zitat Benhorin, J., Taub, R., Goldmit, M., Kerem, B., Kass, R. S., Windman, I., et al. (2000). Effects of flecainide in patients with new SCN5A mutation: mutation-specific therapy for long-QT syndrome? Circulation, 101(14), 1698–1706.PubMedCrossRef Benhorin, J., Taub, R., Goldmit, M., Kerem, B., Kass, R. S., Windman, I., et al. (2000). Effects of flecainide in patients with new SCN5A mutation: mutation-specific therapy for long-QT syndrome? Circulation, 101(14), 1698–1706.PubMedCrossRef
70.
Zurück zum Zitat Windle, J. R., Geletka, R. C., Moss, A. J., Zareba, W., & Atkins, D. L. (2001). Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A: DeltaKPQ mutation. Annals of Noninvasive Electrocardiology, 6(2), 153–158.PubMedCrossRef Windle, J. R., Geletka, R. C., Moss, A. J., Zareba, W., & Atkins, D. L. (2001). Normalization of ventricular repolarization with flecainide in long QT syndrome patients with SCN5A: DeltaKPQ mutation. Annals of Noninvasive Electrocardiology, 6(2), 153–158.PubMedCrossRef
71.
Zurück zum Zitat Ruan, Y., Liu, N., Bloise, R., Napolitano, C., & Priori, S. G. (2007). Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation, 116(10), 1137–1144.PubMedCrossRef Ruan, Y., Liu, N., Bloise, R., Napolitano, C., & Priori, S. G. (2007). Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation, 116(10), 1137–1144.PubMedCrossRef
72.
Zurück zum Zitat Shimizu, W., Kurita, T., Matsuo, K., Suyama, K., Aihara, N., Kamakura, S., et al. (1998). Improvement of repolarization abnormalities by a K+ channel opener in the LQT1 form of congenital long-QT syndrome. Circulation, 97(16), 1581–1588.PubMedCrossRef Shimizu, W., Kurita, T., Matsuo, K., Suyama, K., Aihara, N., Kamakura, S., et al. (1998). Improvement of repolarization abnormalities by a K+ channel opener in the LQT1 form of congenital long-QT syndrome. Circulation, 97(16), 1581–1588.PubMedCrossRef
73.
Zurück zum Zitat Nuyens, D., Stengl, M., Dugarmaa, S., Rossenbacker, T., Compernolle, V., Rudy, Y., et al. (2001). Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nature Medicine, 7(9), 1021–1027.PubMedCrossRef Nuyens, D., Stengl, M., Dugarmaa, S., Rossenbacker, T., Compernolle, V., Rudy, Y., et al. (2001). Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nature Medicine, 7(9), 1021–1027.PubMedCrossRef
74.
Zurück zum Zitat Kolossov, E., Lu, Z., Drobinskaya, I., Gassanov, N., Duan, Y., Sauer, H., et al. (2005). Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. The FASEB Journal, 19(6), 577–579. Kolossov, E., Lu, Z., Drobinskaya, I., Gassanov, N., Duan, Y., Sauer, H., et al. (2005). Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. The FASEB Journal, 19(6), 577–579.
75.
Zurück zum Zitat Peal, D. S., Mills, R. W., Lynch, S. N., Mosley, J. M., Lim, E., Ellinor, P. T., et al. (2011). Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation, 123(1), 23–30.PubMedCrossRef Peal, D. S., Mills, R. W., Lynch, S. N., Mosley, J. M., Lim, E., Ellinor, P. T., et al. (2011). Novel chemical suppressors of long QT syndrome identified by an in vivo functional screen. Circulation, 123(1), 23–30.PubMedCrossRef
76.
Zurück zum Zitat Witchel, H. J. (2011). Drug-induced hERG block and long QT syndrome. Cardiovascular Therapeutics, 29(4), 251–259.PubMedCrossRef Witchel, H. J. (2011). Drug-induced hERG block and long QT syndrome. Cardiovascular Therapeutics, 29(4), 251–259.PubMedCrossRef
77.
Zurück zum Zitat Reppel, M., Igelmund, P., Egert, U., Juchelka, F., Hescheler, J., & Drobinskaya, I. (2007). Effect of cardioactive drugs on action potential generation and propagation in embryonic stem cell-derived cardiomyocytes. Cellular Physiology and Biochemistry, 19(5–6), 213–224.PubMed Reppel, M., Igelmund, P., Egert, U., Juchelka, F., Hescheler, J., & Drobinskaya, I. (2007). Effect of cardioactive drugs on action potential generation and propagation in embryonic stem cell-derived cardiomyocytes. Cellular Physiology and Biochemistry, 19(5–6), 213–224.PubMed
78.
