Skip to main content
Log in

Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The biomechanical response of cartilage to impact loads, both in isolation and in situ on its bone substrate, has been little studied despite the common occurrence of osteoarthritis subsequent to cartilage injury. An instrumented drop tower was used to apply controlled impact loads of different energies to explants of bovine articular cartilage. Results were compared with a conventional slow stress-strain test. The effects of the underlying bone were investigated by progressively shortening a core of bone removed with the cartilage, and by gluing cartilage samples to substrates of different moduli. The maximum dynamic modulus of isolated samples of bovine articular cartilage, at strain rates between 1100 and 1500 s−1, was approximately two orders of magnitude larger than the quasistatic modulus and varied non-linearly with applied stress. When attached to a substrate of higher modulus, increasing the thickness of the substrate increased the effective modulus of the combination until a steady value was achieved. A lower modulus substrate reduced the effective modulus of the combination. Severe impacts resulted in damage to the bone rather than to the cartilage. The modulus of cartilage rises rapidly and non-linearly with strain rate, giving the tissue a remarkable ability to withstand impact loads. The presence of cartilage attenuated the peak force experienced by the bone and spread the impact loading period over a longer time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. R. SCHUMACHER, JR. in “Osteoarthritis: diagnosis and surgical management”, Edited by: R. W. Moskowitz, D. S. Howell, V. M. Goldberg and H. J. Mankin (2nd edn. W.B. Saunders Company, Philadephia, 1993), p. 367

  2. L. DAHLBERG, T. FRIDÉN, H. ROOS, M. W. LARK and L. S. LOHMANDER, Brit. J. Rheumatol. 33 (1994) 1107

    Article  CAS  Google Scholar 

  3. L. S. LOHMANDER, L. A. HOERRNER, L. DAHLBERG, H. ROOS, S. BJÖRNSSON and M. W. LARK, J. Rheumatol. 20 (1993) 1362

    CAS  Google Scholar 

  4. L. S. LOHMANDER, Y. YOSHIHARA, H. ROOS, T. KOBAYASHI, H. YAMADA and M. SHINMEI, J. Rheumatol. 23 (1996) 1765

    CAS  Google Scholar 

  5. D. L. BUTLER, S. A. GOLDSTEIN and F. GUILAK, J. Biomech. Eng. Trans. Asme 122 (2000) 570

    Article  CAS  Google Scholar 

  6. G. A. ATESHIAN, W. H. WARDEN, J. J. KIM, R. P. GRELSAMER and V. C. MOW, J. Biomech. 30 (1997) 1157

    Article  CAS  Google Scholar 

  7. M. FORTIN, J. SOULHAT, A. SHIRAZI-ADL, E. B. HUNZIKER and M. D. BUSCHMANN, J. Biomech. Eng. 122 (2000) 189

    Article  CAS  Google Scholar 

  8. J. S. JURVELIN, M. D. BUSCHMANN and E. B. HUNZIKER, Proc. Inst. Mech. Eng [H] 217 (2003) 215

    CAS  Google Scholar 

  9. M. K. BARKER and B. B. SEEDHOM, Rheumatology (Oxford) 40 (2001) 274

    Article  CAS  Google Scholar 

  10. K. A. ATHANASIOU, A. AGARWAL and F. J. DZIDA, J Orthop. Res 12 (1994) 340

    Article  CAS  Google Scholar 

  11. G. E. KEMPSON, M. A. FREEMAN and S. A. SWANSON, J Biomech. 4 (1971) 239

    Article  CAS  Google Scholar 

  12. M. K. BARKER. “Aspects of articular cartilage response to physiological cyclic loading with special reference to cumulative deformation” (PhD Thesis, University of Leeds, 1997)

  13. G. BERGMANN, G. DEURETZBACHER, M. HELLER, F. GRAICHEN, A. ROHLMANN, J. STRAUSS and G. N. DUDA, J. Biomech. 34 (2001) 859

    Article  CAS  Google Scholar 

  14. R. U. REPO and J. B. FINLAY, J. Bone Joint Surg. 59-A (1977) 1068

    Google Scholar 

  15. L. V. BURGIN and R. M. ASPDEN, J. Biomech. 34 (2001) S39

    Google Scholar 

  16. B. M. NIGG and W. HERZOG, in “Biomechanics of the Musculo-Skeletal System” (2 edn. John Wiley & Sons Ltd., Chichester, England, 1998)

