Skip to main content
Log in

Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Since the survival of ingrowing cells in biomaterials for regenerative processes largely depends on the supply of nutrients and oxygen, angiogenesis plays an important role in the development of new materials for tissue engineering. In this study we investigated the possibility of enhancing the angiogenic properties of collagen matrices by covalent incorporation of the vascular endothelial growth factor (VEGF). In a previous paper we already reported the use of homo- and heterobifunctional cross-linking agents for modifying collagen matrices [1].

In the present work the angiogenic growth factor was linked to the collagen with the homobifunctional cross-linker disuccinimidyldisuccinatepolyethyleneglycol (SS-PEG-SS) in a two step procedure. The efficiency of the first reaction step–the reaction of SS-PEG-SS with VEGF—was evaluated by western blot analysis. After 10 minutes virtually all of the dimeric molecules VEGF were on average modified by conjugation with 1 cross-linking molecule. The biological activity of the conjugate was investigated by exposing endothelial cells to non-modified VEGF and to VEGF conjugated to the cross-linker. The conjugation only had a limited effect on the mitogenic activity of VEGF. We therefore applied the cross-linking reaction to the VEGF-collagen system. In a first approach the changes were evaluated by the in vitro exposure of HUVECs to non-modified matrices, to matrices in which the VEGF was simply admixed and to matrices in which the VEGF was covalently incorporated. The angiogenic properties were evaluated in vivo with the chorioallantois membrane model. In this assay the chorioallantois membrane of the chicken embryo was exposed to the same set of matrices. The covalent incorporation of VEGF has a small but significant effect both on the formation of microvessels in the chorioallantois membrane and the tissue ingrowth into the implant. The covalent incorporation of angiogenic growth factors may thus be considered as a promising approach for enhancing the angiogenic capabilities of collagen matrices. Also the cross-linking with the homobifunctional cross-linking agent has a positive effect on the angiogenic potential of the collagen matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CM:

Collagen matrix

PBS:

Phosphate buffered saline

VEGF:

Vascular Endothelial Growth Factor

rhVEGF165 :

Recombinant human Vascular Endothelial Growth Factor (Splice variant with 165 amino acids)

SS-PEG-SS:

Disuccinimidyldisuccinatepolyethyleneglycol

PEG:

Polyethyleneglycol

VEGF-PEG:

VEGF conjugated to the PEG-derivative

SDS:

Sodiumdocedylsulfate

PAGE:

Polyacrylamidegelelectrophoresis

ELISA:

Enzyme Linked Immuno Sorbent Assay

HUVEC:

Human Umbilical Vascular Endothelial Cell

CAM:

Chorioallantoic membrane

References

  1. J.-S. Chen, E. M. Noah, N. Pallua and G. C. M. Steffens, J. Mat. Sc.: Mat. Med. 13 (2002) 1029.

    Article  CAS  Google Scholar 

  2. S. SOKER, M. MACHADO A. ATALA, World J Urol. 18 (2000) 10.

    Article  CAS  Google Scholar 

  3. M. NOMI, A. ATALA, P. D. COPPI S. SOKER, Mol Aspects Med 23 (2002) 463.

    CAS  Google Scholar 

  4. M. S. PEPPER, N. FERRARA, L. ORCI R. MONTESANO, Biochem Biophys Res Commun 181 (1991) 902.

    Article  CAS  Google Scholar 

  5. N. FERRARA, H. P. GERBER J. LECOUTER, Nat Med 9 (2003) 669.

    Article  CAS  Google Scholar 

  6. G. E. DAVIS, K. J. BAYLESS A. MAVILA, Anat Rec 268 (2002) 252.

    Article  CAS  Google Scholar 

  7. H. HALL, T. BAECHI J. A. HUBBELL, Microvasc Res 62 (2001) 315.

    Article  CAS  Google Scholar 

  8. R. ZEEMAN, Ph D Thesis, University of Twente, Enschede, The Netherlands (1998).

  9. F. DeLustro, R. A. Condell, M. A. Nguyen J. M. McPherson, J Biomed Mater Res 20 (1986) 109.

    Article  CAS  Google Scholar 

  10. J. HARDIN-YOUNG, R. M. CARR, G. DOWNING, K. CONDON P. L. TERMIN, Biotechn. Bioeng. 49 (1996) 675.

    Article  CAS  Google Scholar 

  11. H. BENTZ, J. A. SCHROEDER T. D. ESTRIDGE, J Biomed Mater Res 39 (1998) 539.

    Article  CAS  Google Scholar 

  12. M. J. WISSINK, R. BEERNINK, J. S. PIEPER, A. A. POOT, G. H. ENGBERS, T. BEUGELING, W. G. VAN AKEN J. FEIJEN, Biomaterials. 22 (2001) 2291.

    Article  CAS  Google Scholar 

  13. M. J. WISSINK, R. BEERNINK, N. M. SCHARENBORG, A. A. POOT, G. H. ENGBERS, T. BEUGELING, W. G. VAN AKEN J. FEIJEN, J Controlled Release. 67 (2000) 141.

    Article  CAS  Google Scholar 

  14. N. CHINEN, M. TANIHARA, M. NAKAGAWA, K. SHINOZAKI, E. YAMAMOTO, Y. MIZUSHIMA, Y. SUZUKI, J Biomed Mater Res. 67 A (2003) 61.

    Article  Google Scholar 

  15. J. S. PIEPER, T. HAFMANS, P. B. VAN WACHEM, M. J. VAN LUYN, L. A. BROUWER, J. H. VEERKAMP T. H. VAN KUPPEVELT, J Biomed Mater Res. 62 (2002) 185.

    Article  CAS  Google Scholar 

  16. D. RIBATTI, A. VACCA, L. RONCALI F. DAMMACCO, Int J Dev Biol. 40 (1996) 1189.

    CAS  Google Scholar 

  17. G. ZWADLO-KLARWASSER, K. GöRLITZ, B. HAFEMANN, D. KLEE AND B. KLOSTERHALFEN J. Mater. Sci.; Mater. Med. 12 (2001) 195.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. C. M. Steffens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, S., Yao, C., Grieb, G. et al. Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF. J Mater Sci: Mater Med 17, 735–741 (2006). https://doi.org/10.1007/s10856-006-9684-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-006-9684-x

Keywords

Navigation