Zurück zum Zitat Malan, D., Friedrichs, S., Fleischmann, B. K., & Sasse, P. (2011). Cardiomyocytes obtained from induced pluripotent stem cells with long-QT syndrome 3 recapitulate typical disease-specific features in vitro. Circulation Research, 109(8), 841–847.PubMedCrossRef Malan, D., Friedrichs, S., Fleischmann, B. K., & Sasse, P. (2011). Cardiomyocytes obtained from induced pluripotent stem cells with long-QT syndrome 3 recapitulate typical disease-specific features in vitro. Circulation Research, 109(8), 841–847.PubMedCrossRef
79.
Zurück zum Zitat Newton-Cheh, C., & Shah, R. (2007). Genetic determinants of QT interval variation and sudden cardiac death. Current Opinion in Genetics and Development, 17(3), 213–221.PubMedCrossRef Newton-Cheh, C., & Shah, R. (2007). Genetic determinants of QT interval variation and sudden cardiac death. Current Opinion in Genetics and Development, 17(3), 213–221.PubMedCrossRef
80.
Zurück zum Zitat Roden, D. M. (2005). An underrecognized challenge in evaluating postmarketing drug safety. Circulation, 111(3), 246–248.PubMedCrossRef Roden, D. M. (2005). An underrecognized challenge in evaluating postmarketing drug safety. Circulation, 111(3), 246–248.PubMedCrossRef
81.
82.
Zurück zum Zitat Roden, D. M. (2008). Repolarization reserve: a moving target. Circulation, 118(10), 981–982.PubMedCrossRef Roden, D. M. (2008). Repolarization reserve: a moving target. Circulation, 118(10), 981–982.PubMedCrossRef
83.
Zurück zum Zitat Kannankeril, P. J., Roden, D. M., Norris, K. J., Whalen, S. P., George, A. L., Jr., & Murray, K. T. (2005). Genetic susceptibility to acquired long QT syndrome: pharmacologic challenge in first-degree relatives. Heart Rhythm, 2(2), 134–140.PubMedCrossRef Kannankeril, P. J., Roden, D. M., Norris, K. J., Whalen, S. P., George, A. L., Jr., & Murray, K. T. (2005). Genetic susceptibility to acquired long QT syndrome: pharmacologic challenge in first-degree relatives. Heart Rhythm, 2(2), 134–140.PubMedCrossRef
84.
Zurück zum Zitat Ackerman, M. J. (1998). The long QT syndrome: ion channel diseases of the heart. Mayo Clinic Proceedings, 73(3), 250–269.PubMedCrossRef Ackerman, M. J. (1998). The long QT syndrome: ion channel diseases of the heart. Mayo Clinic Proceedings, 73(3), 250–269.PubMedCrossRef
85.
Zurück zum Zitat Napolitano, C., Schwartz, P. J., Brown, A. M., Ronchetti, E., Bianchi, L., Pinnavaia, A., et al. (2000). Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. Journal of Cardiovascular Electrophysiology, 11(6), 691–696.PubMedCrossRef Napolitano, C., Schwartz, P. J., Brown, A. M., Ronchetti, E., Bianchi, L., Pinnavaia, A., et al. (2000). Evidence for a cardiac ion channel mutation underlying drug-induced QT prolongation and life-threatening arrhythmias. Journal of Cardiovascular Electrophysiology, 11(6), 691–696.PubMedCrossRef
86.
Zurück zum Zitat Donger, C., Denjoy, I., Berthet, M., Neyroud, N., Cruaud, C., Bennaceur, M., et al. (1997). KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation, 96(9), 2778–2781.PubMedCrossRef Donger, C., Denjoy, I., Berthet, M., Neyroud, N., Cruaud, C., Bennaceur, M., et al. (1997). KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation, 96(9), 2778–2781.PubMedCrossRef
87.
Zurück zum Zitat Piippo, K., Holmstrom, S., Swan, H., Viitasalo, M., Raatikka, M., Toivonen, L., et al. (2001). Effect of the antimalarial drug halofantrine in the long QT syndrome due to a mutation of the cardiac sodium channel gene SCN5A. The American Journal of Cardiology, 87(7), 909–911.PubMedCrossRef Piippo, K., Holmstrom, S., Swan, H., Viitasalo, M., Raatikka, M., Toivonen, L., et al. (2001). Effect of the antimalarial drug halofantrine in the long QT syndrome due to a mutation of the cardiac sodium channel gene SCN5A. The American Journal of Cardiology, 87(7), 909–911.PubMedCrossRef
88.