    Google Scholar 

  17. E. L. RADIN, H. G. PARKER, J. W. PUGH, R. S. STEINBERG, I. L. PAUL and R. M. ROSE, J. Biomech. 6 (1973) 51

    Article  CAS  Google Scholar 

  18. R. C. THOMPSON, T. R. OEGEMA, J. L. LEWIS and L. WALLACE, J. Bone Joint Surg. 73A (1991) 990

    Google Scholar 

  19. M. T. SERINK, A. NACHEMSON and G. HANSSON, Acta Orthop. Scand. 48 (1977) 250

    Article  CAS  Google Scholar 

  20. J. M. DONOHUE, D. BUSS, T. R. OEGEMA and R. C. THOMPSON, J. Bone Joint Surg. 65-A (1983) 948

    CAS  Google Scholar 

  21. R. C. HAUT, T. M. IDE and C. E. DE CAMP, J. Biomech. Eng. 117 (1995) 402

    CAS  Google Scholar 

  22. O. D. CHRISMAN, I. M. LADENBAUER-BELLIS, M. PANJABI and S. GOELTZ, Clin. Orthop. (1981) 275

  23. J. B. FINLAY and R. U. REPO, IEEE Trans. Biomed. Eng 25 (1978) 34

    Article  CAS  Google Scholar 

  24. J. E. JEFFREY, L. A. THOMPSON and R. M. ASPDEN, Biochim. Biophys. Acta 1334 (1997) 223

    CAS  Google Scholar 

  25. G. N. DUDA, M. EILERS, L. LOH, J. E. HOFFMAN, M. KAAB and K. SCHASER, Clin. Orthop. (2001) 302

  26. C. T. CHEN, N. BURTON-WURSTER, G. LUST, R. A. BANK and J. M. TEKOPPELE, J. Orthop. Res. 17 (1999) 870

    Article  CAS  Google Scholar 

  27. T. FARQUHAR, Y. XIA, K. MANN, J. BERTRAM, N. BURTON-WURSTER, L. W. JELINSKI and G. LUST, J. Orthop. Res. 14 (1996) 417

    Article  CAS  Google Scholar 

  28. R. M. ASPDEN, J. E. JEFFREY and L. V. BURGIN, Osteoarthritis Cart. 10 (2002) 588

    Article  CAS  Google Scholar 

  29. F. H. DAR and R. M. ASPDEN, Proc. Instn. Mech. Engrs. [H], J. Eng. Med. 217 (2003) 341

    Article  CAS  Google Scholar 

  30. E. L. RADIN and I. L. PAUL, Clin. Orthop. 78 (1971) 342

    Article  CAS  Google Scholar 

  31. E. L. RADIN and R. M. ROSE, Clin. Orthop. 213 (1986) 34

    Google Scholar 

  32. C. COOPER, P. L. COOK, C. OSMOND and M. I. D. CAWLEY, Ann. Rheum. Dis. 50 (1991) 540

    Article  CAS  Google Scholar 

  33. J. DEQUEKER, J. AERSSENS and F. P. LUYTEN, Aging Clin. Exp. Res. 15 (2003) 426

    Google Scholar 

  34. R. J. LEWIS, A. K. MACFARLAND, S. ANANDAVIJAYAN and R. M. ASPDEN, Osteoarthritis Cart. 6 (1998) 383

    Article  CAS  Google Scholar 

  35. J. E. JEFFREY, D. W. GREGORY and R. M. ASPDEN, Arch. Biochem. Biophys. 322 (1995) 87

    Article  CAS  Google Scholar 

  36. R. M. ASPDEN, in “Bone Research Protocols”, Edited by: M. H. Helfrich and S. H. Ralston (Human Press Inc, Totowa, New Jersey, 2003), p. 369

  37. L. V. BURGIN and R. M. ASPDEN, Med Eng Phys. 29 (2007) 525

    Article  Google Scholar 

  38. W. J. STRONGE, in “Impact Mechanics” (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  39. S. PARK, C. T. HUNG and G. A. ATESHIAN, Osteoarthritis Cart. 12 (2004) 65

    Article  CAS  Google Scholar 

  40. A. OLOYEDE, R. FLACHSMANN and N. D. BROOM, Connect. Tissue Res. 27 (1992) 211

    Article  CAS  Google Scholar 

  41. R. M. ASPDEN and D. W. L. HUKINS, Proc. R Soc. Lond. B212 (1981) 299

    Article  Google Scholar 

  42. R. M. ASPDEN, Proc. R. Soc. Lond. B-258 (1994) 195

    Article  Google Scholar 

  43. A. ODGAARD and F. LINDE, J. Biomech. 24 (1991) 691

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Arthritis Research Campaign for funding these studies (grant A0542) and the staff at Macintosh Donald, Portlethen, for kindly providing bovine forelimbs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Aspden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgin, L.V., Aspden, R.M. Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone. J Mater Sci: Mater Med 19, 703–711 (2008). https://doi.org/10.1007/s10856-007-3187-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3187-2

Keywords

Navigation