Zurück zum Zitat Makita, N., Horie, M., Nakamura, T., Ai, T., Sasaki, K., Yokoi, H., et al. (2002). Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation, 106(10), 1269–1274.PubMedCrossRef Makita, N., Horie, M., Nakamura, T., Ai, T., Sasaki, K., Yokoi, H., et al. (2002). Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation, 106(10), 1269–1274.PubMedCrossRef
89.
Zurück zum Zitat Priori, S. G., Napolitano, C., & Schwartz, P. J. (1999). Low penetrance in the long-QT syndrome: clinical impact. Circulation, 99(4), 529–533.PubMedCrossRef Priori, S. G., Napolitano, C., & Schwartz, P. J. (1999). Low penetrance in the long-QT syndrome: clinical impact. Circulation, 99(4), 529–533.PubMedCrossRef
90.
Zurück zum Zitat Yang, P., Kanki, H., Drolet, B., Yang, T., Wei, J., Viswanathan, P. C., et al. (2002). Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation, 105(16), 1943–1948.PubMedCrossRef Yang, P., Kanki, H., Drolet, B., Yang, T., Wei, J., Viswanathan, P. C., et al. (2002). Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation, 105(16), 1943–1948.PubMedCrossRef
91.
Zurück zum Zitat Splawski, I., Timothy, K. W., Tateyama, M., Clancy, C. E., Malhotra, A., Beggs, A. H., et al. (2002). Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science, 297(5585), 1333–1336.PubMedCrossRef Splawski, I., Timothy, K. W., Tateyama, M., Clancy, C. E., Malhotra, A., Beggs, A. H., et al. (2002). Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science, 297(5585), 1333–1336.PubMedCrossRef
92.
Zurück zum Zitat Wei, J., Yang, I. C., Tapper, A. R., Murray, K. T., Viswanathan, P., & Rudy, Y. (1999). KCNE1 polymorphism confers risk of drug-induced long QT syndrome by altering kinetic properties of IKs potassium channels [abstract]. Circulation, 100, 1–495.CrossRef Wei, J., Yang, I. C., Tapper, A. R., Murray, K. T., Viswanathan, P., & Rudy, Y. (1999). KCNE1 polymorphism confers risk of drug-induced long QT syndrome by altering kinetic properties of IKs potassium channels [abstract]. Circulation, 100, 1–495.CrossRef
93.
Zurück zum Zitat Sesti, F., Abbott, G. W., Wei, J., Murray, K. T., Saksena, S., Schwartz, P. J., et al. (2000). A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 97(19), 10613–10618.PubMedCrossRef Sesti, F., Abbott, G. W., Wei, J., Murray, K. T., Saksena, S., Schwartz, P. J., et al. (2000). A common polymorphism associated with antibiotic-induced cardiac arrhythmia. Proceedings of the National Academy of Sciences of the United States of America, 97(19), 10613–10618.PubMedCrossRef
94.
Zurück zum Zitat Daly, A. K. (2012). Using genome-wide association studies to identify genes important in serious adverse drug reactions. Annual Review of Pharmacology and Toxicology, 52, 21–35.PubMedCrossRef Daly, A. K. (2012). Using genome-wide association studies to identify genes important in serious adverse drug reactions. Annual Review of Pharmacology and Toxicology, 52, 21–35.PubMedCrossRef
95.
Zurück zum Zitat Volpi, S., Heaton, C., Mack, K., Hamilton, J. B., Lannan, R., Wolfgang, C. D., et al. (2009). Whole genome association study identifies polymorphisms associated with QT prolongation during iloperidone treatment of schizophrenia. Molecular Psychiatry, 14(11), 1024–1031.PubMedCrossRef Volpi, S., Heaton, C., Mack, K., Hamilton, J. B., Lannan, R., Wolfgang, C. D., et al. (2009). Whole genome association study identifies polymorphisms associated with QT prolongation during iloperidone treatment of schizophrenia. Molecular Psychiatry, 14(11), 1024–1031.PubMedCrossRef
96.
Zurück zum Zitat Jamshidi, Y., Nolte, I. M., Dalageorgou, C., Zheng, D., Johnson, T., Bastiaenen, R., et al. (2012). Common variation in the NOS1AP gene is associated with drug-induced QT prolongation and ventricular arrhythmia. Journal of the American College of Cardiology, 60(9), 841–850.PubMedCrossRef Jamshidi, Y., Nolte, I. M., Dalageorgou, C., Zheng, D., Johnson, T., Bastiaenen, R., et al. (2012). Common variation in the NOS1AP gene is associated with drug-induced QT prolongation and ventricular arrhythmia. Journal of the American College of Cardiology, 60(9), 841–850.PubMedCrossRef
97.
Zurück zum Zitat van Noord, C., Aarnoudse, A. J., Eijgelsheim, M., Sturkenboom, M. C., Straus, S. M., Hofman, A., et al. (2009). Calcium channel blockers, NOS1AP, and heart-rate-corrected QT prolongation. Pharmacogenetics and Genomics, 19(4), 260–266.PubMedCrossRef van Noord, C., Aarnoudse, A. J., Eijgelsheim, M., Sturkenboom, M. C., Straus, S. M., Hofman, A., et al. (2009). Calcium channel blockers, NOS1AP, and heart-rate-corrected QT prolongation. Pharmacogenetics and Genomics, 19(4), 260–266.PubMedCrossRef
98.
Zurück zum Zitat Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747–753.PubMedCrossRef Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., et al. (2009). Finding the missing heritability of complex diseases. Nature, 461(7265), 747–753.PubMedCrossRef
99.
Zurück zum Zitat Kiezun, A., Garimella, K., Do, R., Stitziel, N. O., Neale, B. M., McLaren, P. J., et al. (2012). Exome sequencing and the genetic basis of complex traits. Nature Genetics, 44(6), 623–630.PubMedCrossRef Kiezun, A., Garimella, K., Do, R., Stitziel, N. O., Neale, B. M., McLaren, P. J., et al. (2012). Exome sequencing and the genetic basis of complex traits. Nature Genetics, 44(6), 623–630.PubMedCrossRef
100.
Zurück zum Zitat Gowda, R. M., Khan, I. A., Wilbur, S. L., Vasavada, B. C., & Sacchi, T. J. (2004). Torsade de pointes: the clinical considerations. International Journal of Cardiology, 96(1), 1–6.PubMedCrossRef Gowda, R. M., Khan, I. A., Wilbur, S. L., Vasavada, B. C., & Sacchi, T. J. (2004). Torsade de pointes: the clinical considerations. International Journal of Cardiology, 96(1), 1–6.PubMedCrossRef
101.
Zurück zum Zitat Gowda, R. M., Khan, I. A., Punukollu, G., Vasavada, B. C., Sacchi, T. J., & Wilbur, S. L. (2004). Female preponderance in ibutilide-induced torsade de pointes. International Journal of Cardiology, 95(2–3), 219–222.PubMedCrossRef Gowda, R. M., Khan, I. A., Punukollu, G., Vasavada, B. C., Sacchi, T. J., & Wilbur, S. L. (2004). Female preponderance in ibutilide-induced torsade de pointes. International Journal of Cardiology, 95(2–3), 219–222.PubMedCrossRef
102.
Zurück zum Zitat Heist, E. K., & Ruskin, J. N. (2005). Drug-induced proarrhythmia and use of QTc-prolonging agents: clues for clinicians. Heart Rhythm, 2(2), 1–8.CrossRef Heist, E. K., & Ruskin, J. N. (2005). Drug-induced proarrhythmia and use of QTc-prolonging agents: clues for clinicians. Heart Rhythm, 2(2), 1–8.CrossRef
103.
Zurück zum Zitat Viskin, S., Justo, D., Halkin, A., & Zeltser, D. (2003). Long QT syndrome caused by noncardiac drugs. Progress in Cardiovascular Diseases, 45(5), 415–427.PubMed Viskin, S., Justo, D., Halkin, A., & Zeltser, D. (2003). Long QT syndrome caused by noncardiac drugs. Progress in Cardiovascular Diseases, 45(5), 415–427.PubMed
104.
Zurück zum Zitat Yap, Y. G., & Camm, A. J. (2003). Drug induced QT prolongation and torsades de pointes. Heart, 89(11), 1363–1372.PubMedCrossRef Yap, Y. G., & Camm, A. J. (2003). Drug induced QT prolongation and torsades de pointes. Heart, 89(11), 1363–1372.PubMedCrossRef
105.
Zurück zum Zitat Gupta, A., Lawrence, A. T., Krishnan, K., Kavinsky, C. J., & Trohman, R. G. (2007). Current concepts in the mechanisms and management of drug-induced QT prolongation and torsade de pointes. American Heart Journal, 153(6), 891–899.PubMedCrossRef Gupta, A., Lawrence, A. T., Krishnan, K., Kavinsky, C. J., & Trohman, R. G. (2007). Current concepts in the mechanisms and management of drug-induced QT prolongation and torsade de pointes. American Heart Journal, 153(6), 891–899.PubMedCrossRef
106.
Zurück zum Zitat Kannankeril, P. J., & Roden, D. M. (2007). Drug-induced long QT and torsade de pointes: recent advances. Current Opinion in Cardiology, 22(1), 39–43.PubMedCrossRef Kannankeril, P. J., & Roden, D. M. (2007). Drug-induced long QT and torsade de pointes: recent advances. Current Opinion in Cardiology, 22(1), 39–43.PubMedCrossRef
107.
Zurück zum Zitat Johnson, J. A., Cavallari, L. H., Beitelshees, A. L., Lewis, J. P., Shuldiner, A. R., & Roden, D. M. (2011). Pharmacogenomics: application to the management of cardiovascular disease. Clinical Pharmacology and Therapeutics, 90(4), 519–531.PubMedCrossRef Johnson, J. A., Cavallari, L. H., Beitelshees, A. L., Lewis, J. P., Shuldiner, A. R., & Roden, D. M. (2011). Pharmacogenomics: application to the management of cardiovascular disease. Clinical Pharmacology and Therapeutics, 90(4), 519–531.PubMedCrossRef
108.
Zurück zum Zitat Collins, F. S., Brooks, L. D., & Chakravarti, A. (1998). A DNA polymorphism discovery resource for research on human genetic variation. Genome Research, 8(12), 1229–1231.PubMed Collins, F. S., Brooks, L. D., & Chakravarti, A. (1998). A DNA polymorphism discovery resource for research on human genetic variation. Genome Research, 8(12), 1229–1231.PubMed
109.
Zurück zum Zitat Yang, T., Snyders, D., & Roden, D. M. (2001). Drug block of I(kr): model systems and relevance to human arrhythmias. Journal of Cardiovascular Pharmacology, 38(5), 737–744.PubMedCrossRef Yang, T., Snyders, D., & Roden, D. M. (2001). Drug block of I(kr): model systems and relevance to human arrhythmias. Journal of Cardiovascular Pharmacology, 38(5), 737–744.PubMedCrossRef
110.
Zurück zum Zitat Shah, R. R. (2005). Pharmacogenetics in drug regulation: promise, potential and pitfalls. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1460), 1617–1638.PubMedCrossRef Shah, R. R. (2005). Pharmacogenetics in drug regulation: promise, potential and pitfalls. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1460), 1617–1638.PubMedCrossRef
111.
Zurück zum Zitat Shah, R. R. (2005). Drug-induced QT interval prolongation—regulatory guidance and perspectives on hERG channel studies. Novartis Foundation Symposium, 266, 251–280. Discussion 280–5.PubMedCrossRef Shah, R. R. (2005). Drug-induced QT interval prolongation—regulatory guidance and perspectives on hERG channel studies. Novartis Foundation Symposium, 266, 251–280. Discussion 280–5.PubMedCrossRef
112.
Zurück zum Zitat Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews. Drug Discovery, 3(8), 711–715.PubMedCrossRef Kola, I., & Landis, J. (2004). Can the pharmaceutical industry reduce attrition rates? Nature Reviews. Drug Discovery, 3(8), 711–715.PubMedCrossRef
Metadaten
Titel
Genetics of congenital and drug-induced long QT syndromes: current evidence and future research perspectives
verfasst von
Saagar Mahida
Andrew J. Hogarth
Campbell Cowan
Muzahir H. Tayebjee
Lee N. Graham
Christopher B. Pepper
Publikationsdatum
01.06.2013
Verlag
Springer US
Erschienen in
Journal of Interventional Cardiac Electrophysiology / Ausgabe 1/2013
Print ISSN: 1383-875X
Elektronische ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-013-9779-5

Weitere Artikel der Ausgabe 1/2013

Journal of Interventional Cardiac Electrophysiology 1/2013 Zur Ausgabe

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.